Investigation and Prediction of Heavy-Duty Diesel Passenger Bus Emissions in Hainan Using a COPERT Model
Abstract
:1. Introduction
2. Methodology
2.1. Data Collection and Acquisition
2.2. Establishing Hainan Heavy Duty Diesel Passenger Bus Emissions Inventory by Using COPERT Model
2.3. Calibration of Emission Factors Based on PEMS Test
2.4. Prediction Emission Trends
2.5. Baseline Scenario (BAS)
2.6. Emission Reduction Standard (ERS) Scenario
2.7. ERS and Replacement by Electric Vehicle Scenario (REV)
3. Result and Discussion
3.1. Calculation and Calibration Results of Emission Inventory for Heavy Diesel Passenger Buses in Hainan Province
3.2. CO Emissions under Different Emission Scenarios
3.3. CO2 Emissions under Different Emission Scenarios
3.4. NOX Emissions under Different Emission Scenarios
3.5. PM Emissions under Different Emission Scenarios
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Wu, Y.; Zhang, S.; Hao, J.; Liu, H.; Wu, X.; Hu, J.; Walsh, M.P.; Wallington, T.J.; Zhang, K.M.; Stevanovic, S. On-road vehicle emissions and their control in China: A review and outlook. Sci. Total Environ. 2017, 574, 332–349. [Google Scholar] [CrossRef] [PubMed]
- National Data-National Bureau of Statistics of China. Available online: http://data.stats.gov.cn/easyquery.htm?cn=C01 (accessed on 1 December 2018).
- Lin, X.; Dai, W. Spatio-temporal variations and socio-economic driving forces of air quality in Chinese cities. Acta Geogr. Sin. 2016, 71, 1357–1371. [Google Scholar]
- Perugu, H.; Wei, H.; Yao, Z. Developing high-resolution urban scale heavy-duty truck emission inventory using the data-driven truck activity model output. Atmos. Environ. 2017, 155, 210–230. [Google Scholar] [CrossRef]
- Lang, J.; Ying, Z.; Cheng, S.; Zhang, Y. Unregulated pollutant emissions from on-road vehicles in China, 1999–2014. Sci. Total Environ. 2016, 573, 974–984. [Google Scholar] [CrossRef] [PubMed]
- Ntziachristos, L.; Papadimitriou, G.; Ligterink, N.; Hausberger, S. Implications of diesel emissions control failures to emission factors and road transport NOx evolution. Atmos. Environ. 2016, 141, 542–551. [Google Scholar] [CrossRef]
- Alam, M.S.; Hyde, B.; Duffy, P.; McNabola, A. Assessment of pathways to reduce CO2, emissions from passenger car fleets: Case study in Ireland. Appl. Energy 2017, 189, 283–300. [Google Scholar] [CrossRef]
- Smit, R.; Kingston, P.; Wainwright, D.H.; Tooker, R. A tunnel study to validate motor vehicle emission prediction software in Australia. Atmos. Environ. 2016, 151, 188–199. [Google Scholar] [CrossRef]
- Quaassdorff, C.; Borge, R.; Pérez, J.; Lumbreras, J.; de la Paz, D.; de Andrés, J.M. Microscale traffic simulation and emission estimation in a heavily trafficked roundabout in Madrid (Spain). Sci. Total Environ. 2016, 566, 416–427. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Jiang, W.; Gao, W. Vehicle emission trends and spatial distribution in Shandong province, China, from 2000 to 2014. Atmos. Environ. 2016, 147, 190–199. [Google Scholar] [CrossRef]
- Kholod, N.; Evans, M.; Gusev, E.; Yu, S.; Malyshev, V.; Tretyakova, S.; Barinov, A. A methodology for calculating transport emissions in cities with limited traffic data: Case study of diesel particulates and black carbon emissions in Murmansk. Sci. Total Environ. 2016, 547, 305–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamora, M.L.; Pulczinski, J.C.; Johnson, N.; Garcia-Hernandez, R.; Rule, A.; Carrillo, G.; Zietsman, J.; Sandragorsian, B.; Vallamsundar, S.; Askariyeh, M.H.; et al. Maternal exposure to PM2.5 in south Texas, a pilot study. Sci. Total Environ. 2018, 628, 1497–1507. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ioannou, P.A. Environmental Impact of Combined Variable Speed Limit and Lane Change Control: A Comparison of MOVES and CMEM Model. IFAC PapersOnLine 2016, 49, 323–328. [Google Scholar] [CrossRef]
