Source Apportionment of Volatile Organic Compounds (VOCs) during Ozone Polluted Days in Hangzhou, China
Abstract
:1. Introduction
2. Methods
2.1. Ambient VOCs and Source Profiles Sampling
2.2. Analysis of VOC Samples
2.3. Positive Matrix Factorization (PMF)
2.4. Photochemical Reactivity
2.5. Smog Production Model
3. Results and Discussion
3.1. Spatial-Temporal Characteristics of VOCs
3.1.1. Overall Meteorology and Pollutants
3.1.2. Diurnal Variation of VOCs
3.2. Source Apportionment and Source Profiles of VOCs
3.2.1. Source Profiles of PMF Resolved Factors
3.2.2. Source Apportionment Results
3.3. The Roles of VOCs in O3 Formation
3.3.1. VOCs Photochemical Reactivity
3.3.2. Determination of O3 Photochemical Regimes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cheng, N.; Chen, Z.; Sun, F.; Sun, R.; Dong, X.; Xie, X.; Xu, C. Ground ozone concentrations over Beijing from 2004 to 2015: Variation patterns, indicative precursors and effects of emission-reduction. Environ. Pollut. 2018, 237, 262–274. [Google Scholar] [CrossRef]
- Li, L.; An, J.; Huang, L.; Yan, R.; Huang, C.; Yarwood, G. Ozone source apportionment over the Yangtze River Delta region, China: Investigation of regional transport, sectoral contributions and seasonal differences. Atmos. Environ. 2019, 202, 269–280. [Google Scholar] [CrossRef]
- Shen, J.; Zhang, Y.; Wang, X.; Li, J.; Chen, H.; Liu, R.; Zhong, L.; Jiang, M.; Yue, D.; Chen, D.; et al. An ozone episode over the Pearl River Delta in October 2008. Atmos. Environ. 2015, 122, 852–863. [Google Scholar] [CrossRef]
- Tan, Z.; Lu, K.; Jiang, M.; Su, R.; Dong, H.; Zeng, L.; Xie, S.; Tan, Q.; Zhang, Y. Exploring ozone pollution in Chengdu, southwestern China: A case study from radical chemistry to O3-VOC-NOx sensitivity. Sci. Total Environ. 2018, 636, 775–786. [Google Scholar] [CrossRef] [PubMed]
- Zeng, P.; Lyu, X.P.; Guo, H.; Cheng, H.R.; Jiang, F.; Pan, W.Z.; Wang, Z.W.; Liang, S.W.; Hu, Y.Q. Causes of ozone pollution in summer in Wuhan, Central China. Environ. Pollut. 2018, 241, 852–861. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Sun, J.; Wan, W.; Hu, E.; Calatayud, V. Evidence of widespread ozone-induced visible injury on plants in Beijing, China. Environ. Pollut. 2014, 193, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Liu, S.; Xue, B.; Lv, Z.; Meng, Z.; Yang, X.; Xue, T.; Yu, Q.; He, K. Ground-level ozone pollution and its health impacts in China. Atmos. Environ. 2018, 173, 223–230. [Google Scholar] [CrossRef]
- Li, L.; An, J.Y.; Shi, Y.Y.; Zhou, M.; Yan, R.S.; Huang, C.; Wang, H.L.; Lou, S.R.; Wang, Q.; Lu, Q.; et al. Source apportionment of surface ozone in the Yangtze River Delta, China in the summer of 2013. Atmos. Environ. 2016, 144, 194–207. [Google Scholar] [CrossRef]
- Jin, X.; Holloway, T. Spatial and temporal variability of ozone sensitivity over China observed from the Ozone Monitoring Instrument: Ozone Sensitivity over China. J. Geophys. Res. Atmos. 2015, 120, 7229–7246. [Google Scholar] [CrossRef]
- Gao, W.; Tie, X.; Xu, J.; Huang, R.; Mao, X.; Zhou, G.; Chang, L. Long-term trend of O3 in a mega City (Shanghai), China: Characteristics, causes, and interactions with precursors. Sci. Total Environ. 2017, 603–604, 425–433. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Y.; Zhang, Y.; Niu, T.; Jiang, X.; Wang, Y.; Che, H. Influence of meteorological conditions on explosive increase in O3 concentration in troposphere. Sci. Total Environ. 2019, 652, 1228–1241. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, X.; Gong, D.; Quan, W.; Zhao, X.; Ma, Z.; Kim, S. Evolution of surface O3 and PM2.5 concentrations and their relationships with meteorological conditions over the last decade in Beijing. Atmos. Environ. 2015, 108, 67–75. [Google Scholar] [CrossRef]
