Improved Dust Emission Reduction Factor in the ADAM2 Model Using Real-Time MODIS NDVI
Abstract
:1. Introduction
2. Model and Data
2.1. Asian Dust Aerosol Model 2 (ADAM2)
2.2. NDVI Data
2.3. WMO Synoptic Data
2.4. Surface PM10 Data
3. Methodology
3.1. New Monthly Cumulative Dust-Rise Occurrence Probability Function
3.2. Daily Reduction Factor Using Real-Time MODIS NDVI Data
4. Validation of Results and Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhamsueva, G.S.; Zayakhanov, A.S.; Tsydypov, V.V.; Ayurzhanaev, A.A.; Dementeva, A.L.; Azzaya, D.; Oyunchimeg, D. Particularities of Formation and Transport of Arid aerosol in Central Asia. In Advanced Air Pollution; Nejadkoorki, F., Ed.; Intech: Rijeka, Croatia, 2011; pp. 51–66. [Google Scholar]
- Giannadaki, D.; Pozzer, A.; Lelieveld, J. Modeled global effects of airborne desert dust on air quality and premature mortality. Atmos. Chem. Phys. 2014, 14, 957–968. [Google Scholar] [CrossRef]
- Hong, Y.-C.; Pan, X.C.; Kim, S.Y.; Park, K.; Park, E.J.; Jin, X.; Yi, S.M.; Kim, Y.H.; Park, C.H.; Song, S.; et al. Asian dust storm and pulmonary function of school children in Seoul. Sci. Total Environ. 2010, 408, 754–759. [Google Scholar] [CrossRef] [PubMed]
- Kashima, S.; Yorifuji, T.; Bae, S.; Honda, Y.; Lim, Y.H.; Hong, Y.C. Asian dust effect on cause-specific mortality in five cities across South Korea and Japan. Atmos. Environ. 2016, 128, 20–27. [Google Scholar] [CrossRef]
- Kwon, H.J.; Cho, S.H.; Chun, Y.; Lagarde, F.; Pershagen, G. Effects of the Asian dust events on daily mortality in Seoul, Korea. Environ. Res. 2002, 90, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, L.; Tong, D.; Wu, G.; Dan, M.; Teng, B. A systematic review of global desert dust and associated human health effects. Atmosphere 2016, 7, 158. [Google Scholar] [CrossRef]
- Lee, E.-H.; Sohn, B.J. Examining the impact of wind and surface vegetation on the Asian dust occurrence over three classified source regions. J. Geophys. Res. 2009, 114, D06205. [Google Scholar] [CrossRef]
- Park, H.-S.; Sohn, B.J. Recent trends in changes of vegetation over East Asia coupled with temperature and rainfall variations. J. Geophys. Res. 2010, 115, D14. [Google Scholar] [CrossRef]
- Lee, E.H.; Ha, J.C.; Lee, S.S.; Chun, Y. PM10 data assimilation over South Korea to Asian dust forecasting model with the optimal interpolation method. Asia Pac. J. Atmos. Sci. 2013, 49, 73–85. [Google Scholar] [CrossRef]
- Lee, S.S.; Lee, E.H.; Sohn, B.J.; Lee, H.C.; Cho, J.H.; Ryoo, S.B. Improved dust forecast by assimilating MODIS IR-based nighttime AOT in the ADAM2 model. SOLA 2017, 13, 192–198. [Google Scholar] [CrossRef]
- Hong, S.K.; Ryoo, S.B.; Kim, J.; Lee, S.S. Prediction of Asian dust days over Northern China using the KMA-ADAM2 model. Weather Forecast. 2018, 34, 1777–1787. [Google Scholar] [CrossRef]
