Impacts of 1.5 and 2.0 °C Global Warming on Water Balance Components over Senegal in West Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area: Senegal Country
2.2. Data
2.3. Methods
3. Results and Discussion
3.1. Annual and Seasonal Changes of Precipitation and Evapotranspiration
3.2. Annual and Seasonal Changes of the Water Balance (P-ET)
3.3. Seasonal Changes of Extreme Precipitation
3.4. Seasonal Cycle of Evapotranspiration, Precipitation, and the Water Balance (P-ET)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; 151p. [Google Scholar]
- Diallo, I.; Sylla, M.B.; Giorgi, F.; Gaye, A.T.; Camara, M. Multimodel GCM-RCM ensemble based projections of temperature and precipitation over West Africa for the early 21st century. Int. J. Geophys. 2012, 12, 972896. [Google Scholar] [CrossRef]
- Mariotti, L.; Diallo, I.; Coppola, E.; Giorgi, F. Seasonal and intraseasonal changes of African monsoon climates in 21st century CORDEX projections. Clim. Change 2014, 125, 53–65. [Google Scholar] [CrossRef]
- Mbaye, M.L.; Haensler, A.; Hagemann, S.; Gaye, A.T.; Moseley, C.; Afouda, A. Impact of statistical bias correction on the projected climate change signals of the regional climate model REMO over the Senegal River Basin. Int. J. Climatol. 2015, 36, 2035–2049. [Google Scholar] [CrossRef]
- Tall, M.; Sylla, M.B.; Diallo, I.; Pal, J.S.; Faye, A.; Mbaye, M.L.; Gaye, A.T. Projected impact of climate change in the hydroclimatology of Senegal with a focus over the Lake Guiers for the twenty-first century. Theor. Appl. Climatol. 2016, 129, 655–665. [Google Scholar] [CrossRef]
- Mbaye, M.L.; Diatta, S.; Gaye, A.T. Climate Change Signals Over Senegal River Basin Using Regional Climate Models of the CORDEX Africa Simulations. In Proceedings of the Second International Conference, InterSol 2018, Kigali, Rwanda, 24–25 March 2018. [Google Scholar]
- Sylla, M.B.; Faye, A.; Giorgi, F.; Diedhiou, A.; Kunstmann, H. Projected heat stress under 1.5 °C and 2 °C global warming scenarios creates unprecedented discomfort for humans in West Africa. Earth’s Fut. 2018, 6, 1029–1044. [Google Scholar] [CrossRef]
- Weber, T.; Haensler, A.; Rechid, D.; Pfeifer, S.; Eggert, B.; Jacob, D. Analyzing regional climate change in Africa in a 1.5, 2, and 3 °C global warming world. Earth’s Fut. 2018, 6, 643–655. [Google Scholar] [CrossRef]
- Abiodun, B.J.; Adegoke, J.; Abatan, A.A.; Ibe, C.A.; Egbebiyi, T.S.; Engelbrecht, F.; Pinto, I. Potential impacts of climate change on extreme precipitation over four African coastal cities. Clim. Change 2017, 143, 399–413. [Google Scholar] [CrossRef]
- Déqué, M.; Calmanti, S.; Christensen, O.B.; Dell Aquila, A.; Maule, C.F.; Haensler, A.; Nikulin, G.; Teichmann, C. A multi-model climate response over tropical Africa at +2 °C. Clim. Serv. 2017, 7, 87–95. [Google Scholar] [CrossRef]
- Comité Permanent Inter-états de Lutte contre la Sécheresse dans le Sahel (CILSS). Landscapes of West Africa—A Window on a Changing World; CILSS: Ouagadougou, Burkina Faso, 2016; 219p. [Google Scholar]
- Zhao, L.; Xia, J.; Xu, C.; Wang, Z.; Sobkowiak, L.; Long, C. Evapotranspiration estimation methods in hydrological models. J. Geogr. Sci. 2013, 23, 359–369. [Google Scholar] [CrossRef]
- Giorgi, F.; Jones, C.; Asrar, G. Addressing climate information needs at the regional level: The CORDEX framework. World Meteorol. Org. Bull. 2009, 58, 175–183. [Google Scholar]
- Dosio, A.; Panitz, H.J.; Schubert-Frisius, M.; Lüthi, D. Dynamical downscaling of CMIP5 global circulation models over CORDEX-Africa with COSMO-CLM: Evaluation over the present climate and analysis of the added value. Clim. Dyn. 2015, 44, 2637–2661. [Google Scholar] [CrossRef]
- Klutse, N.A.B.; Sylla, M.B.; Diallo, I.; Sarr, A.; Dosio, A.; Diedhiou, A.; Kamga, A.; Lamptey, B.; Ali, A.; Gbobaniyi, E.O.; et al. Daily characteristics of West African summer monsoon precipitation in CORDEX simulations. Theor. Appl. Climatol. 2015, 123, 369–386. [Google Scholar] [CrossRef]
