Isoprene, Methyl Vinyl Ketone and Methacrolein from TROICA-12 Measurements and WRF-CHEM and GEOS-CHEM Simulations in the Far East Region
Abstract
:1. Introduction
2. Measurements, Datasets and Methods
2.1. NOx, Ozone and Meteorological Measurements
2.2. VOCs Measurements and PTR-MS
2.3. Regional WRF-CHEM Model
2.4. Anthropogenic Emissions
2.5. Biogenic Emissions
2.6. Boundary and Initial Chemistry cConditions
2.7. Global GEOS-CHEM Model
3. The Experimental Values of Isoprene Compared with the Results of the Model Simulations
3.1. Spatial Distribution of Isoprene in the Far East Region from the TROICA-12 Experiment
3.2. The Comparison of Experimental Data with Isoprene mModel Calculations
3.3. The Comparison of Isoprene Concentration Fields Simulated by Different Models
4. The Secondary Isoprene Oxidation Reactions
4.1. The Comparison Between the Experimental Data and the Results of the Model Simulation for the Secondary Isoprene Oxidation Products
4.2. The Diurnal Variation of the Experimental Ratio
4.3. The Experimental Ratio from Twilight–Nighttime
4.4. The Diurnal Variation of the Simulated Ratio
5. The Maps of Chemical Reactions
5.1. The Spatial Distribution of the Daytime Simulated Ratio
5.2. The Spatial Distribution of the Nocturnal Simulated Ratio
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Guenther, A.; Karl, T.; Harley, P.; Wiedinmyer, C.; Palmer, P.I.; Geron, C. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 2006, 6, 3181–3210. [Google Scholar] [CrossRef] [Green Version]
- Warneke, C.; de Gouw, J.A.; Goldan, P.D.; Kuster, W.C.; Williams, E.J.; Lerner, B.M.; Jakoubek, R.; Brown, S.S.; Stark, H.; Aldener, M.; et al. Comparison of daytime and night-time oxidation of biogenic and anthropogenic VOCs along the New England coast in summer during New England Air Quality Study 2002. J. Geophys. Res. 2004, 109. [Google Scholar] [CrossRef]
- Crutzen, P.J.; Golitsyn, G.S.; Elansky, N.F.; Brenninkmeijer, C.A.M.; Scharffe, D.H.; Belikov, I.B.; Elokhov, A.S. Observations of minor impurities in the atmosphere over the Russian territory with the application of a railroad laboratory car. Dokl. Earth Sci. 1996, 351, 1289–1293. [Google Scholar]
- Crutzen, P.J.; Elansky, N.F.; Hahn, M.; Golitsyn, G.S.; Brenninkmeijer, C.A.M.; Scharffe, D.H.; Belikov, I.B.; Maiss, M.; Bergamaschi, P.; Röckmann, T.; et al. Trace Gas Measurements Between Moscow and Vladivostok Using the TransSiberian Railroad. J. Atmos. Chem. 1998, 29, 179–194. [Google Scholar] [CrossRef]
- Oberlander, E.A.; Brenninkmeijer, C.A.M.; Crutzen, P.J.; Elansky, N.F.; Golitsyn, G.S.; Granberg, I.G.; Scharffe, D.H.; Hofmann, R.; Belikov, I.B.; Paretzke, H.G.; et al. Trace gas measurements along the Trans-Siberian railroad: The TROICA 5 expedition. J. Geophys. Res. Atmos. 2002, 107. [Google Scholar] [CrossRef]
- Timkovsky, I.; Elanskii, N.F.; Skorokhod, A.I.; Shumskii, R.A. Studying of biogenic volatile organic compounds in the atmosphere over Russia. Izv. Atmos. Ocean. Phys. 2010, 46, 319–327. [Google Scholar] [CrossRef]
- Skorokhod, A.I.; Berezina, E.V.; Moiseenko, K.B.; Elansky, N.F.; Belikov, I.B. Benzene and toluene in the surface air of northern Eurasia from TROICA-12 campaign along the Trans-Siberian Railway. Atmos. Chem. Phys. 2017, 17, 5501–5514. [Google Scholar] [CrossRef] [Green Version]
- Guenther, A.B.; Jiang, X.; Heald, C.L.; Sakulyanontvittaya, T.; Duhl, T.; Emmons, L.K.; Wang, X. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): An extended and updated framework for modelling biogenic emissions. Geosci. Model Dev. 2012, 5, 1471–1492. [Google Scholar] [CrossRef]
- Atkinson, R. Gas-phase tropospheric chemistry of organic compounds. J. Phys. Chem. Ref. Data Monogr. 1994, 2, 1–216. [Google Scholar]
- Elansky, N.F.; Belikov, I.B.; Berezina, E.V.; Brenninkmeijer, C.A.M.; Buklikova, N.N.; Crutzen, P.J.; Elansky, S.N.; Elkins, J.V.; Elokhov, A.S.; Golitsyn, G.S.; et al. Atmospheric Composition Observations over Northern Eurasia Using the Mobile Laboratory: TROICA Expedition; Agrospas: Moscow, Russia, 2009; 76p, Available online: http://ifaran.ru/troica/biblio/troica-en.pdf (accessed on 31 January 2019).
