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Abstract: Protein quaternary structure complex is also known as a multimer, which plays
an important role in a cell. The dimer structure of transcription factors is involved in gene
regulation, but the trimer structure of virus-infection-associated glycoproteins is related to the human
immunodeficiency virus. The classification of the protein quaternary structure complex for the
post-genome era of proteomics research will be of great help. Classification systems among protein
quaternary structures have not been widely developed. Therefore, we designed the architecture
of a two-layer machine learning technique in this study, and developed the classification system
PClass. The protein quaternary structure of the complex is divided into five categories, namely,
monomer, dimer, trimer, tetramer, and other subunit classes. In the framework of the bootstrap
method with a support vector machine, we propose a new model selection method. Each type of
complex is classified based on sequences, entropy, and accessible surface area, thereby generating
a plurality of feature modules. Subsequently, the optimal model of effectiveness is selected as
each kind of complex feature module. In this stage, the optimal performance can reach as high
as 70% of Matthews correlation coefficient (MCC). The second layer of construction combines the
first-layer module to integrate mechanisms and the use of six machine learning methods to improve
the prediction performance. This system can be improved over 10% in MCC. Finally, we analyzed
the performance of our classification system using transcription factors in dimer structure and
virus-infection-associated glycoprotein in trimer structure. PClass is available via a web interface at
http://predictor.nchu.edu.tw/PClass/.

Keywords: protein quaternary structure; bootstrap strategy; model selection; classification

1. Introduction

The most important intracellular signaling process requires polymerization into a multimer
structure by the protein monomer structure to complete cell regulation and active function. However,
many proteins can function as a monomer structure, such as enzymes, which can bind with a substrate
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to enhance the combination of other subunits and accelerate their reaction [1]. Protein complexes
are usually described by the number of subunits. A complex with two subunits is called a dimer,
which includes transcription factors [2], cell receptors [3], and cytoskeleton proteins [4]. The trimer
structure contains three subunits, such as collagen [5], virus-infection-associated glycoproteins [6],
and hemagglutinin [7]. A tetramer contains four subunits, such as immunoglobulin protein [8],
hemoglobin [9], and avidin [10]. A hexamer contains six subunits, such as the DnaB helicase [11],
serum protein [12], and insulin [13,14]. An octamer contains eight subunits, such as earthworm’s
serum albumin (hemerythrin) [15] and nucleosome [16]. Under normal circumstances, the protein
complexes in cells are rarely more than an octamer, but some exceptions include the proteasome,
spliceosome, and exosome. Therefore, monomers and multimers play an important role in biological
cells—and also they may lead to cancer and the development of new drugs [17–21].

To comprehend how a polymer is formed, polyacrylamide gel electrophoresis [22],
mass spectrometry [23], high performance liquid chromatography (HPLC)-gel filtration
chromatography [24], analytical ultracentrifugation [25], and multi-angle laser light scattering [26]
analyses are usually conducted to determine the size and distribution of the polymer. However, such
experimental methods may be time consuming, laborious, and costly. The development of an in silico
method for protein quaternary structure complexes may assist biological experiments.

However, only two studies presented the use of machine learning to determine the protein
quaternary structure complex. Multicoil [27] utilizes the covariance matrix of a multivariate Gaussian
distribution to predict whether a coiled coil sequence belongs to a dimeric coiled coil, trimeric
coiled coil, or noncoiled coil structure. Each residue is given a predicted score. Multicoil2 combines
Multicoil with multinomial logistic regression to obtain two predictors of dimer and trimer propensity.
These predictors are used to generate potentials for a Markov random field. SCORER [28] uses
the log-odds-based scoring system to differentiate between a parallel dimeric coiled coil or parallel
trimeric coiled coil. SCORER 2.0 [29] improves the log-odds-based scoring system, makes good use of
position-specific scoring matrix and Multicoil, and predicts parallel coiled coil sequence of hepetad
repeat location and gives it a score. High scores represent high accuracy in predicting dimer or
trimer structures.

