Sequencing of Supernumerary Chromosomes of Red Fox and Raccoon Dog Confirms a Non-Random Gene Acquisition by B Chromosomes
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Sequencing of Fox and Raccoon Dog B Chromosomes and Autosomes
3.2. Fox Whole-Genome Sequencing Data
3.3. Genetic Content of B Chromosomes in Deer Revisited
3.4. Comparison of B Chromosome Gene Content in Six Species of Mammals
4. Discussion
- KHDRBS3 (as known as T-STAR and SLM-2) is found on Bs of the grey brocket deer and the Korean field mouse. It encodes an RNA-binding signal transduction protein involved in alternative splicing regulation expressed in the brain and gonads. Mutations in this gene are associated with a neurological disorder (child absence epilepsy [65]), and affect the progression of various cancers.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wilson, E.B. The supernumerary chromosomes of Hemiptera. Science 1907, 26, 870–871. [Google Scholar]
- Liehr, T.; Claussen, U.; Starke, H. Small supernumerary marker chromosomes (sSMC) in humans. Cytogenet. Genome Res. 2004, 107, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Storlazzi, C.T.; Lonoce, A.; Guastadisegni, M.C.; Trombetta, D.; D’Addabbo, P.; Daniele, G.; L’Abbate, A.; Macchia, G.; Surace, C.; Kok, K.; et al. Gene amplification as double minutes or homogeneously staining regions in solid tumors: Origin and structure. Genome Res. 2010, 20, 1198–1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, S.; Segal, D. Extrachromosomal circular DNA in eukaryotes: Possible involvement in the plasticity of tandem repeats. Cytogenet. Genome Res. 2009, 124, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.N. B-chromosome drive. Am. Nat. 1991, 137, 430–442. [Google Scholar] [CrossRef]
- Houben, A. B chromosomes—A matter of chromosome drive. Front. Plant Sci. 2017, 8, 210. [Google Scholar] [CrossRef] [PubMed]
- Schartl, M.; Nanda, I.; Schlupp, I.; Wilde, B.; Epplen, J.T.; Schmid, M.; Parzefall, J. Incorporation of subgenomic amounts of DNA as compensation for mutational load in a gynogenetic fish. Nature 1995, 373, 68–71. [Google Scholar] [CrossRef]
- Dhar, M.K.; Friebe, B.; Koul, A.K.; Gill, B.S. Origin of an apparent B chromosome by mutation, chromosome fragmentation and specific DNA sequence amplification. Chromosoma 2002, 111, 332–340. [Google Scholar] [CrossRef] [PubMed]
- Martis, M.M.; Klemme, S.; Banaei-Moghaddam, A.M.; Blattner, F.R.; Macas, J.; Schmutzer, T.; Scholz, U.; Gundlach, H.; Wicker, T.; Šimková, H.; et al. Selfish supernumerary chromosome reveals its origin as a mosaic of host genome and organellar sequences. Proc. Natl. Acad. Sci. USA 2012, 109, 13343–13346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valente, G.T.; Conte, M.A.; Fantinatti, B.E.A.; Cabral-de-Mello, D.C.; Carvalho, R.F.; Vicari, M.R.; Kocher, T.D.; Martins, C. Origin and evolution of B chromosomes in the cichlid fish Astatotilapia latifasciata based on integrated genomic analyses. Mol. Biol. Evol. 2014, 31, 2061–2072. [Google Scholar] [CrossRef] [PubMed]
