A Short Note on the Potential of Utilization of Spectral AERONET-Derived Depolarization Ratios for Aerosol Classification
Abstract
:1. Introduction
2. Methodology
2.1. Theoretical Background
2.2. AERONET Data Collection
2.3. Data Filtering
3. Results and Discussion
3.1. Characteristics of Aerosol Types at Selected Sites
3.2. Statistics of the Depolarization Ratio
3.3. Spectral Dependency of Depolarization Ratio
4. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stocker, T.; Qin, D.; Plattner, G.; Tignor, M.; Allen, S.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Kaskaoutis, D.; Kambezidis, H.D. The choice of the most appropriate aerosol model in a radiative transfer code. Sol. Energy 2008, 82, 1198–1208. [Google Scholar] [CrossRef]
- Kaskaoutis, D.; Kosmopoulos, P.; Kambezidis, H.D.; Nastos, P.T. Aerosol climatology and discrimination of different types over Athens, Greece, based on MODIST data. Atmos. Environ. 2007, 41, 7315–7329. [Google Scholar] [CrossRef]
- Satheesh, S.; Srinivasan, J. A method to estimate aerosol radiative forcing from spectral optical depths. J. Atmos. Sci. 2006, 63, 1082–1092. [Google Scholar] [CrossRef]
- Giles, D.M.; Holben, B.N.; Eck, T.F.; Sinyuk, A.; Smirnov, A.; Slutsker, I.; Dickerson, R.; Thompson, A.; Schafer, J. An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions. J. Geohys. Res. Atmos. 2012, 117, D17203. [Google Scholar] [CrossRef]
- Kahn, R.A.; Gaitley, B.J.; Garay, M.J.; Diner, D.J.; Eck, T.F.; Smirnov, A.; Holben, B.N. Multiangle Imaging SpectroRadiometer global aerosol product assessment by comparison with the Aerosol Robotic Network. J. Geohys. Res. Atmos. 2010, 115, D23209. [Google Scholar] [CrossRef]
- Eck, T.; Holben, B.; Dubovik, O.; Smirnov, A.; Goloub, P.; Chen, H.; Chatenet, B.; Gomes, L.; Zhang, X.Y.; Tsay, S.C. Columnar aerosol optical properties at AERONET sites in central eastern Asia and aerosol transport to the tropical mid-Pacific. J. Geophys. Res. Atmos. 2005, 110, D06202. [Google Scholar] [CrossRef]
- Schuster, G.L.; Dubovik, O.; Holben, B.N. Angstrom exponent and bimodal aerosol size distributions. J. Geophys. Res. Atmos. 2006, 111, D07207. [Google Scholar] [CrossRef]
- Sayer, A.; Hsu, N.; Eck, T.; Smirnov, A.; Holben, B. AERONET-based models of smoke-dominated aerosol near source regions and transported over oceans, and implications for satellite retrievals of aerosol optical depth. Atmos. Chem. Phys. 2014, 14, 11493–11523. [Google Scholar] [CrossRef] [Green Version]
- Shin, S.K.; Müller, D.; Lee, C.; Lee, K.H.; Shin, D.; Kim, Y.J.; Noh, Y.M. Vertical variation of optical properties of mixed Asian dust/pollution plumes according to pathway of air mass transport over East Asia. Atmos. Chem. Phys. 2015, 15, 6707–6720. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Kim, J.; Jeong, U.; Kim, W.; Hong, H.; Holben, B.; Eck, T.F.; Lim, J.H.; Song, C.K.; Lee, S. Aerosol optical properties derived from the DRAGON-NE Asia campaign, and implications for a single-channel algorithm to retrieve aerosol optical depth in spring from Meteorological Imager (MI) on-board the Communication, Ocean, and Meteorological Satellite (COMS). Atmos. Chem. Phys. 2016, 16, 1789–1808. [Google Scholar] [CrossRef] [Green Version]