Few studies have focused on the dimer and trimer structures, and complete protein quaternary
structure complex bioinformatics tools are lacking. This study established a protein quaternary
structure complex prediction system by designing a two-layer machine learning framework, and
optimal classification and prediction system PClass. The first layer, using the bootstrap method,
proposed a new model selection with amino acid sequence composition, entropy, and accessible
surface area (ASA) as feature coding. Support vector machine (SVM) was used to select the best
performance learning module to build a feature module, wherein the prediction performance was
able to be as high as 70% of a Matthews correlation coefficient (MCC). Subsequently, we selected the
best feature model to establish a second-layer prediction model, which was integrated by the first
layer through machine learning for model selection and prediction of protein quaternary structure
complex. The MCC ranged from 70% to 80%. To further investigate the accuracy of the protein
quaternary structure complex prediction system, we used dimer-structured transcription factors,
and virus-infection-associated glycoproteins in which have a trimer structure as a classification system
to verify the protein quaternary structure complex. Finally, the prediction accuracy of the classification
system was determined to reach 66% of accuracy (ACC).

2. Materials and Methods

2.1. Dataset

As mentioned above, to examine the complete protein quaternary structure complex, this study
integrated two different databases, namely, the coiled-coil sequence location database and protein
complex structure database, to create and verify the prediction system. One of the datasets was
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CC + DATABASE [30], which Testa et al. proposed after adjusting the coiled-coil structure and
polymer data. In SCORER 2.0 web server, they also utilized the CC + DATABASE but only the parallel
dimer and trimer coiled-coil data. In the present study, we used the dataset of all polymers in the
CC + DATABASE and classified the polymers into four categories (dimer, trimer, tetramer, and other
subunits). Another dataset of the 3D complex was used [31], which was proposed as a protein complex
structure database. The 3D complex provides a protein domain structure, cell expression system,
accessible surface area of the complex, subunit type, and homologous and heterologous polymers.

In this study, we analysed the database of homologous or heterologous monomers and polymers,
classified the data into five categories (monomer, dimer, trimer, tetramer, and other subunits),
and integrated the data with the CC + DATABASE for the study dataset. We used data from 2007 and
2006 to verify the established system, whereas data from the years before 2006 were the basis for the
establishment of the monomer and polymer system module (Table 1). The study dataset was divided
into five categories, and monomers were classified as positive. The remaining non-monomer data were
categorized as negative information. The other polymers are shown in Table 2.

Table 1. Training set and independent test set basis on the year to do classification.

Training Set Independent Test Set

Monomer 11,638 1513
Dimer 8570 1005
Trimer 1231 119

Tetramer 2764 282
Other 1527 176

Table 2. Positive and negative data of training set and independent test.

Training Set Independent Test Set

Positive Negative Positive Negative

Monomer 11,638 14,092 1535 1582
Dimer 8570 17,160 1005 2112
Trimer 1231 24,499 119 2998

Tetramer 2764 22,966 282 2835
Other 1527 24,203 176 2941

2.2. Feature Encoding

2.2.1. Amino Acid Composition

Amino acid composition (AAC) describes the basic unit of a protein, which has specific molecular
structure patterns, such as charge, size, polarity, and solubility (hydrophilic and hydrophobic). Proteins
have biochemical activity. Therefore, we used 20 kinds of amino acids in the composition and the other
remaining amino acid as a class, resulting in 21 kinds of amino acid compositions. We calculated the
sequence of amino acid composition as follows:

AAC(xa) =
number o f amino acid xa

length o f protein sequence

where xa represents the 21 different amino acids.

2.2.2. Shannon Entropy

In 1948, Claude E. Shannon proposed thermodynamic entropy in information theory to measure
the expectations of a random variable for solving the quantization problem [32]. When a system is
ordered, its entropy is low. By contrast, if a system is complex, its entropy is high. The Shannon
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entropy formula can be used to calculate the change rate in the data sets for each protein sequence
in the amino acid residue position sequence [33]. p(xi) is the frequency of each amino acid sequence.
The logarithm of p(xi) multiplied by p(xi) is determined to obtain the entropy as the feature coding.

H(X) = −
I

∑
i=1

p(xi) log2(p(xi))

2.2.3. Accessible Surface Area

In protein folding, amino acid residues contain hydrophilic and hydrophobic charges. These
residues are then folded into a 3D structure through their interactions. The hydrophobicity of residues
is crucial to stabilize the protein structure. When proteins are in an aqueous solution, the hydrophobic
amino acid side chains are embedded in the internal proteins to form a hydrophobic core and stable
protein. The protein’s accessible surface area proposed by Lee and Richards [34] is used to study
the hydrophobicity of protein molecules. The accessible surface area (ASA) indicates the contact
area between the protein and solvent, which is divided into two states (i.e., exposure or embedded).
The SAS web server [35] was used to obtain a sequence ASA to differentiate between monomer and
multimer feature coding.