- Lamb, J.C.; Riddle, N.C.; Cheng, Y.-M.; Theuri, J.; Birchler, J.A. Localization and transcription of a retrotransposon-derived element on the maize B chromosome. Chromosome Res. 2007, 15, 383–398. [Google Scholar] [CrossRef] [PubMed]
- Makunin, A.I.; Dementyeva, P.V.; Graphodatsky, A.S.; Volobouev, V.T.; Kukekova, A.V.; Trifonov, V.A. Genes on B chromosomes of vertebrates. Mol. Cytogenet. 2014, 7, 99. [Google Scholar] [CrossRef] [PubMed]
- Houben, A.; Banaei-Moghaddam, A.M.; Klemme, S.; Timmis, J.N. Evolution and biology of supernumerary B chromosomes. Cell. Mol. Life Sci. 2014, 71, 467–478. [Google Scholar] [CrossRef] [PubMed]
- Ruban, A.; Schmutzer, T.; Scholz, U.; Houben, A. How next-generation sequencing has aided our understanding of the sequence composition and origin of B chromosomes. Genes 2017, 8, 294. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Terai, Y.; Mizoiri, S.; Aibara, M.; Nishihara, H.; Watanabe, M.; Kuroiwa, A.; Hirai, H.; Hirai, Y.; Matsuda, Y.; et al. B chromosomes have a functional effect on female sex determination in Lake Victoria cichlid fishes. PLoS Genet 2011, 7, e1002203. [Google Scholar] [CrossRef] [PubMed]
- Banaei-Moghaddam, A.M.; Meier, K.; Karimi-Ashtiyani, R.; Houben, A. Formation and expression of pseudogenes on the B chromosome of rye. Plant Cell Online 2013, 25, 2536–2544. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Domínguez, B.; Ruiz-Ruano, F.J.; Cabrero, J.; Corral, J.M.; López-León, M.D.; Sharbel, T.F.; Camacho, J.P.M. Protein-coding genes in B chromosomes of the grasshopper Eyprepocnemis plorans. Sci. Rep. 2017, 7, 45200. [Google Scholar] [CrossRef] [PubMed]
- Graphodatsky, A.S.; Kukekova, A.V.; Yudkin, D.V.; Trifonov, V.A.; Vorobieva, N.V.; Beklemisheva, V.R.; Perelman, P.L.; Graphodatskaya, D.A.; Trut, L.N.; Yang, F.; et al. The proto-oncogene C-KIT maps to canid B-chromosomes. Chromosome Res. 2005, 13, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Yudkin, D.V.; Trifonov, V.A.; Kukekova, A.V.; Vorobieva, N.V.; Rubtsova, N.V.; Yang, F.; Acland, G.M.; Ferguson-Smith, M.A.; Graphodatsky, A.S. Mapping of KIT adjacent sequences on canid autosomes and B chromosomes. Cytogenet. Genome Res. 2007, 116, 100–103. [Google Scholar] [CrossRef] [PubMed]
- Duke Becker, S.E.; Thomas, R.; Trifonov, V.A.; Wayne, R.K.; Graphodatsky, A.S.; Breen, M. Anchoring the dog to its relatives reveals new evolutionary breakpoints across 11 species of the Canidae and provides new clues for the role of B chromosomes. Chromosome Res. 2011, 19, 685–708. [Google Scholar] [CrossRef] [PubMed]
- Makunin, A.I.; Kichigin, I.G.; Larkin, D.M.; O’Brien, P.C.M.; Ferguson-Smith, M.A.; Yang, F.; Proskuryakova, A.A.; Vorobieva, N.V.; Chernyaeva, E.N.; O’Brien, S.J.; et al. Contrasting origin of B chromosomes in two cervids (Siberian roe deer and grey brocket deer) unravelled by chromosome-specific DNA sequencing. BMC Genom. 2016, 17, 618. [Google Scholar] [CrossRef] [PubMed]