- Kaskaoutis, D.G.; Sifakis, N.; Retalis, A.; Kambezidis, H.D. Aerosol monitoring over Athens using satellite and ground-based measurements. Adv. Meteorol. 2010, 2010, 147910. [Google Scholar] [CrossRef]
- Burton, S.; Ferrare, R.; Hostetler, C.; Hair, J.; Rogers, R.; Obland, M.; Butler, C.; Cook, A.; Harper, D.; Froyd, K. Aerosol classification using airborne High Spectral Resolution Lidar measurements-methodology and examples. Atmos. Meas. Technol. 2012, 5, 73–98. [Google Scholar] [CrossRef]
- Groß, S.; Essselborn, M.; Weinzierl, B.; Wirth, M.; Fix, A.; Petzold, A. Aerosol classification by airborne high spectral resolution lidar observations. Atmos. Chem. Phys. 2013, 13, 2487–2505. [Google Scholar] [CrossRef] [Green Version]
- Omar, A.H.; Won, J.G.; Winker, D.M.; Yoon, S.C.; Dubovik, O.; McCormick, M.P. Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements. J. Geophys. Res. Atmos. 2005, 110, D10S14. [Google Scholar] [CrossRef]
- Chen, W.-N.; Chen, Y.-W.; Chou, C.C.; Chang, S.-Y.; Lin, P.-H.; Chen, J.-P. Columnar optical properties of tropospheric aerosol by combined lidar and sunphotometer measurements at Taipei, Taiwan. Atmos. Environ. 2009, 43, 2700–2708. [Google Scholar] [CrossRef]
- Abel, S.J.; Haywood, J.M.; Highwood, E.J.; Li, J.; Buseck, P.R. Evolution of biomass burning aerosol properties from an agricultural fire in southern Africa. Geophys. Res. Lett. 2003, 30, 1785. [Google Scholar] [CrossRef]
- Sokolik, I.N.; Toon, O.B. Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths. J. Geophys. Res. Atmos. 1999, 104, 9423–9444. [Google Scholar] [CrossRef] [Green Version]
- Dubovik, O.; Holben, B.; Eck, T.F.; Smirnov, A.; Kaufman, Y.J.; King, M.D.; Tanré, D.; Slutsker, I. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci. 2002, 59, 590–608. [Google Scholar] [CrossRef]
- Eck, T.; Holben, B.; Reid, J.; Sinyuk, A.; Hyer, E.; O’Neill, N.; Shaw, G.; Vande Castle, J.; Chapin, F.; Dubovik, O. Optical properties of boreal region biomass burning aerosols in central Alaska and seasonal variation of aerosol optical depth at an Arctic coastal site. J. Geophys. Res. Atmos. 2009, 114, D11201. [Google Scholar] [CrossRef]
- Freudenthaler, V.; Esselborn, M.; Wiegner, M.; Heese, B.; Tesche, M.; Ansmann, A.; Müller, D.; Althausen, D.; Wirth, M.; Fix, A. Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006. Tellus B 2009, 61, 165–179. [Google Scholar] [CrossRef] [Green Version]
- Tesche, M.; Ansmann, A.; Mueller, D.; Althausen, D.; Mattis, I.; Heese, B.; Freudenthaler, V.; Wiegner, M.; Esselborn, M.; Pisani, G. Vertical profiling of Saharan dust with Raman lidars and airborne HSRL in southern Morocco during SAMUM. Tellus B 2009, 61, 144–164. [Google Scholar] [CrossRef] [Green Version]
- Burton, S.; Ferrare, R.; Vaughan, M.; Omar, A.; Rogers, R.; Hostetler, C.; Hair, J. Aerosol classification fromairborne HSRL and comparisons with the CALIPSO vertical feature mask. Atmos. Meas. Technol. 2013, 6, 1397–1412. [Google Scholar] [CrossRef]
- Burton, S.; Hair, J.; Kahnert, M.; Ferrare, R.; Hostetler, C.; Cook, A.; Harper, D.; Berkoff, T.; Seaman, S.; Collins, J. Observations of the spectral dependence of linear particle depolarization ratio of aerosols using NASA Langley airborne High Spectral Resolution Lidar. Atmos. Chem. Phys. 2015, 15, 13453–13473. [Google Scholar] [CrossRef] [Green Version]