2.3. Model

In the study, we proposed a major component element known as the integration of classification
to effectively use each feature and process the data classification problem. In most cases, the number
of negative data (majority class) was higher than that of positive data (minority class), and the ratio
of sizes between them usually exceeded three. Thus, for unbalanced data, we used R software in the
bootstrap method for repeated sampling and then generated different subset data. According to the
unbalance training data in the protein interaction problem processed by Deng et al. [36]. The majority
class of information was subjected to random sampling, so that the majority class data number was
equal or similar to the minority class data number in a certain subset. This step also ensured that
the entire minority class data were retained in the overall dataset. Furthermore, Deng, et al. used
voting strategy to integrate these submodels [36]. However, that strategy can’t be adopted when the
submodels are an even number. Therefore, PClass selected the best learning model for each feature,
which might come from different subset.

By integrating classification and bootstrap method, multimer negative information of training
set was partitioned into the same or similar groups of positive data. Thus, each group with complex
negative data were divided into m set, and each group positive data were integrated with the new
classification of negative data to yield a new training data set.

The complex of each group was based on the classification of the new training data set for
individual use of amino acid composition, entropy, and ASA for feature encoding. In addition, each
group contains a m classification set and a support vector machine (SVM) classifier is a process for
the classification. In order to assess the robustness of the SVM classifier, the tenfold cross validation
method is used throughout the work. In Figure 1, the integration mechanism consists of two parts
which the three best performing feature codings are performed to the feature modules of each group
and the feature module is selected as a second layer to establish the integrating functions. Additionally,
it was also used in conjunction with other machine learning methods to enhance the performance of
each prediction system.

The monomers and dimers will not use the bootstrap method when the rates of positive are less
than three. In this situation, the machine learning method will be used as an alternative. In contrast,
trimers, tetramers, and other class subunits will be analyzed using the bootstrap method. That is,
trimer data were divided into 20 negative and positive sets of data, and each group comprised three
feature encodings. Tetramer data were divided into eight negative and positive sets of data integration,
and each group included three feature encodings. Further, divided into 15 negative sets and a positive
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set of data integration in the other subunit types of information, there will be 15 of the group, each
group having three feature encodings. To enhance the performance of each complex set classification
system, the best MCC was selected as feature model through SVM confidence scores as the input of the
second layer of integration mechanisms. Six kinds of machine learning methods (BayesNet, REPTree,
LADTree, Kstar, MultilayerPerceptron, and RandomForest) were then used to choose the best machine
learning with the best performance [37]. Furthermore, this study constructed a hierarchical testing
by the best complex models from high to low individual performance when the unknown protein
sequence was requested; a possible flowchart is shown in Supplementary Figure S1.
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Figure 1. The flowchart of classifier evaluation. SVM: support vector machine.

When the predict results for this multimer class and practical is also this multimer class, called as
True Positive (TP). If the predicted results are for this multimer class but the actual result is not this
multimer class, then the data are false positive (FP). If the predicted results are a nonpolymer class but
actually a multimer class, then they are false negative (FN). Predictions for the nonmultimer class and
actual nonmultimer class are called true negative (TN). Through the rules defined, the method accuracy
and performance are assessed. MCC is used to test the positive and negative correlation, and its value
is between [−1,1]. If the value of 1 represents an entirely correct forecast, then the weak value of −1
indicates that the forecast is opposite. The MCC can be calculated using the following formula:

MCC =
(TP × TN)− (FN × FP)√

(TP + FN)× (TN + FP)× (TP + FP)× (TN + FN)
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Accuracy (ACC), which is used to assess the overall predictive ability of forecasting accuracy,
is calculated as follows:

ACC =
TP + TN

TP + FP + TN + FN

3. Results and Discussion

3.1. Training of Feature Encoding in First Layer

To understand the accuracy of the feature encoding prediction system, we used the SVM training
data with tenfold cross-validation (Supplementary Figures S2–S6). Different features were used for the
encoding of the results.