- Makunin, A.I.; Rajičić, M.; Karamysheva, T.V.; Romanenko, S.A.; Druzhkova, A.S.; Blagojević, J.; Vujošević, M.; Rubtsov, N.B.; Graphodatsky, A.S.; Trifonov, V.A. Low-pass single-chromosome sequencing of human small supernumerary marker chromosomes (sSMCs) and Apodemus B chromosomes. Chromosoma 2018. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; O’Brien, P.C.M.; Milne, B.S.; Graphodatsky, A.S.; Solanky, N.; Trifonov, V.; Rens, W.; Sargan, D.; Ferguson-Smith, M.A. A complete comparative chromosome map for the dog, red fox, and human and its integration with canine genetic maps. Genomics 1999, 62, 189–202. [Google Scholar] [CrossRef] [PubMed]
- Nie, W.; Wang, J.; Perelman, P.; Graphodatsky, A.S.; Yang, F. Comparative chromosome painting defines the karyotypic relationships among the domestic dog, Chinese raccoon dog and Japanese raccoon dog. Chromosome Res. 2003, 11, 735–740. [Google Scholar] [CrossRef] [PubMed]
- Trifonov, V.A.; Perelman, P.L.; Kawada, S.-I.; Iwasa, M.A.; Oda, S.-I.; Graphodatsky, A.S. Complex structure of B-chromosomes in two mammalian species: Apodemus peninsulae (Rodentia) and Nyctereutes procyonoides (Carnivora). Chromosome Res. 2002, 10, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Trifonov, V.; Ng, B.L.; Kosyakova, N.; Carter, N.P. Generation of paint probes from flow-sorted and microdissected chromosomes. In Fluorescence in Situ Hybridization (FISH) Application Guide; Liehr, T., Ed.; Springer Protocols Handbooks; Springer: Berlin/Heidelberg, Germany, 2017; pp. 63–79. [Google Scholar]
- Telenius, H.; Carter, N.P.; Bebb, C.E.; Nordenskjo¨ld, M.; Ponder, B.A.J.; Tunnacliffe, A. Degenerate oligonucleotide-primed PCR: General amplification of target DNA by a single degenerate primer. Genomics 1992, 13, 718–725. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv, 2013; arXiv:13033997. [Google Scholar]
- Kukekova, A.; Johnson, J.; Xiang, X.; Feng, S.; Liu, S.; Rando, H.; Kharlamova, A.; Herbeck, Y.; Serdyukova, N.; Xiong, Z.; et al. Red fox genome assembly identifies genomic regions associated with tame and aggressive behaviors. Nat. Ecol. Evol. 2018, in press. [Google Scholar] [CrossRef] [PubMed]
- Abyzov, A.; Urban, A.E.; Snyder, M.; Gerstein, M. CNVnator: An approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 2011, 21, 974–984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zerbino, D.R.; Achuthan, P.; Akanni, W.; Amode, M.R.; Barrell, D.; Bhai, J.; Billis, K.; Cummins, C.; Gall, A.; Girón, C.G. Ensembl 2018. Nucleic Acids Res. 2017, 46, D754–D761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durinck, S.; Spellman, P.T.; Birney, E.; Huber, W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat. Protoc. 2009, 4, 1184. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009, 37, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lee, C.; Chang, W.; Li, S.-Y.; Lin, C. Isolation and identification of a novel satellite DNA family highly conserved in several Cervidae species. Chromosoma 2002, 111, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Trifonov, V.A.; Dementyeva, P.V.; Larkin, D.M.; O’Brien, P.C.; Perelman, P.L.; Yang, F.; Ferguson-Smith, M.A.; Graphodatsky, A.S. Transcription of a protein-coding gene on B chromosomes of the Siberian roe deer (Capreolus pygargus). BMC Biol. 2013, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, S.