- Park, S.-U.; Choe, A.; Lee, E.H.; Park, M.S.; Song, X. The Asian Dust Aerosol Model 2 (ADAM2) with the use of Normalized Difference Vegetation Index (NDVI) obtained from the Spot4/vegetation data. Theor. Appl. Climatol. 2010, 101, 191–208. [Google Scholar] [CrossRef]
- Kim, D.; Chin, M.; Bian, H.; Tan, Q.; Brown, M.E.; Zheng, T.; You, R.; Diehl, T.; Ginoux, P.; Kucsera, T. The effect of the dynamic surface bareness on dust source function, emission, and distribution. J. Geophys. Res. 2013, 118, 871–886. [Google Scholar] [CrossRef]
- Huang, M.; Tong, D.; Lee, P.; Pan, L.; Tang, Y.; Stajner, I.; Pierce, R.B.; McQueen, J.; Wang, J. Toward enhanced capability for detecting and predicting dust events in the western United States: The Arizona case study. Atmos. Chem. Phys. 2015, 15, 12595–12610. [Google Scholar] [CrossRef]
- Kim, D.; Chin, M.; Kemp, E.M.; Tao, Z.; Peters-Lidard, C.D.; Ginoux, P. Development of high-resolution dynamic dust source function—A case study with a strong dust storm in a regional model. Atmos. Environ. 2017, 159, 11–25. [Google Scholar] [CrossRef]
- In, H.-J.; Park, S.-U. A simulation of long-range transport of Yellow Sand observed in April 1998 in Korea. Atmos. Environ. 2002, 4173–4187. [Google Scholar] [CrossRef]
- Park, S.-U.; In, H.-J. Parameterization of dust emission for the simulation of the yellow sand (Asian dust) event observed in March 2002 in Korea. J. Geophys. Res. 2003, 108, 4618. [Google Scholar] [CrossRef]
- Byun, D.; Schere, K.L. Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system. Appl. Mech. Rev. 2006, 59, 51–77. [Google Scholar] [CrossRef]
- Davies, T.; Cullen, M.J.; Malcolm, A.J.; Mawson, M.H.; Staniforth, A.; White, A.A.; Wood, N. A new dynamical core for the Met Office′s global and regional modelling of the atmosphere. Q. J. R. Meteorol. Soc. 2005, 131, 1759–1782. [Google Scholar] [CrossRef]
- Park, S.; Kim, D.-J.; Lee, S.-W.; Lee, K.-W.; Kim, J.; Song, E.-J.; Seo, K.-H. Comparison of extended medium-range forecast skill between KMA ensemble, ocean coupled ensemble, and GloSea5. Asia-Pac. J. Atmos. Sci. 2017, 53, 393–401. [Google Scholar] [CrossRef]
- Gillette, G.A. Production of dust that may be carried to great distance. In Desert Dust: Origin, Characteristics, and Effect on Man; Special Paper; Geological Society of America: Boulder, CO, USA, 1981; Volume 186, pp. 11–26. [Google Scholar]
- Westphal, D.L.; Toon, O.B.; Carson, T.N. A two-dimensional investigation of the dynamics and microphysics of Saharan dust storms. J. Geophys. Res. 1987, 92, 3027–3049. [Google Scholar] [CrossRef]
- Park, S.U.; Lee, E.H. Parameterization of Asian dust (Hwangsa) particle-size distributions for use in dust emission models. Atmos. Environ. 2004, 38, 2155–2162. [Google Scholar] [CrossRef]
- Wesely, M.L.; Hicks, B.B. Some factors that affect the deposition rates of sulfur dioxide and similar gases on vegetation. J. Air Pollut. Control Assoc. 1977, 27, 1110–1116. [Google Scholar] [CrossRef]