The trimer structure handle with imbalanced data on bootstrap method, through classifier
evaluation can formation of twenty models, each model via SVM to select the best parameters. Among
amino acid composition encoding, the model3 can reach a maximum MCC of 0.698. For the entropy
encoding, the model3 can achieve, at its best, an MCC of 0.693. For ASA encoding, the model6 can
reach an MCC of 0.363. In conclusion, we selected the best performance using the SVM confidence
scores of amino acid composition and entropy as the feature models (Supplementary Figure S2).

The tetramer structure handle with imbalanced data on the bootstrap method, through classifier
evaluation, can form eight models. Each model (via SVM) selected the best parameters among the
amino acid composition encodings, with model1 reaching a maximum MCC of 0.742. For entropy
encoding, model2 could attain the optimal MCC of 0.783. For ASA encoding, model5 reached the
optimal MCC of 0.425. Ultimately, we chose the best model through SVM confidence scores of amino
acid composition and entropy as the feature models (Supplementary Figure S3).

Other subunit classes were chosen to deal with unbalanced data on the bootstrap method.
Through classifier evaluation, fifteen models were formed. Each model (via SVM) selected the best
parameters among the amino acid composition encodings, with model15 reaching the best MCC of
0.757. For entropy encoding, model15 could reach the best MCC of 0.756. For ASA encoding, model14
could achieve the best MCC of 0.466. Finally, we selected the best model using SVM confidence scores
of amino acid composition and entropy as the feature model (Supplementary Figure S4).

In the classification of trimers, tetramers, and other subunits, ASA feature coding did not achieve
enhanced prediction accuracy. Thus, in the classification of monomers and dimers, we did not adopt
ASA feature coding. For monomer data, feature encoding and machine learning methods with
tenfold cross-validation were directly used to select the best machine learning method as a module.
Machine learning methods include BayesNet, REPTree, LADTree, Kstar, MultilayerPerceptron, and
RandomForest. Consequently, we selected the best machine learning method and performance, which
were Kstar and MCC = 0.721, respectively. The best machine learning method for entropy encoding
was Kstar, and the MCC was 0.724 (Supplementary Figure S5). For the dimers to the amino acid
composition and entropy encoding, the best machine learning method was Kstar, and the MCC was
0.665 (Supplementary Figure S6).

3.2. Training of Integrate Method in Two Layer

To increase the classification efficiency and accuracy of the prediction system, the best performance
model was selected in the first layer and integrated with the characteristics of other techniques
(Supplementary Figures S7–S9). Given that ASA feature coding did not achieve enhanced prediction
accuracy, we did not adopt ASA feature coding to establish the second layer.

We explored various machine learning methods to select the best method with the findings from
the first layer. Then, the second layer used BayesNet, REPTree, LADTree, Kstar, MultilayerPerceptron,
and RandomForest [38–42]. The trimeric class used machine learning methods, and the best machine
learning method was selected (Supplementary Figure S7). The trimer data used MultilayerPerceptron
to achieve the best performance of MCC = 0.808, whereas other machine learning techniques reached
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an MCC above 0.7. Compared with the first layer of the amino acid composition and entropy, MCC
was 0.654 and 0.610 (Supplementary Figure S10). Thus, the performance increased from 13% to 19%.

For the tetramer class, we used machine learning methods to pick the best learning algorithms.
Show in Supplementary Figure S8. It can be seen that for the tetramer data we used Kstar to achieve
the best performance of MCC 0.764. Other machine learning performance can reach an MCC above
0.72. Compared with the first layer of the amino acid composition and entropy, MCC was 0.63 and 0.61
(Supplementary Figure S11); thus, the performance increased from 11% to 15%. Other subunits were
subjected to different machine learning methods, whereas other subunit information used REPTree to
achieve the best performance of MCC = 0.773 (Supplementary Figure S9).

Other machine learning techniques reached an MCC above 0.73. Compared with the first layer
of the amino acid composition and entropy, MCC was 0.52 and 0.57 (Supplementary Figure S12);
thus, the performance increased from 22% to 25%. Therefore, we utilized different machine learning
methods and chose the best one, integrating feature as a combination. For trimer, tetramer, and the
other subunit class can enhance the prediction of the system performance and accuracy.