-Q.; Wang, L.-P.; Yao, Y.-H.; Ma, C.-Y.; Ding, J.-F.; Ye, J.; Meng, X.-M.; Li, J.-J.; Xu, R.-X. Overexpression of cardiac-specific kinase TNNI3K promotes mouse embryonic stem cells differentiation into cardiomyocytes. Cell. Physiol. Biochem. 2017, 41, 381–398. [Google Scholar] [CrossRef] [PubMed]
- Lamatsch, D.K.; Trifonov, V.; Schories, S.; Epplen, J.T.; Schmid, M.; Schartl, M. Isolation of a cancer-associated microchromosome in the sperm-dependent parthenogen Poecilia formosa. Cytogenet. Genome Res. 2011, 135, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Pieńkowska-Schelling, A.; Schelling, C.; Zawada, M.; Yang, F.; Bugno, M.; Ferguson-Smith, M. Cytogenetic studies and karyotype nomenclature of three wild canid species: Maned wolf (Chrysocyon brachyurus), bat-eared fox (Otocyon megalotis) and fennec fox (Fennecus zerda). Cytogenet. Genome Res. 2008, 121, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Hsu, T.C.; Benirschke, K. An Atlas of Mammalian Chromosomes; Springer: New York, NY, USA, 1973; Volume 4, p. 178. [Google Scholar]
- Bhatnagar, V.S. Microchromosomes in the somatic cells of Vulpes bengalensis Shaw. Chromosome Inf. Serv. 1973, 15, 32. [Google Scholar]
- Chiarelli, A.B. The chromosomes of the Canidae. In The Wild Canids, Their Systematics, Behavioral Ecology, and Evolution; Van Nostrand Reinhold Co.: New York, NY, USA, 1975; pp. 40–53. [Google Scholar]
- Gustavsson, I.; Sundt, C.O. Chromosome complex of the family Canidae. Hereditas 1965, 54, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Moore, W.; Elder, R.L. Chromosomes of the fox. J. Hered. 1965, 56, 142–143. [Google Scholar] [CrossRef]
- Trut, L.N. Early Canid Domestication: The Farm-Fox Experiment: Foxes bred for tamability in a 40-year experiment exhibit remarkable transformations that suggest an interplay between behavioral genetics and development. Am. Sci. 1999, 87, 160–169. [Google Scholar] [CrossRef]
- Volobujev, V.T.; Radzhabli, S.I.; Belyaeva, E.S. Investigation of the nature and the role of additional chromosomes in silver foxes. III. Replication pattern in additional chromosomes. Genetika 1976, 12, 30. [Google Scholar]
- Radzhabli, S.I.; Isaenko, A.A.; Volobujev, V.T. Investigation of the nature and the role of additional chromosomes in silver fox. IV. B-chromosomes behaviour in meiosis. Genetika 1978, 14, 438–443. [Google Scholar] [PubMed]
- Świtoński, M.; Gustavsson, I.; Höjer, K.; Plöen, L. Synaptonemal complex analysis of the B-chromosomes in spermatocytes of the silver fox (Vulpes fulvus Desm.). Cytogenet. Genome Res. 1987, 45, 84–92. [Google Scholar]
- Basheva, E.A.; Torgasheva, A.A.; Sakaeva, G.R.; Bidau, C.; Borodin, P.M. A-and B-chromosome pairing and recombination in male meiosis of the silver fox (Vulpes vulpes L., 1758, Carnivora, Canidae). Chromosome Res. 2010, 18, 689–696. [Google Scholar] [CrossRef] [PubMed]