- Haarig, M.; Ansmann, A.; Althausen, D.; Klepel, A.; Groß, S.; Freudenthaler, V.; Toledano, C.; Mamouri, R.-E.; Farrell, D.A.; Prescod, D.A. Triple-wavelength depolarization-ratio profiling of Saharan dust over Barbados during SALTRACE in 2013 and 2014. Atmos. Chem. Phys. 2017, 17, 10767. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanre, D.; Buis, J.; Setzer, A.; Vermote, E.; Reagan, J.; Kaufman, Y.; Nakajima, T. AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Kambezidis, H.D.; Kaskaoutis, D. Aerosol climatology over four AERONET sites: An overview. Atmos. Environ. 2008, 42, 1892–1906. [Google Scholar] [CrossRef]
- Mattis, I.; Tesche, M.; Grein, M.; Freudenthaler, V.; Müller, D. Systematic error of lidar profiles caused by a polarization-dependent receiver transmission: Quantification and error correction scheme. Appl. Opt. 2009, 48, 2742–2751. [Google Scholar] [CrossRef]
- Dubovik, O.; Sinyuk, A.; Laypyonok, T.; Holben, B.N.; Mishchenko, M.; Yang, P.; Eck, T.F.; Voten, H.; Muñoz, O.; Veihelmann, B. Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J. Geophys. Res. Atmos. 2006, 111, D11208. [Google Scholar] [CrossRef]
- Noh, Y.; Müller, D.; Lee, K.; Kim, K.; Shimizu, A.; Sano, I.; Park, C.B. Depolarization ratios retrieved by AERONET sun–sky radiometer data and comparison to depolarization ratios measured with lidar. Atmos. Chem. Phys. 2017, 17, 6271–6290. [Google Scholar] [CrossRef] [Green Version]
- Bohren, C.; Huffman, D. Absorbing and Scattering of Light by Small Particles; Wiley: Weinheim, Germany, 1983. [Google Scholar] [CrossRef]
- Sayer, A.M.; Smirnov, A.; Hsu, N.C.; Holben, B.N. A pure marine aerosol model, for use in remote sensing application. J. Geophys. Res. Atmos. 2012, 117, D05213. [Google Scholar] [CrossRef]
- Russell, P.B.; Bergstrom, R.W.; Shinozuka, Y.; Clarke, A.D.; DeCarlo, P.F.; Jimenez, J.L.; Livingston, J.M.; Redemann, J.; Dubovik, O.; Strawa, A. Absorption angstrom exponent in AERONET and related data as an indicator of aerosol composition. Atmos. Chem. Phys. 2010, 11, 1155–1169. [Google Scholar] [CrossRef]
- Tesche, M.; Müller, D.; Groß, S.; Ansmann, A.; Althausen, D.; Freudenthaler, V.; Weinzierl, B.; Veira, A.; Petzold, A. Optical and microphysical properties of smoke over Cape Verde inferred from multiwavelength lidar measurement. Tellus B 2011, 63, 677–694. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J.; Song, C.H.; Kim, S.B.; Chun, Y.; Sohn, B.J.; Holben, B.N. Characteristics of aerosol types from AERONET sunphotometer measurements. Atmos. Environ. 2010, 44, 3110–3117. [Google Scholar] [CrossRef]
- Tanré, D.; Kaufman, Y.; Holben, B.; Chatenet, B.; Karnieli, A.; Lavenu, F.; Blarel, L.; Dubovik, O.; Remer, L.; Smirnov, A. Climatology of dust aerosol size distribution and optical properties derived from remotely sensed data in the solar spectrum. J. Geophys. Res. Atmos. 2001, 106, 18205–18217. [Google Scholar] [CrossRef] [Green Version]
- Reid, J.S.; Kinney, J.E.; Westphal, D.L.; Holben, B.N.; Welton, E.J.; Tsay, S.C.; Eleuterio, D.P.; Campbell, J.R.; Christopher, S.A.; Colarco, P. Analysis of measurements of Saharan dust by airborne and ground-based remote sensing methods during the Puerto Rico Dust Experiment (PRIDE). J. Geophys. Res. Atmos. 2003, 108, D19. [Google Scholar] [CrossRef]