- Wesely, M.L. Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models. Atmos. Environ. 1989, 23, 1293–1304. [Google Scholar] [CrossRef]
- Dennis, R.; Mchenry, J.; Barchet, W.; Binkowski, F.; Byun, D. Correcting RADM′s sulfate underprediction: Discovery and correction of model errors and testing the corrections through comparisons against field data. Atmos. Environ. 1993, 27, 975–997. [Google Scholar] [CrossRef]
- Walcek, C.; Taylor, G.R. Theoretical method for computing vertical distributions of acidity and sulfate production within cumulus clouds. J. Atmos. Sci. 1986, 43, 339–355. [Google Scholar] [CrossRef]
- Chang, J.S.; Brost, R.A.; Isaksen, I.S.A.; Madronich, S.; Middleton, P.; Stockwell, W.R.; Walcek, C.J. A three-dimensional Eulerian acid deposition model: Physical concepts and formulation. J. Geophys. Res. 1987, 92, 14681–14700. [Google Scholar] [CrossRef]
- Didan, K. MYD13C2 MODIS/Aqua Vegetation Indices Monthly L3 Global 0.05Deg CMG V006; NASA EOSDIS Land Processes DAAC: Sioux Falls, SD, USA, 2015. [Google Scholar] [CrossRef]
- Yi, H. The Soil Atlas of China; Cartographic Publishing House: Beijing, China, 1986; pp. 1–12. [Google Scholar]
- Scheftic, W.; Zeng, X.; Broxton, P.; Brunke, M. Intercomparison of Seven NDVI Products over the United States and Mexico. Remote Sens. 2014, 6, 1057–1084. [Google Scholar] [CrossRef] [Green Version]
Month | Gobi | Sand | Loess | Mixed |
---|---|---|---|---|
1 | 7 | 7.5 | 6 | 7.5 |
2 | 7 | 7.5 | 6 | 7.5 |
3 | 6.5 | 7.5 | 6 | 7.5 |
4 | 6.5 | 6 | 5.5 | 6 |
5 | 6 | 6 | 5 | 6 |
6 | 6 | 6 | 5 | 6 |
7 | 6 | 6 | - | 6 |
8 | 6 | 6 | - | 6 |
9 | 7 | 6 | - | 7.5 |
10 | 7 | 6 | - | 7.5 |
11 | 7.5 | 7.5 | 7.5 | 7.5 |
12 | 7.5 | 7.5 | 7.5 | 7.5 |
KMA | CMA | MOE | MEE | All Sites | |
---|---|---|---|---|---|
RMSE (CTL) | 39.98 | 184.74 | 49.56 | 72.65 | 86.93 |
RMSE (EXP) | 30.31 | 173.85 | 42.31 | 70.95 | 76.86 |
Difference of RMSE (CTL-EXP) | 9.67 | 10.89 | 7.25 | 1.70 | 10.06 |
Reduction ratio of RMSE (%) ((CTL-EXP)/CTL × 100) | 24.18 | 5.90 | 14.63 | 2.34 | 11.58 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-S.; Lim, Y.-K.; Cho, J.H.; Lee, H.C.; Ryoo, S.-B. Improved Dust Emission Reduction Factor in the ADAM2 Model Using Real-Time MODIS NDVI. Atmosphere 2019, 10, 702. https://doi.org/10.3390/atmos10110702
Lee S-S, Lim Y-K, Cho JH, Lee HC, Ryoo S-B. Improved Dust Emission Reduction Factor in the ADAM2 Model Using Real-Time MODIS NDVI. Atmosphere. 2019; 10(11):702. https://doi.org/10.3390/atmos10110702
Chicago/Turabian StyleLee, Sang-Sam, Yun-Kyu Lim, Jeong Hoon Cho, Hee Choon Lee, and Sang-Boom Ryoo. 2019. "Improved Dust Emission Reduction Factor in the ADAM2 Model Using Real-Time MODIS NDVI" Atmosphere 10, no. 11: 702. https://doi.org/10.3390/atmos10110702
APA StyleLee, S. -S., Lim, Y. -K., Cho, J. H., Lee, H. C., & Ryoo, S. -B. (2019). Improved Dust Emission Reduction Factor in the ADAM2 Model Using Real-Time MODIS NDVI. Atmosphere, 10(11), 702. https://doi.org/10.3390/atmos10110702