- Li, K.; Chen, L.; Fang, Y.; White, S.J.; Jang, C.; Wu, X.; Gao, X.; Hong, S.; Shen, J.; Azzi, M. Meteorological and chemical impacts on ozone formation: A case study in Hangzhou, China. Atmos. Res. 2017, 196, 40–52. [Google Scholar] [CrossRef]
- Paatero, P. Least squares formulation of robust non-negative factor analysis. Chemom. Intell. Lab. 1997, 37, 23–35. [Google Scholar] [CrossRef]
- Paatero, P.; Tapper, U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 2010, 5, 111–126. [Google Scholar] [CrossRef]
- Shao, P.; An, J.; Xin, J.; Wu, F.; Wang, J.; Ji, D.; Wang, Y. Source apportionment of VOCs and the contribution to photochemical ozone formation during summer in the typical industrial area in the Yangtze River Delta, China. Atmos. Res. 2016, 176–177, 64–74. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, Z.; Acciai, C.; Zhong, Z.; Huang, Z.; Lonati, G. An integrated method for factor number selection of PMF model: Case study on source apportionment of ambient volatile organic compounds in Wuhan. Atmosphere 2018, 9, 390. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Zhai, C.; Li, L.; Yu, J.; Liu, M.; Xu, L.; Feng, N. Concentration characteristics and source analysis of ambient VOCs in summer and autumn in the urban area of Chongqing. Acta Sci. Circumstantiae 2017, 37, 1260–1267. [Google Scholar]
- Gong, X.; Hong, S.; Jaffe, D.A. Ozone in China: Spatial distribution and leading meteorological factors controlling O3 in 16 Chinese cities. Aerosol Air Qual. Res. 2018, 18, 2287–2300. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Ho, S.S.H.; Gong, S.; Ni, J.; Li, H.; Han, L.; Yang, Y.; Qi, Y.; Zhao, D. Characterization of VOCs and their related atmospheric processes in a central Chinese city during severe ozone pollution periods. Atmos. Chem. Phys. 2019, 19, 617–638. [Google Scholar] [CrossRef] [Green Version]
- EPA. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide; United States Environmental Protection Agency: Washington, DC, USA, 2014.
- Polissar, A.V.; Hopke, P.K.; Paatero, P.; Malm, W.C.; Sisler, J.F. Atmospheric aerosol over Alaska: 2. Elemental composition and sources. J. Geophys. Res. Atmos. 1998, 103, 19045–19057. [Google Scholar] [CrossRef]
- Chameides, W.L.; Fehsenfeld, F.; Rodgers, M.O.; Cardelino, C.; Martinez, J.; Parrish, D.; Lonneman, W.; Lawson, D.R.; Rasmussen, R.A.; Zimmerman, P. Ozone precursor relationships in the ambient atmosphere. J. Geophys. Res. Atmos. 1992, 97, 6037–6055. [Google Scholar] [CrossRef]
- Roger, A.; Janet, A. Atmospheric degradation of volatile organic compounds. Chem. Rev. 2003, 103, 4605. [Google Scholar]
- Carter, W.P.L.; Pierce, J.A.; Luo, D.; Malkina, I.L. Environmental chamber study of maximum incremental reactivities of volatile organic compounds. Atmos. Environ. 1995, 29, 2513–2527. [Google Scholar] [CrossRef]
- Johnson, G.M. A simple model for predicting the ozone concentration of ambient air. In Proceedings of the Eighth International Clean Air Conference, Merrylands, Australia, 24 February 1984. [Google Scholar]
- Blanchard, C.L.; Lurmann, F.W.; Roth, P.M.; Jeffries, H.E.; Korc, M. The use of ambient data to corroborate analyses of ozone control strategies. Atmos. Environ. 1999, 33, 369–381. [Google Scholar] [CrossRef]
- Wise, E.K. Climate-based sensitivity of air quality to climate change scenarios for the southwestern United States. Int. J. Climatol. 2009, 29, 87–97. [Google Scholar] [CrossRef]
- Karimov, K.A.; Gainutdinova, R.D. The long-term variations of ozone, UV-radiation and temperature in tropostratosphere and their connection with solar variability. In Proceedings of the SPIE 6733, International Conference on Lasers, Applications, and Technologies 2007: Environmental Monitoring and Ecological Applications, Minsk, Belarus, 9 July 2007. [Google Scholar]
- Pang, X.; Mu, Y. Seasonal and diurnal variations of carbonyl compounds in Beijing ambient air. Atmos. Environ. 2006, 40, 6313–6320. [Google Scholar] [CrossRef]