Divided into five categories in the study, monomer, dimer, trimer, tetramer, and other subunits of
class, each class establish a module, and selection of the best performance through machine learning.
Finally, we selected the overall module, as shown in Figure 2. Hence, the model order was the trimer
with MCC = 0.808, followed by the other subunits with MCC = 0.773, tetramer with MCC = 0.764,
monomer with MCC = 0.721, and dimer with MCC = 0.665.
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3.3. Bootstrap Method Compare with Other Method

The trimer, tetramer, and other class subunits must be data processed. Due to negative information
and positive information ratio greater than three, the bootstrap method was used to deal with
unbalanced data to achieve the best performance classification system. In this study, we randomly
selected negative data 10 times for making positive data and negative data quantity of the same
number, called the random method, and to verify that the bootstrap method can make the prediction
system for optimal performance.

As shown in Table 3, the average performance was 0.696 using trimer data by the bootstrap
method for imbalanced data and first-layer feature models. Trimer data using random method
exhibited an average performance of only 0.676. Thus, the trimer structure data obtained by the
bootstrap method could improve the prediction ability of the system. Tetramer data via the bootstrap
method for imbalanced data through first-layer feature models demonstrated an average performance
of 0.741. Tetramer data via the random method yielded an average performance of 0.727. For this
reason, tetramer structure data from the bootstrap method could improve the prediction ability of
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the system. Other subunits for imbalanced data by the bootstrap method through first-layer feature
models revealed an average performance of 0.757, whereas those using the random method indicated
an average performance of 0.738. As a result, the other subunits via the bootstrap method improved
the prediction ability of the system.

Table 3. Bootstrap method compared with random method.

Trimer Tetramer Other

Bootstrap 0.696 0.741 0.757
Random 0.676 0.727 0.738

3.4. Case Study

Using the transcription factor sequence data, we selected nine transcription factor sequences
to predict the dimer structure. Using the viral infection-associated glycoprotein data, we selected
nine virus-infection-associated glycoprotein sequence data to predict the trimer structure. All protein
database (PDB) IDs of selected proteins were shown in supplementary dataset. In this study, we
accurately predicted three virus-infection-associated glycoproteins belonging with a trimer sequence.
The three trimer sequences belonged to human immunodeficiency virus (HIV) type I-associated
glycoprotein gp41. The remaining six trimer sequence data belonged to the trimeric HIV information,
but they may be related to glycoprotein gp120 virus or other membrane fusion proteins. Thus, the
classification system of trimers could accurately predict the virus-infection-associated glycoprotein
gp41 sequence. In the prediction of the dimeric transcription factor sequence, the proposed system
could accurately predict the sequences belonging to the dimeric transcription factor.

4. Conclusions

This study aimed to conduct feature encoding and integration mechanisms for classifying
quaternary structures. For this purpose, we designed the architecture of a two-layer machine learning
technique. Two objective layers namely the bootstrap method to classify unbalanced data and selected
the optimum parameters of the SVM feature module are introduced to be used along with other
machine learning methods to enhance the prediction performance. The first layer used a variety
of feature encoding via SVM machine learning to find the best parameters for each set as a model.
In addition, each model has a m-predicted performance for selecting the best forecasting performance.
The trimer, tetramer, and other subunits were selected as feature encoding of amino acid composition
and entropy for an overall prediction performance above 0.7 and ASA of 0.3. Thus, in the first layer
of feature coding, we selected the amino acid composition and entropy to integrate the prediction
performance as the feature module. In particular, the second layer used machine learning methods,
and the selection of the optimum parameters of the SVM feature module in the first layer. Effectiveness
of proposed machine learning methods is shown by comparing it with first layer. That is, the second
layer of construction combines the first-layer module to integrate mechanisms and the best machine
learning method was selected to improve the prediction performance. Indeed, this system can be
improved over 10% in MCC.

In this work, we analyzed the performance of our classification system using transcription factors
with a dimer structure and virus-infection-associated glycoprotein with a trimer structure. There
was a superiority of two-layer machine learning to predict and classify protein quaternary structures
in dimers, trimers, tetramers, and other subunits. In addition to predicting the protein quaternary
structure on the polymer structure, the interactions between the coiled-coil position and structure,
homologous polymer and heterologous polymer structure, and parallel and antiparallel polymer
structures may be investigated to establish a human polymer molecular database.
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Finally, we provided an advanced web tool to users for the complete single-chain sequence of
the protein quaternary structure. Results showed a sequence of quaternary structure belonging to the
protein monomer, protein dimer, trimer proteins, tetramer protein, or other subunits.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4425/9/2/91/s1, File F1:
PClass_SD.zip, Supplementary Figures S1–S12; dataset: ds.txt.
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