- Bugno-Poniewierska, M.; Solek, P.; Wronski, M.; Potocki, L.; Jezewska-Witkowska, G.; Wnuk, M. Genome organization and DNA methylation patterns of B chromosomes in the red fox and Chinese raccoon dogs. Hereditas 2014, 151, 169–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kociucka, B.; Sosnowski, J.; Kubiak, A.; Nowak, A.; Pawlak, P.; Szczerbal, I. Three-dimensional positioning of B chromosomes in fibroblast nuclei of the red fox and the Chinese raccoon dog. Cytogenet. Genome Res. 2013, 139, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Mäkinen, A.; Fredga, K. Banding analyses of the somatic chromosomes of raccoon dogs, Nyctereutes procyonoides, from Finland. In Proceedings of the 4th European Colloquium on Cytogenetics of Domestic Animals, Uppsala, Sweden, 10–13 June 1980. [Google Scholar]
- Yosida, T.H.; Wada, M.Y.; Ward, O.G. Karyotype of a Japanese raccoon dog with 40 chromosomes including two supernumeraries. Proc. Jpn. Acad. Ser. B 1983, 59, 267–270. [Google Scholar] [CrossRef]
- Wada, M.Y.; Lim, Y.; Wurster-Hill, D.H. Banded karyotype of a wild-caught male Korean raccoon dog, Nyctereutes procyonoides koreensis. Genome 1991, 34, 302–306. [Google Scholar] [CrossRef]
- Ward, O.G.; Wurster-Hill, D.H.; Ratty, F.J.; Song, Y. Comparative cytogenetics of Chinese and Japanese raccoon dogs, Nyctereutes procyonoides. Cytogenet. Genome Res. 1987, 45, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Yosida, T.H.; Wada, M.Y. Cytogenetical studies on the Japanese raccoon dog. VI. Distribution of B-chromosomes in 1372 cells from 13 specimens, with special note on the frequency of the Robertsonian fission. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 1984, 60, 301–305. [Google Scholar] [CrossRef]
- Yosida, T.H.; Wada, M.Y. Cytogenetical studies on the Japanese raccoon dog. VIII. B-chromosomes observed in the spermatogonial metaphase cells. Proc. Jpn. Acad. Ser. B 1985, 61, 375–378. [Google Scholar] [CrossRef]
- Szczerbal, I.; Switonski, M. B chromosomes of the Chinese raccoon dog (Nyctereutes procyonoides procyonoides Gray) contain inactive NOR-like sequences. Caryologia 2003, 56, 213–216. [Google Scholar] [CrossRef]
- Wurster-Hill, D.H.; Ward, O.G.; Kada, H.; Whittemore, S. Banded chromosome studies and B chromosomes in wild-caught raccoon dogs, Nyctereutes procyonoides viverrinus. Cytogenet. Genome Res. 1986, 42, 85–93. [Google Scholar] [CrossRef]
- Shi, L.; Tang, L.; Ma, K.; Ma, C. Synaptonemal complex formation among supernumerary B chromosomes: An electron microscopic study on spermatocytes of Chinese raccoon dogs. Chromosoma 1988, 97, 178–183. [Google Scholar] [CrossRef]