- Schuster, G.L.; Vaughan, M.; MacDonnell, D.; Su, W.; Winker, D.; Dubovik, O.; Lapyonok, T.; Trepte, C. Comparison of CALIPSO aerosol optical depth retrievals to AERONET measurements, and a climatology for the lidar ratio of dust. Atmos. Chem. Phys. 2012, 12, 7431. [Google Scholar] [CrossRef]
- Verma, S.; Prakash, D.; Ricaud, P.; Payra, S.; Attié, J.-L.; Soni, M. A new classification of aerosol sources and types as measured over Jaipur, India. Aerosol Air Qual. Res. 2015, 15, 985–993. [Google Scholar] [CrossRef]
- Khatri, P.; Takamura, T.; Shimizu, A.; Sugimoto, N. Observation of low single scattering albedo of aerosols in the downwind of the East Asian desert and urban areas during the inflow of dust aerosols. J. Geohys. Res. Atmos. 2014, 119, 787–802. [Google Scholar] [CrossRef] [Green Version]
- Ou, Y.; Zhao, W.; Wang, J.; Zhao, W.; Zhang, B. Characteristics of Aerosol Types in Beijing and the Associations with Air Pollution from 2004 to 2015. Remote Sens. 2017, 9, 898. [Google Scholar] [CrossRef]
- Mikami, M.; Shi, G.; Uno, I.; Yabuki, S.; Iwasaka, Y.; Yasui, M.; Aoki, T.; Tanaka, T.; Kurosaki, Y.; Masuda, K. Aeolian dust experiment on climate impact: An overview of Japan–China joint project ADEC. Glob. Planet. Chang. 2006, 52, 142–172. [Google Scholar] [CrossRef]
- Yu, X.; Cheng, T.; Chen, J.; Liu, Y. A comparison of dust properties between China continent and Korea, Japan in East Asia. Atmos. Environ. 2006, 40, 5787–5797. [Google Scholar] [CrossRef]
- Hess, M.; Koepke, P.; Schult, I. Optical properties of aerosols and clouds: The software package OPAC. Bull. Am. Meteorol. Soc. 1998, 79, t831–t844. [Google Scholar] [CrossRef]
- Haywood, J.M.; Ramaswamy, V. Global sensitivity studies of the direct radiative forcing due to anthropogenic sulfate and black carbon aerosols. J. Geophys. Res. 1998, 103, 6043–6058. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Martin, S.T. Satellite characterization of urban aerosols: Importance of including hygroscopicity and mixing state in the retrieval algorithms. J. Geophys. Res. 1998, 112, D17203. [Google Scholar] [CrossRef]
- Fierce, L.; Bond, T.C.; Bauer, S.E.; Mena, F.; Riemer, N. Black carbon absorption at the global scale is affected by particle-scale diversity in composition. Nat. Commun. 2016, 7, 12361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, C.E.; Lee, K.; Müller, D. Effect of internal mixture on black carbon radiative forcing. Tellus B 2012, 64, 10925. [Google Scholar] [CrossRef]
- Ansmann, A.; Petzold, A.; Kandler, K.; Tegen, I.; Wendisch, M.; Mueller, D.; Weinzierl, B.; Mueller, T.; Heintzenberg, J. Saharan Mineral Dust Experiments SAMUM–1 and SAMUM–2: What have we learned? Tellus B 2011, 63, 403–429. [Google Scholar] [CrossRef]
- Mamouri, R.-E.; Ansmann, A. Fine and coarse dust separation with polarization lidar. Atmos. Meas. Technol. 2014, 7, 3717–3735. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, A.; Sugimoto, N.; Matsui, I.; Arao, K.; Uno, I.; Murayama, T.; Kagawa, N.; Aoki, K.; Uchiyama, A.; Yamazaki, A. Continuous observations of Asian dust and other aerosols by polarization lidars in China and Japan during ACE-Asia. J. Geophys. Res. Atmos. 2004, 109, D19S17. [Google Scholar] [CrossRef]