- Nikiema, P.M.; Sylla, M.B.; Ogunjobi, K.; Kebe, I.; Gibba, P.; Giorgi, F. Multi-model CMIP5 and CORDEX simulations of historical summer temperature and precipitation variabilities over West Africa. Int. J. Climatol. 2017, 37, 2438–2450. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper; UN Food and Agriculture Organization (FAO): Rome, Italy, 1998; Volume 56. [Google Scholar]
- Hamon, W.R. Estimating potential evapotranspiration. J. Hydraul. Eng. ASCE 1961, 87, 107–120. [Google Scholar]
- Hargreaves, G.; Samani, Z. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Sillmann, J.; Kharin, V.V.; Zwiers, F.W.; Zhang, X.; Bronaugh, D. Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J. Geophys. Res. Atmos. 2013, 118, 2473–2493. [Google Scholar] [CrossRef]
- Sylla, M.B.; Giorgi, F.; Pal, J.S.; Gibba, P.; Kebe, I.; Nikiema, M. Projected changes in the annual cycle of high-intensity precipitation events over West Africa for the late twenty-first century. J. Clim. 2015, 28, 6475–6488. [Google Scholar] [CrossRef]
- Messager, C.; Gallée, H.; Brasseur, O. Precipitation sensitivity to regional sst in a regional climate simulation during the west african monsoon for two dry years. Clim. Dyn. 2004, 22, 249–266. [Google Scholar] [CrossRef]
- Silva, J.; Da Renato, O.; De Souza, E.B.; Tavares, A.L.; Mota, J.A.; Ferreira, D.B.S.; Souza-Filho, P.W.M.; Da Rocha, E.J.P. Three decades of reference evapotranspiration estimates for a tropical watershed in the eastern Amazon. An. Acad. Bras. Ciênc 2017, 89, 1985–2002. [Google Scholar] [CrossRef]
- Ferreira, J.P.; Sousa, A.; Vitorino, M.; De Souza, E.; De Souza, P. Estimate of evapotranspiration in the eastern Amazon using SEBAL. Rev. Cienc. Agrar. 2013, 56, 33–39. [Google Scholar]
- Sy, S.; Noblet-Ducoudré, N.D.; Quesada, B.; Sy, I.; Dieye, A.M.; Gaye, A.T.; Sultan, B. Land-Surface Characteristics and Climate in West Africa: Models’ Biases and Impacts of Historical Anthropogenically-Induced Deforestation. Sustainability 2017, 9, 1917. [Google Scholar] [CrossRef]
- Klein, C.; Bliefernicht, J.; Heinzeller, D.; Gessner, U.; Klein, I.; Kunstmann, H. Feedback of observed interannual vegetation change: A regional climate model analysis for the West African monsoon. Clim. Dyn. 2017, 48, 2837. [Google Scholar] [CrossRef]
- Flato, G.; Marotzke, J.; Abiodun, B.; Braconnot, P.; Chou, S.C.; Collins, W.; Cox, P.; Driouech, F.; Emori, S.; Eyring, V.; et al. Evaluation of Climate Models. In Climate Change: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; 126p. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. FAO Irrigation and Drainage Paper No. 56 Crop Evapotranspiration (Guidelines for Computing Crop Water Requirements); UN-FAO: Rome, Italy, 2006; p. 333. [Google Scholar]
- Diedhiou, A.; Bichet, A.; Wartenburger, R.; Seneviratne, S.I.; Rowell, D.P.; Sylla, M.B.; Diallo, I.; Todzo, S.; Touré, N.d.E.; Camara, M.; et al. Changes in climate extremes over West and Central Africa at 1.5 °C and 2 °C global warming. Environ. Res. Lett. 2018, 13, 065020. [Google Scholar] [CrossRef]
- Klutse, N.A.B.; Ajayi, V.; Gbobaniyi, E.O.; Egbebiyi, T.S.; Kouadio, K.; Nkrumah, F.; Quagraine, K.A.; Olusegun, C.; Diasso, U.J.; Abiodun, B.J.; et al. Potential impact of 1.5 °C and 2 °C global warming on consecutive dry and wet days over West Africa. Environ. Res. Lett. 2018, 13, 089502. [Google Scholar] [CrossRef]
- Ali, H.; Mishra, V. Contrasting response of rainfall extremes to increase in surface air and dew point temperatures at urban locations in India. Sci. Rep. 2017, 7, 1–15. [Google Scholar] [CrossRef]
- Nangombe, S.; Zhou, T.; Zhang, W.; Wu, B.; Hu, S.; Zou, L.; Li, D. Record-breaking climate extremes in Africa under stabilized 1.5 °C and 2 °C global warming scenarios. Nat. Clim. Chang. 2018, 8, 375–380. [Google Scholar] [CrossRef]
- Lin, C.; Gentine, P.; Huang, Y.; Guan, K.; Kimm, H.; Zhou, S. Diel ecosystem conductance response to vapor pressure deficit is suboptimal and independent of soil moisture. Agric. For. Meteorol. 2018, 250, 24–34. [Google Scholar] [CrossRef]