- Wurster-Hill, D.H.; Ward, O.G.; Davis, B.H.; Park, J.P.; Moyzis, R.K.; Meyne, J. Fragile sites, telomeric DNA sequences, B chromosomes, and DNA content in raccoon dogs, Nyctereutes procyonoides, with comparative notes on foxes, coyote, wolf, and raccoon. Cytogenet. Genome Res. 1988, 49, 278–281. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.M.; Zhang, Y.; Zhu, W.J.; Yan, S.Q.; Sun, J.H. Identification of polymorphisms and transcriptional activity of the proto-oncogene KIT located on both autosomal and B chromosomes of the Chinese raccoon dog. Genet. Mol. Res. 2016, 15, 26909958. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Gabriel, T.S.; Martis, M.M.; Gursinsky, T.; Schubert, V.; Vrána, J.; Doležel, J.; Grundlach, H.; Altschmied, L.; Scholz, U. Rye B chromosomes encode a functional Argonaute-like protein with in vitro slicer activities similar to its A chromosome paralog. New Phytol. 2017, 213, 916–928. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, Y.; Morita, R.; Amano, K.; Shah, P.U.; Pascual-Castroviejo, I.; Khan, S.; Delgado-Escueta, A.V.; Yamakawa, K. T-STAR gene: Fine mapping in the candidate region for childhood absence epilepsy on 8q24 and mutational analysis in patients. Epilepsy Res. 2001, 46, 139–144. [Google Scholar] [CrossRef]
- Posey, A.D.; Demonbreun, A.; McNally, E.M. Ferlin proteins in myoblast fusion and muscle growth. Curr. Top. Dev. Biol. 2011, 96, 203–230. [Google Scholar] [CrossRef] [PubMed]
- Turtoi, A.; Blomme, A.; Bellahcène, A.; Gilles, C.; Hennequière, V.; Peixoto, P.; Bianchi, E.; Noel, A.; De Pauw, E.; Lifrange, E.; et al. Myoferlin is a key regulator of EGFR activity in breast cancer. Cancer Res. 2013, 73, 5438–5448. [Google Scholar] [CrossRef] [PubMed]
Region | VVUB2 | VVUB3 | VVUB5 | VVUB6 | BAC |
---|---|---|---|---|---|
CFA5:70796855-70973839 | + | + | + | ||
CFA6:75583707-76038617 | + | + | + | ||
CFA10:18252019-18487716 | + | + | + | ||
CFA12:48851593-49019024 | + | + | + | + | |
CFA13:34034756-34423363 1 | + | + | + | + | + |
CFA13:47122582-47327423 | + | + | + | + | + |
CFA15:53805540-54125636 | + | + | + | + | + |
CFA19:41511154-44072972 | + | + | + | + | + |
CFA22:7086237-7370105 | + | + | + | + | |
CFA22:24782790-25362284 2 | + | + | + | ||
CFA31:2880206-4129393 | + | + | + | + | + |
CFA32:14687852-15257168 | + | + | + | ||
CFA34:2522638-2767316 | + | + | + | + | + |
CFA34:15179149-15450638 | + | + | + |
Region | NPPB1 | NPPB2 | NPPB3 | NPPB4 | NPPB5 | NPPB6 | NPPB7 | NPPB8 | BAC |
---|---|---|---|---|---|---|---|---|---|
CFA1:207953-434482 | + | ||||||||
CFA3:7233009-7672854 | + | + | + | + | ~ | ~ | ~ | + | |
CFA3:30949630-31192570 | + | + | + | + | |||||
CFA5:5213259-5517316 | + | + | |||||||
CFA5:60890426-60976094 | + | ||||||||
CFA5:84586827-84980563 | + | + | |||||||
CFA13:47079087-47478846 | + | + | + | ||||||
CFA14:58162796-58517967 | + | ||||||||
CFA15:58671318-58919401 | + | + | + | ~ | + | + | + | ||
CFA16:5042848-5239664 | + | ~ | ~ | ~ | + | + | |||
CFA16:50655536-50916841 | + | ||||||||
CFA16:51357728-51710145 | + | ||||||||
CFA19:28836248-29004558 | + | + | + | + | ~ | + | + | + | |
CFA19:38810088-39213802 | + | + | + | + | ~ | + | |||
CFA20:24724662-25132678 | + | + | + | ~ | + | + | |||
CFA21:36289982-36390083 | + | + | ~ | + | + | ||||
CFA23:47315786-47535793 | + | + | + | ~ | + | + | + | ||
CFA24:11660722-11768215 | ~ | + | |||||||
CFA24:43488879-43732408 | ~ | ~ | ~ | + | ~ | ||||
CFA26:18769412-18964210 | + | ||||||||