- Haarig, M.; Ansmann, A.; Baars, H.; Jimenez, C.; Veselovskii, I.; Engelmann, R.; Althausen, D. Depolarization and lidar ratios at 355, 532, and 1064 nm and microphysical properties of aged tropospheric and stratospheric Candian wildfire smoke. Atmos. Chem. Phys. 2018, 18, 11847–11861. [Google Scholar] [CrossRef]
- Sakai, T.; Nagai, T.; Zaizen, Y.; Mano, Y. Backscattering linear depolarization ratio measurements of mineral, sea-salt, and ammonium sulfate particles simulated in a laboratory chamber. Appl. Opt. 2010, 49, 4441–4449. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.-K.; Teshce, M.; Kim, K.; Kezoudi, M.; Tatarov, B.; Müller, D.; Noh, Y. On the spectral depolarisation and lidar ratio of mineral dust provided in the AERONET version 3 inversion product. Atmos. Chem. Phys. 2018, 18, 12735–12746. [Google Scholar] [CrossRef]
Site | Latitude [°] | Longitude [°] | Elevation [m] | Range of Year | Number of Retrieval (Filtered) | References |
---|---|---|---|---|---|---|
Dust | [5,36,37,38] | |||||
Banizoumbou | 13.55 | 2.67 | 274 | 1995–1997, 1999–2011 | 3120 (2331) | |
Capo Verde | 16.73 | −22.94 | 60 | 1994–1995, 1999–2004 | 597 (510) | |
DMN_Maine_Soroa | 13.22 | 12.02 | 350 | 2005–2009 | 498 (365) | |
IER_Cinzana | 13.28 | −5.93 | 285 | 2004–2016 | 3684 (2688) | |
Smoke | [5,20,27,39] | |||||
Moscow | 55.71 | 37.52 | 192 | 2001–2015 | 360 (206) | |
Tomks | 56.48 | 85.05 | 174 | 2003–2004, 2006–2010 | 98 (91) | |
Alta Floresta | −9.87 | −56.10 | 277 | 1993–1995, 1999–2015 | 817 (779) | |
Bonaza_Creek | 64.74 | −148.32 | 353 | 1997–2000, 2002, 2004, 2005, 2008 | 190 (181) | |
Tomsk_22 | 56.42 | 84.07 | 80 | 2011–2016 | 159 (145) | |
Yakutsk | 61.66 | 129.37 | 118.5 | 2004, 2006, 2008–2009, 2011–2017 | 249 (244) | |
Urban/Industrial/Mixed | [7,11,40,41] | |||||
Gwangju_GIST | 35.23 | 126.84 | 52 | 2004–2005, 2007–2017 | 1061 (1054) | |
Beijing | 39.98 | 116.38 | 92 | 2001–2011 | 2541 (2450) | |
Beijing_CAMS | 39.93 | 116.32 | 106 | 2012–2017 | 1364 (1346) | |
Seoul_SNU | 37.46 | 126.95 | 116 | 2002–2003, 2012–2013, 2015–2017 | 787 (777) |
Aerosol Type | ||||||
---|---|---|---|---|---|---|
Properties | Dust | Smoke | Mixed | Pollution (NA) | Pollution (MA) | Pollution (HA) |
Å440/870 | 0.18 ± 0.09 | 1.75 ± 0.22 | 0.57 ± 0.10 | 1.31 ± 0.22 | 1.25 ± 0.21 | 1.25 ± 0.17 |
ω440 | 0.90 ± 0.03 | 0.94 ± 0.03 | 0.90 ± 0.03 | 0.97 ± 0.01 | 0.92 ± 0.03 | 0.83 ± 0.02 |
ω675 | 0.97 ± 0.02 | 0.93 ± 0.04 | 0.95 ± 0.02 | 0.97 ± 0.01 | 0.93 ± 0.03 | 0.87 ± 0.03 |
ω870 | 0.98 ± 0.02 | 0.92 ± 0.05 | 0.95 ± 0.02 | 0.97 ± 0.02 | 0.92 ± 0.03 | 0.86 ± 0.03 |
ω1020 | 0.98 ± 0.02 | 0.91 ± 0.05 | 0.95 ± 0.02 | 0.96 ± 0.02 | 0.92 ± 0.03 | 0.85 ± 0.04 |
FMF | 0.29 ± 0.06 | 0.96 ± 0.04 | 0.52 ± 0.05 | 0.94 ± 0.04 | 0.87 ± 0.08 | 0.84 ± 0.07 |
Particle Linear Depolarization Ratio | ||||
---|---|---|---|---|
440 nm | 675 nm | 870 nm | 1020 nm | |
Dust | 0.224 ± 0.035 | 0.269 ± 0.027 | 0.291 ± 0.028 | 0.303 ± 0.030 |
Banizoumbou | 0.225 ± 0.036 | 0.268 ± 0.028 | 0.29 ± 0.029 | 0.302 ± 0.031 |
Capo Verde | 0.249 ± 0.030 | 0.283 ± 0.024 | 0.300 ± 0.025 | 0.309 ± 0.026 |