- Wang, H.; Fu, L.; Zhou, Y.; Du, X.; Ge, W. Trends in vehicular emissions in China’s mega cities from 1995 to 2005. Environ. Pollut. 2010, 158, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Gallus, J.; Kirchner, U.; Vogt, R.; Börensen, C.; Benter, T. On-road particle number measurements using a portable emission measurement system (PEMS). Atmos. Environ. 2016, 124, 137–145. [Google Scholar] [CrossRef]
- Peng, Z.; Ge, Y.; Tan, J.; Fu, M.; Wang, X.; Chen, M.; Yin, H.; Ji, Z. Emissions from several in-use ships tested by portable emission measurement system. Ocean Eng. 2016, 116, 260–267. [Google Scholar] [CrossRef]
- Kwon, S.; Park, Y.; Park, J.; Kim, J.; Choi, K.-H.; Cha, J.-S. Characteristics of on-road NOx, emissions from Euro 6 light-duty diesel vehicles using a portable emissions measurement system. Sci. Total Environ. 2017, 576, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Wu, Y.; Zhang, S.; Baldauf, R.W.; Zhang, K.M.; Hu, J.; Li, Z.; Fu, L.; Hao, J. Joint measurements of black carbon and particle mass for heavy-duty diesel vehicles using a portable emission measurement system. Atmos. Environ. 2016, 141, 435–442. [Google Scholar] [CrossRef]
- Cao, X.; Yao, Z.; Shen, X.; Ye, Y.; Jiang, X. On-road emission characteristics of VOCs from light-duty gasoline vehicles in Beijing, China. Atmos. Environ. 2016, 124, 146–155. [Google Scholar] [CrossRef]
- Qian, Y.; Li, T.; Hu, L. Improving urban bus emission and fuel consumption modeling by incorporating passenger load factor for real world driving. Appl. Energy 2016, 161, 101–111. [Google Scholar] [Green Version]
- O’Driscoll, R.; Apsimon, H.M.; Oxley, T.; Molden, N.; Stettler, M.E.J.; Thiyagarajah, A. A portable emissions measurement system (PEMS) study of NOx, and primary NO2, emissions from Euro 6 diesel passenger cars and comparison with COPERT emission factors. Atmos. Environ. 2016, 145, 81–91. [Google Scholar] [CrossRef]
- Cheng, H.; Lou, D.; Hu, Z.; Feng, Q.; Chen, Y.; Chen, C.; Tan, P.; Yao, D. A PEMS study of the emissions of gaseous pollutants and ultrafine particles from gasoline- and diesel-fueled vehicles. Atmos. Environ. 2013, 77, 703–710. [Google Scholar]
- Zeng, B.; Li, C. Forecasting the natural gas demand in China using a self-adapting intelligent grey model. Energy 2016, 112, 810–825. [Google Scholar] [CrossRef]
- Hsu, L.C. Using improved grey forecasting models to forecast the output of opto-electronics industry. Exp. Syst. Appl. 2011, 38, 13879–13885. [Google Scholar] [CrossRef]
- Chinese Weather. Available online: http://www.weather.com.cn/html/province/hainan.shtml (accessed on 1 December 2018).
- Ministry of Industry and Information Technology of the People’s Republic of China. Available online: http://www.miit.gov.cn/n1146312/n1146904/n1648362/n1648363/index.html (accessed on 1 December 2018).
- Haikou City Public Transportation Group Co., LTD. Available online: http://www.hkptg.com/ (accessed on 1 December 2018).
- Sanya Public Transportation Group. Available online: http://www.guangdabus.com/index.php (accessed on 1 December 2018).
- National Data-National Bureau of Statistics of China. Available online: http://data.stats.gov.cn/easyquery.htm?cn=E0103 (accessed on 1 December 2018).
- Ministry of Transport of the People’s Republic of China. Available online: http://www.mot.gov.cn/shuju/ (accessed on 1 December 2018).
- The People’s Government of Hainan Province. Available online: http://www.hainan.gov.cn/hn/zwgk/zfwj/bgtwj/201704/t20170427_2304668.html (accessed on 1 December 2018).
- Hainan Provincial Government Office. Available online: http://xxgk.hainan.gov.cn/hi/HI0101/201604/t20160421_1937041.htm (accessed on 1 December 2018).