- Abiodun, B.J.; Makhanya, N.; Petja, B.; Abatan, A.A.; Oguntunde, P.G. Future projection of droughts over major river basins in Southern Africa at specific global warming levels. Theor. Appl. Climatol. 2019, 137, 1785. [Google Scholar] [CrossRef]
Driving GCM. | Institute | RCM | Reference Period | 1.5 °C Warming Period | 2.0 °C Warming Period |
---|---|---|---|---|---|
NCC-NorESM1-M | SMHI | RCA4 | 1976–2005 | 2029–2058 | 2064–2093 |
DMI | HIRHAM5 | 1976–2005 | 2029–2058 | 2064–2093 | |
BCCR | WRF | 1976–2005 | 2029–2058 | 2064–2093 | |
MPI-M-MPI-ESM-LR | UQAM | CRCM5 | 1958–1987 | 2006–2035 | 2031–2060 |
MPI | REMO | 1958–1987 | 2006–2035 | 2031–2060 | |
SMHI | RCA4 | 1958–1987 | 2006–2035 | 2031–2060 | |
CLMcom | CCLM4–8–17 | 1958–1987 | 2006–2035 | 2031–2060 | |
MOHC-HadGEM2-ES | SMHI | RCA4 | 1984–2005 | 2017–2046 | 2032–2061 |
KNMI | RACMO22T | 1984–2005 | 2017–2046 | 2032–2061 | |
CLMcom | CCLM4–8–17 | 1984–2005 | 2017–2046 | 2032–2061 | |
ICHEC-EC-EARTH | SMHI | RCA4 | 1958–1987 | 2008–2037 | 2030–2059 |
MPI | REMO | 1958–1987 | 2008–2037 | 2030–2059 | |
KNMI | RACMO22T | 1958–1987 | 2008–2037 | 2030–2059 | |
DMI | HIRHAM5 | 1958–1987 | 2008–2037 | 2030–2059 | |
CLMcom | CCLM4–8–17 | 1958–1987 | 2008–2037 | 2030–2059 | |
CNRM-CERFACS-CNRM-CM5 | SMHI | RCA4 | 1974–2003 | 2021–2050 | 2043–2072 |
CLMcom | CCLM4–8–17 | 1974–2003 | 2021–2050 | 2043–2072 | |
CCCma-CanESM2 | UQAM | CRCM5 | 1969–1998 | 2006–2035 | 2018–2047 |
SMHI | RCA4 | 1969–1998 | 2006–2035 | 2018–2047 | |
CCCma | CanRCM4 | 1969–1998 | 2006–2035 | 2018–2047 |
Index Name | Index Signification | Unit |
---|---|---|
Simple daily rainfall intensity index (SDII) | Let PRwj be the daily precipitation amount on wet days, PR ≥ 1 mm in period j. If W represents the number of wet days in j, then: | mm |
Maximum number of consecutive dry days (CDD) | Let PRij be the daily precipitation amount on day i in period j. Count the largest number of consecutive days where PRij < 1 mm | day |
Maximum number of consecutive wet days (CWD) | Let PRij be the daily precipitation amount on day i in period j. Count the largest number of consecutive days where PRij > 1 mm | day |
Very wet days (95P) | 95th percentile of precipitation on wet days means the value above which 5% of the daily precipitation events are found. | mm |
Extremely wet days (99P) | 99th percentile of precipitation on wet days means the value above which 1% of the daily precipitation events are found. | mm |
Variables (mm) | 1.5 °C | p Value | 2.0 °C | p Value |
---|---|---|---|---|
Precipitation | −32.28 | 0.0085 | −46.52 | 0.0035 |
ET_Hamon | 150.27 | 1.1545 × 10−21 | 215.29 | 6.9203 × 10−32 |
ET_Hargreaves | −27.62 | 0.7085 | 88.63 | 5.6167 × 10−11 |
ET_Penman | 136.19 | 8.9017 × 10−15 | 189.58 | 6.6405 × 10−20 |
P-ET_Hamon | −182.55 | 0.000168 | −261.81 | 5.8164 × 10−7 |
P-ET_Hargreaves | −4.66 | 0.48960 | −135.16 | 0.00064 |
P-ET_Penman | −168.47 | 0.00084 | −236.11 | 0.00036 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mbaye, M.L.; Sylla, M.B.; Tall, M. Impacts of 1.5 and 2.0 °C Global Warming on Water Balance Components over Senegal in West Africa. Atmosphere 2019, 10, 712. https://doi.org/10.3390/atmos10110712
Mbaye ML, Sylla MB, Tall M. Impacts of 1.5 and 2.0 °C Global Warming on Water Balance Components over Senegal in West Africa. Atmosphere. 2019; 10(11):712. https://doi.org/10.3390/atmos10110712
Chicago/Turabian StyleMbaye, Mamadou Lamine, Mouhamadou Bamba Sylla, and Moustapha Tall. 2019. "Impacts of 1.5 and 2.0 °C Global Warming on Water Balance Components over Senegal in West Africa" Atmosphere 10, no. 11: 712. https://doi.org/10.3390/atmos10110712
APA StyleMbaye, M. L., Sylla, M. B., & Tall, M. (2019). Impacts of 1.5 and 2.0 °C Global Warming on Water Balance Components over Senegal in West Africa. Atmosphere, 10(11), 712. https://doi.org/10.3390/atmos10110712