CFA27:31691325-31793171 | + | + | |||||||
CFA27:37050854-37410557 | + | + | + | + | + | + | + | + | |
CFA28:3855680-4240133 | + | + | + | + | + | + | |||
CFA28:7498907-7656661 | + | + | + | ~ | + | + | + | ||
CFA29:28913684-29259138 | + | + | |||||||
CFA32:13104843-14881357 | + | + | |||||||
CFA38:1062270-1094480 | + | + |
Sample | Reference | Region Size, bp | Genes | HSA hom | HSA 1-to-1 |
---|---|---|---|---|---|
VVUB | CanFam3.1 | 7,708,416 | 49 | 17 | 9 |
NPPB | CanFam3.1 | 8,510,228 | 100 | 44 | 36 |
CPYB | UMD3.1 | 2,355,879 | 9 | 6 | 4 |
MGOB | UMD3.1 | 10,456,241 | 107 | 113 | 81 |
AFLB | mm10 | 3,421,582 | 101 | 37 | 25 |
APEB | mm10 | 12,641,228 | 152 | 49 | 41 |
Neuron Synapse, Cell Junction | Cell Division, Microtubules | Differentiation, Proliferation | |
---|---|---|---|
VVUB | CTNND2 | CENPN | KIT |
NPPB | LRRC7, CXCR4, KDR, ARHGAP32 | AICDA, APOBEC1, ARNTL, BARX2, BTBD10, COL4A3BP, CXCR4, ENPP1, GDF3, GNAS, HMGCR, JAG1, KDR, KIT, MDM4 | |
CPYB | TNNI3K | ||
MGOB | SDK1, SDK2, GABRA4, GABRB1, PALLD, LPP, SHANK2 | CC2D2A, EVI5, CHFR, CCND2, TRIM67, PALLD, CDC42EP4 | ACVR2B, BCL6, BST1, CCND2, CD38, DHCR7, DLEC1, EOMES, EVI5, FBXL5, FGFBP1, FNIP1, GABRB1, GFI1, HPSE, KIT, MYD88, PLCD1, SDK2, SERPINB9, SSBP3, SST, SSTR2, TXK, ZNF268 |
AFLB | CADPS | DYNC1I2, MAPRE1, MAP7, RPS6, CENPE, HAUS6, SAXO1 | ACER2, KDM6A, MAPRE1, NCK2, RPS6 |
APEB | GRID2, UNC13A, ADGRL3 | PIK3C3, MYO9B, HAUS8, KIF23, MVB12A | BST2, DDA1, GRID2, JAK3, TESPA1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makunin, A.I.; Romanenko, S.A.; Beklemisheva, V.R.; Perelman, P.L.; Druzhkova, A.S.; Petrova, K.O.; Prokopov, D.Y.; Chernyaeva, E.N.; Johnson, J.L.; Kukekova, A.V.; et al. Sequencing of Supernumerary Chromosomes of Red Fox and Raccoon Dog Confirms a Non-Random Gene Acquisition by B Chromosomes. Genes 2018, 9, 405. https://doi.org/10.3390/genes9080405
Makunin AI, Romanenko SA, Beklemisheva VR, Perelman PL, Druzhkova AS, Petrova KO, Prokopov DY, Chernyaeva EN, Johnson JL, Kukekova AV, et al. Sequencing of Supernumerary Chromosomes of Red Fox and Raccoon Dog Confirms a Non-Random Gene Acquisition by B Chromosomes. Genes. 2018; 9(8):405. https://doi.org/10.3390/genes9080405
Chicago/Turabian StyleMakunin, Alexey I., Svetlana A. Romanenko, Violetta R. Beklemisheva, Polina L. Perelman, Anna S. Druzhkova, Kristina O. Petrova, Dmitry Yu. Prokopov, Ekaterina N. Chernyaeva, Jennifer L. Johnson, Anna V. Kukekova, and et al. 2018. "Sequencing of Supernumerary Chromosomes of Red Fox and Raccoon Dog Confirms a Non-Random Gene Acquisition by B Chromosomes" Genes 9, no. 8: 405. https://doi.org/10.3390/genes9080405
APA StyleMakunin, A. I., Romanenko, S. A., Beklemisheva, V. R., Perelman, P. L., Druzhkova, A. S., Petrova, K. O., Prokopov, D. Y., Chernyaeva, E. N., Johnson, J. L., Kukekova, A. V., Yang, F., Ferguson-Smith, M. A., Graphodatsky, A. S., & Trifonov, V. A. (2018). Sequencing of Supernumerary Chromosomes of Red Fox and Raccoon Dog Confirms a Non-Random Gene Acquisition by B Chromosomes. Genes, 9(8), 405. https://doi.org/10.3390/genes9080405