Category | Fuel | Segment | Euro Standard | Stock (n) | Mean Activity (km) | Lifetime Cumulative Activity (km) |
---|---|---|---|---|---|---|
Buses | Diesel | Urban Bus Standard | Euro IV | 625 | 90,000 | 720,000 |
Buses | Diesel | Coaches Standard | Euro IV | 11,628 | 180,000 | 2,018,000 |
Vehicle | Share | Speed | |||||||
---|---|---|---|---|---|---|---|---|---|
Urban Off Peak (%) | Urban Peak (%) | Rural (%) | Highway (%) | Urban Off Peak (km/h) | Urban Peak (km/h) | Rural (km/h) | Highway (km/h) | Min-Max Speed (km/h) | |
Urban Bus Standard | 56.73% | 19.97% | 23.3% | 0% | 20 | 10 | 40 | 0 | 11–86 |
Coaches Standard | 37% | 23% | 20% | 20% | 20 | 10 | 40 | 70 | 12–105 |
Parameter | Mileage (km) | Fuel Type | Curb Weight (kg) | Total Weight (kg) | Authorized Number of Passengers | Authorized Load Quality (kg) |
96,933 | diesel oil | 10,150 | 14,000 | 41 | 3850 | |
Parameter | Loading quality (kg) | Rated power (kw) | Rated speed (r/min) | Cylinder number | Displacement (L) | Arrangement form |
1050 | 191 | 2300 | 6 | 7.255 | in-line |
Parameters | Description |
---|---|
Test distance | 147.15 km |
Test time | 11,074 s |
Driving section ratio | Urban: 46.30% Suburb: 25.48% Highway: 28.22% |
Average speed of each driving section | Urban: 22.88 km/h Suburb: 53.32 km/h Highway: 83.85 km/h Maximum speed: 93.64 km/h |
Acceleration and deceleration ratio | Accelerate: 31.63% Slow down: 27.48% Uniform speed: 31.37% Parking: 9.51% Maximum acceleration: 2.503 m/s2 Maximum deceleration: −3.531 m/s2 |
Number of stops (V = 0) and total time | Parking 26 times, Total 1028 s |
Ambient temperature | Average temperature: 24.73 °C Maximum temperature: 26.0 °C Lowest temperature: 24.0 °C |
Ambient humidity (relative humidity) | Average humidity: 86.64% Maximum humidity: 93.0% Minimum humidity: 79.0% |
Year | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
Quantity | 0.660 | 0.680 | 0.740 | 0.790 | 0.950 | 1.061 | 1.025 | 0.978 | 0.951 | 1.035 |
Year | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 |
Quantity | 1.134 | 1.225 | 1.244 | 1.305 | 1.369 | 1.437 | 1.508 | 1.584 | 1.664 | 1.749 |
Category | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 | |
---|---|---|---|---|---|---|---|---|---|
Urban Bus | Total | 836 | 811 | 787 | 765 | 742 | 721 | 700 | 679 |
IV | 625 | 600 | 576 | 554 | 531 | 510 | 489 | 468 | |
V | 211 | 211 | 211 | 211 | 211 | 211 | 211 | 211 | |
Coaches | Total | 11,605 | 12,236 | 12,901 | 13,601 | 14,341 | 15,120 | 15,942 | 16,809 |
IV | 10,689 | 10,262 | 9852 | 9457 | 9079 | 8716 | 8367 | 8033 | |
V | 916 | 1974 | 3049 | 3049 | 3049 | 3049 | 3049 | 3049 | |
VI | 0 | 0 | 0 | 1095 | 2213 | 3355 | 4526 | 5727 |
Category | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 | |
---|---|---|---|---|---|---|---|---|---|
Urban Bus | Total | 836 | 811 | 787 | 765 | 742 | 721 | 700 | 679 |
IV | 563 | 479 | 398 | 319 | 242 | 168 | 96 | 26 | |
V | 211 | 211 | 211 | 211 | 211 | 211 | 211 | 211 | |
EV | 62 | 121 | 178 | 235 | 289 | 342 | 393 | 442 | |
Coaches | Total | 11,605 | 12,236 | 12,901 | 13,601 | 14,341 | 15,120 | 15,942 | 16,809 |
IV | 10,689 | 10,262 | 9852 | 9457 | 9079 | 8716 | 8367 | 8033 | |
V | 458 | 987 | 1525 | 1525 | 1525 | 1525 | 1525 | 1525 | |
VI | 0 | 0 | 0 | 548 | 1107 | 1678 | 2263 | 2864 | |
EV | 458 | 987 | 1524 | 2071 | 2630 | 3201 | 3787 | 4387 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Zhuang, J.; Cheng, X.; Li, M.; Wang, J.; Yan, Z. Investigation and Prediction of Heavy-Duty Diesel Passenger Bus Emissions in Hainan Using a COPERT Model. Atmosphere 2019, 10, 106. https://doi.org/10.3390/atmos10030106
Li F, Zhuang J, Cheng X, Li M, Wang J, Yan Z. Investigation and Prediction of Heavy-Duty Diesel Passenger Bus Emissions in Hainan Using a COPERT Model. Atmosphere. 2019; 10(3):106. https://doi.org/10.3390/atmos10030106
Chicago/Turabian StyleLi, Feng, Jihui Zhuang, Xiaoming Cheng, Mengliang Li, Jiaxing Wang, and Zhenzheng Yan. 2019. "Investigation and Prediction of Heavy-Duty Diesel Passenger Bus Emissions in Hainan Using a COPERT Model" Atmosphere 10, no. 3: 106. https://doi.org/10.3390/atmos10030106
APA StyleLi, F., Zhuang, J., Cheng, X., Li, M., Wang, J., & Yan, Z. (2019). Investigation and Prediction of Heavy-Duty Diesel Passenger Bus Emissions in Hainan Using a COPERT Model. Atmosphere, 10(3), 106. https://doi.org/10.3390/atmos10030106