- Lv, H.; Cai, Q.; Wen, S.; Chi, Y.; Guo, S.; Sheng, G.; Fu, J. Seasonal and diurnal variations of carbonyl compounds in the urban atmosphere of Guangzhou, China. Sci. Total Environ. 2010, 408, 3523–3529. [Google Scholar]
- Weng, M.; Zhu, L.; Yang, K.; Chen, S. Levels and health risks of carbonyl compounds in selected public places in Hangzhou, China. J. Hazard. Mater. 2009, 164, 700–706. [Google Scholar] [CrossRef]
- Li, J.; Xie, S.D.; Zeng, L.M.; Li, L.Y.; Li, Y.Q.; Wu, R.R. Characterization of ambient volatile organic compounds and their sources in Beijing, before, during, and after Asia-Pacific Economic Cooperation China 2014. Atmos. Chem. Phys. 2015, 15, 7945–7959. [Google Scholar] [CrossRef] [Green Version]
- Cai, C.; Geng, F.; Tie, X.; Yu, Q.; An, J. Characteristics and source apportionment of VOCs measured in Shanghai, China. Atmos. Environ. 2010, 44, 5005–5014. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, M.; Lu, S.; Chang, C.; Wang, J.; Chen, G. Volatile organic compound (VOC) measurements in the Pearl River Delta (PRD) region, China. Atmos. Chem. Phys. 2008, 8, 1531–1545. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Liu, X.; Zheng, J.; Tan, Q.; Feng, M.; Qu, Y.; An, J.; Cheng, N. Characteristics of one-year observation of VOCs, NOx, and O3 at an urban site in Wuhan, China. J. Environ. Sci. China 2019, 79, 297–310. [Google Scholar] [CrossRef] [PubMed]
- An, J.; Wang, Y.; Wu, F.; Zhu, B. Characterizations of volatile organic compounds during high ozone episodes in Beijing, China. Environ. Monit. Assess. 2012, 184, 1879–1889. [Google Scholar]
- Chen, W.T.; Shao, M.; Lu, S.H.; Wang, M.; Zeng, L.M.; Yuan, B.; Liu, Y. Understanding primary and secondary sources of ambient carbonyl compounds in Beijing using the PMF model. Atmos. Chem. Phys. 2014, 14, 3047–3062. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhai, C.; Yu, J.; Liu, R.; Li, Y.; Zeng, L.; Xie, S. Spatiotemporal variations of ambient volatile organic compounds and their sources in Chongqing, a mountainous megacity in China. Sci. Total Environ. 2018, 627, 1442–1452. [Google Scholar] [CrossRef]
- Guo, H.; Zou, S.C.; Tsai, W.Y.; Chan, L.Y.; Blake, D.R. Emission characteristics of nonmethane hydrocarbons from private cars and taxis at different driving speeds in Hong Kong. Atmos. Environ. 2011, 45, 2711–2721. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Kong, S.; Xing, X.; Mao, Y.; Hu, T.; Ding, Y.; Li, G.; Liu, D.; Li, S.; Qi, S. Monitoring of volatile organic compounds (VOCs) from an oil and gas station in northwest China for 1 year. Atmos. Chem. Phys. 2018, 18, 4567–4595. [Google Scholar] [CrossRef] [Green Version]
- Yuan, B.; Shao, M.; Lu, S.; Wang, B. Source profiles of volatile organic compounds associated with solvent use in Beijing, China. Atmos. Environ. 2010, 44, 1919–1926. [Google Scholar] [CrossRef]
- Liao, K.; Hou, X. Optimization of multipollutant air quality management strategies: A case study for five cities in the United States. J. Air Waste Manag. Assoc. 2015, 65, 732–742. [Google Scholar] [CrossRef]
- Zheng, J.; Yu, Y.; Mo, Z.; Zhang, Z.; Wang, X.; Yin, S.; Peng, K.; Yang, Y.; Feng, X.; Cai, H. Industrial sector-based volatile organic compound (VOC) source profiles measured in manufacturing facilities in the Pearl River Delta, China. Sci. Total Environ. 2013, 456–457, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Mo, Z.; Shao, M.; Lu, S. Review on volatile organic compounds (VOCs) source profiles measured in China. Acta Sci. Circumstantiae 2014, 34, 2179–2189. [Google Scholar]
- Kwon, K.; Jo, W.; Lim, H.; Jeong, W. Characterization of emissions composition for selected household products available in Korea. J. Hazard. Mater. 2007, 148, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Sun, Y.; Wu, F.; Sun, J.; Wang, Y. The characteristics, seasonal variation and source apportionment of VOCs at Gongga Mountain, China. Atmos. Environ. 2014, 88, 297–305. [Google Scholar] [CrossRef]