DMN_Maine_Soroa | 0.225 ± 0.030 | 0.265 ± 0.023 | 0.283 ± 0.024 | 0.294 ± 0.026 |
IER_Cinzana | 0.218 ± 0.033 | 0.268 ± 0.026 | 0.292 ± 0.027 | 0.305 ± 0.029 |
Smoke | 0.006 ± 0.015 | 0.012 ± 0.012 | 0.01 ± 0.01 | 0.005 ± 0.014 |
Moscow | 0.011 ± 0.025 | 0.018 ± 0.023 | 0.018 ± 0.025 | 0.012 ± 0.027 |
Tomks | 0.017 ± 0.033 | 0.022 ± 0.029 | 0.024 ± 0.031 | 0.018 ± 0.035 |
Alta Floresta | 0.003 ± 0.007 | 0.010 ± 0.005 | 0.011 ± 0.005 | 0.004 ± 0.005 |
Bonaza_Creek | 0.006 ± 0.013 | 0.012 ± 0.010 | 0.012 ± 0.009 | 0.005 ± 0.008 |
Tomsk_22 | 0.004 ± 0.005 | 0.010 ± 0.004 | 0.010 ± 0.003 | 0.003 ± 0.003 |
Yakutsk | 0.004 ± 0.013 | 0.010 ± 0.008 | 0.010 ± 0.007 | 0.003 ± 0.006 |
Urban/Industrial/Mixed | ||||
Mixed (Polluted dust) | 0.129 ± 0.029 | 0.171 ± 0.030 | 0.193 ± 0.034 | 0.208 ± 0.037 |
Gwangju_GIST | 0.132 ± 0.028 | 0.178 ± 0.031 | 0.202 ± 0.036 | 0.217 ± 0.039 |
Beijing | 0.129 ± 0.031 | 0.167 ± 0.030 | 0.188 ± 0.033 | 0.203 ± 0.037 |
Beijing_CAMS | 0.127 ± 0.030 | 0.165 ± 0.032 | 0.184 ± 0.034 | 0.198 ± 0.034 |
Seoul_SNU | 0.122 ± 0.023 | 0.179 ± 0.021 | 0.207 ± 0.019 | 0.225 ± 0.018 |
Non Absorbing | 0.049 ± 0.053 | 0.43 ± 0.039 | 0.039 ± 0.035 | 0.031 ± 0.035 |
Gwangju_GIST | 0.050 ± 0.056 | 0.044 ± 0.040 | 0.040 ± 0.037 | 0.032 ± 0.038 |
Beijing | 0.057 ± 0.056 | 0.048 ± 0.041 | 0.042 ± 0.035 | 0.033 ± 0.035 |
Beijing_CAMS | 0.048 ± 0.048 | 0.042 ± 0.035 | 0.038 ± 0.031 | 0.030 ± 0.031 |
Seoul_SNU | 0.040 ± 0.051 | 0.038 ± 0.039 | 0.036 ± 0.037 | 0.028 ± 0.038 |
Moderate Absorbing | 0.051 ± 0.049 | 0.052 ± 0.044 | 0.054 ± 0.047 | 0.051 ± 0.052 |
Gwangju_GIST | 0.057 ± 0.050 | 0.060 ± 0.047 | 0.062 ± 0.051 | 0.060 ± 0.058 |
Beijing | 0.052 ± 0.048 | 0.053 ± 0.042 | 0.053 ± 0.045 | 0.050 ± 0.050 |
Beijing_CAMS | 0.048 ± 0.047 | 0.049 ± 0.043 | 0.051 ± 0.045 | 0.048 ± 0.051 |
Seoul_SNU | 0.046 ± 0.050 | 0.049 ± 0.046 | 0.050 ± 0.049 | 0.046 ± 0.054 |
High Absorbing | 0.036 ± 0.031 | 0.045 ± 0.033 | 0.050 ± 0.038 | 0.049 ± 0.046 |
Gwangju_GIST | 0.051 ± 0.068 | 0.046 ± 0.048 | 0.044 ± 0.045 | 0.038 ± 0.048 |
Beijing | 0.037 ± 0.030 | 0.047 ± 0.033 | 0.052 ± 0.038 | 0.052 ± 0.046 |
Beijing_CAMS | 0.029 ± 0.031 | 0.036 ± 0.033 | 0.039 ± 0.038 | 0.036 ± 0.043 |
Seoul_SNU | 0.033 ± 0.036 | 0.039 ± 0.030 | 0.041 ± 0.032 | 0.037 ± 0.036 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zo, I.-S.; Shin, S.-K. A Short Note on the Potential of Utilization of Spectral AERONET-Derived Depolarization Ratios for Aerosol Classification. Atmosphere 2019, 10, 143. https://doi.org/10.3390/atmos10030143
Zo I-S, Shin S-K. A Short Note on the Potential of Utilization of Spectral AERONET-Derived Depolarization Ratios for Aerosol Classification. Atmosphere. 2019; 10(3):143. https://doi.org/10.3390/atmos10030143
Chicago/Turabian StyleZo, Il-Sung, and Sung-Kyun Shin. 2019. "A Short Note on the Potential of Utilization of Spectral AERONET-Derived Depolarization Ratios for Aerosol Classification" Atmosphere 10, no. 3: 143. https://doi.org/10.3390/atmos10030143
APA StyleZo, I. -S., & Shin, S. -K. (2019). A Short Note on the Potential of Utilization of Spectral AERONET-Derived Depolarization Ratios for Aerosol Classification. Atmosphere, 10(3), 143. https://doi.org/10.3390/atmos10030143