- Mo, Z.; Shao, M.; Lu, S. Compilation of a source profile database for hydrocarbon and OVOC emissions in China. Atmos. Environ. 2016, 143, 209–217. [Google Scholar] [CrossRef]
- McCarthy, M.C.; Hafner, H.R.; Chinkin, L.R.; Charrier, J.G. Temporal variability of selected air toxics in the United States. Atmos. Environ. 2007, 41, 7180–7194. [Google Scholar] [CrossRef]
- Fuchs, H.; Hofzumahaus, A.; Rohrer, F.; Bohn, B.; Brauers, T.; Dorn, H.; Häseler, R.; Holland, F.; Kaminski, M.; Li, X.; et al. Experimental evidence for efficient hydroxyl radical regeneration in isoprene oxidation. Nat. Geosci. 2013, 6, 1023. [Google Scholar] [CrossRef]
- Sindelarova, K.; Granier, C.; Bouarar, I.; Guenther, A.; Tilmes, S.; Stavrakou, T.; Müller, J.F.; Kuhn, U.; Stefani, P.; Knorr, W. Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years. Atmos. Chem. Phys. 2014, 14, 9317–9341. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Dai, W.; Shao, M.; Liu, Y.; Lu, S.; Kuster, W.; Goldan, P. Comparison of receptor models for source apportionment of volatile organic compounds in Beijing, China. Environ. Pollut. 2008, 156, 174–183. [Google Scholar] [CrossRef]
- Blanchard, C.L.; Stoeckenius, T. Ozone response to precursor controls: Comparison of data analysis methods with the predictions of photochemical air quality simulation models. Atmos. Environ. 2001, 35, 1203–1215. [Google Scholar] [CrossRef]
HP | XS | ZH | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Compound | Prop-E (ppbC) | Compound | OFP (ppbv) | Compound | Prop-E (ppbC) | Compound | OFP (ppbv) | Compound | Prop-E (ppbC) | Compound | OFP (ppbv) |
Isoprene | 38.42 | Isoprene | 21.28 | Isoprene | 10.33 | Ethylene | 16.79 | Isoprene | 24.12 | Ethylene | 21.32 |
m-Xylene | 1.35 | Ethylene | 15.26 | m-Xylene | 2.43 | Isoprene | 5.72 | n-Dodecane | 6.17 | Isoprene | 13.36 |
Ethylene | 1.06 | Propylene | 3.37 | Toluene | 2.09 | Toluene | 5.56 | m-Xylene | 2.77 | Propylene | 8.21 |
Toluene | 0.99 | Acetone | 2.74 | n-Undecane | 1.77 | Propylene | 4.43 | n-Undecane | 2.41 | Toluene | 4.88 |
Propylene | 0.87 | Toluene | 2.65 | Styrene | 1.44 | m-Xylene | 3.34 | Propylene | 2.11 | Acetone | 3.89 |
Vinyl acetate | 0.65 | m-Xylene | 1.85 | Ethylene | 1.17 | Acetone | 2.82 | Toluene | 1.83 | n-Butane | 3.87 |
o-Xylene | 0.64 | n-Butane | 1.60 | Propylene | 1.14 | o-Xylene | 2.06 | Styrene | 1.67 | m-Xylene | 3.79 |
1,2,4-Trimethylbenzene | 0.63 | o-Xylene | 1.16 | o-Xylene | 1.13 | Methyl ethyl ketone | 1.55 | Vinyl acetate | 1.56 | Acrolein | 3.72 |
n-Pentane | 0.61 | n-Pentane | 1.08 | Isopropyl alcohol | 1.08 | Acrolein | 1.55 | Naphthalene | 1.49 | Isobutane | 3.05 |
Isopropyl alcohol | 0.59 | Methyl ethyl ketone | 1.05 | Vinyl acetate | 1.03 | n-Butane | 1.47 | Ethylene | 1.48 | 1-Butene | 2.45 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, L.; Chen, L.; Li, K.; Bao, Z.; Zhao, Y.; Zhang, X.; Azzi, M.; Cen, K. Source Apportionment of Volatile Organic Compounds (VOCs) during Ozone Polluted Days in Hangzhou, China. Atmosphere 2019, 10, 780. https://doi.org/10.3390/atmos10120780
Han L, Chen L, Li K, Bao Z, Zhao Y, Zhang X, Azzi M, Cen K. Source Apportionment of Volatile Organic Compounds (VOCs) during Ozone Polluted Days in Hangzhou, China. Atmosphere. 2019; 10(12):780. https://doi.org/10.3390/atmos10120780
Chicago/Turabian StyleHan, Lixia, Linghong Chen, Kangwei Li, Zhier Bao, Yanyun Zhao, Xin Zhang, Merched Azzi, and Kefa Cen. 2019. "Source Apportionment of Volatile Organic Compounds (VOCs) during Ozone Polluted Days in Hangzhou, China" Atmosphere 10, no. 12: 780. https://doi.org/10.3390/atmos10120780
APA StyleHan, L., Chen, L., Li, K., Bao, Z., Zhao, Y., Zhang, X., Azzi, M., & Cen, K. (2019). Source Apportionment of Volatile Organic Compounds (VOCs) during Ozone Polluted Days in Hangzhou, China. Atmosphere, 10(12), 780. https://doi.org/10.3390/atmos10120780