- Panin, L.V.; Elansky, N.F.; Belikov, I.B.; Granberg, I.G.; Andronova, A.V.; Obvintsev, Y.I.; Bogdanov, V.M.; Grisenko, A.M.; Mozgrin, V.S. Estimation of Reliability of the Data on Pollutant Content Measured in the Atmospheric Surface Layer in the TROICA Experiments. Izv. Atmos. Ocean. Phys. 2001, 37, 81–91. [Google Scholar]
- Marais, E.A.; Jacob, D.J.; Jimenez, J.L.; Campuzano-Jost, P.; Day, D.A.; Hu, W.; Krechmer, J.; Zhu, L.; Kim, P.S.; Miller, C.C.; et al. Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: Application to the southeast United States and co-benefit of SO2 emission controls. Atmos. Chem. Phys. 2016, 16, 1603–1618. [Google Scholar] [CrossRef]
- Rivera-Rios, J.C.; Nguyen, T.B.; Crounse, J.D.; Jud, W.; St. Clair, J.M.; Mikoviny, T.; Gilman, J.B.; Lerner, B.M.; Kaiser, J.B.; de Gouw, J.; et al. Conversion of hydroperoxides to carbonyls in field and laboratory instrumentation: Observational bias in diagnosing pristine versus anthropogenically controlled atmospheric chemistry. Geophys. Res. Lett. 2014, 41, 8645–8651. [Google Scholar] [CrossRef] [Green Version]
- Lindinger, W.; Hansel, A.; Jordan, A. Proton-transfer-reaction mass spectrometry (PTR-MS): On-line monitoring of volatile organic compounds at pptv levels. Chem. Soc. Rev. 1998, 27, 347–354. [Google Scholar] [CrossRef]
- Hewitt, C.N.; Haywardaand, S.; Tani, A. The application of proton transfer reaction-mass spectrometry (PTR-MS) to the monitoring and analysis of volatile organic compounds in the atmosphere. J. Environ. Monit. 2003, 5, 1–7. [Google Scholar] [CrossRef]
- De Gouw, J.; Warneke, C. Measurements of volatile organic compounds in the earth’s atmosphere using proton-transfer-reaction mass spectrometry. Mass Spectrom. Rev. 2007, 26, 223–257. [Google Scholar] [CrossRef]
- Blake, R.S.; Monks, P.S.; Ellis, A.M. Proton-Transfer Reaction Mass Spectrometry. Chem. Rev. 2009, 109, 861–896. [Google Scholar] [CrossRef]
- Yokelson, R.J.; Karl, T.; Artaxo, P.; Blake, D.R.; Christian, T.J.; Griffith, D.W.T.; Guenther, A.; Hao, W.M. The Tropical Forest and Fire Emissions Experiment: Overview and airborne fire emission factor measurements. Atmos. Chem. Phys. 2007, 7, 5175–5196. [Google Scholar] [CrossRef]
- Brenninkmeijer, C.A.M.; Crutzen, P.; Boumard, F.; Dauer, T.; Dix, B.; Ebinghaus, R.; Filippi, D.; Fischer, H.; Franke, H.; Frieβ, U.; et al. Civil Aircraft for the regular investigation of the atmosphere based on an instrumented container: The new CARIBIC system. Atmos. Chem. Phys. 2007, 7, 4953–4976. [Google Scholar] [CrossRef] [Green Version]
- IONICON Analytik GmbH Product Description. Available online: http://www.ptrms.com (accessed on 31 January 2019).
- Warneke, C.; De Gouw, J.A.; Kuster, W.C.; Goldan, P.D.; Fall, R. Validation of atmospheric VOC measurements by proton-transfer-reaction mass spectrometry using a gaschromatographic preseparation method. Environ. Sci. Technol. 2003, 37, 2494–2501. [Google Scholar] [CrossRef]
- Baker, B.; Guenther, A.; Greenberg, J.; Goldstein, A.; Fall, R. Canopy fluxes of 2-methyl-3-buten-2-ol over a ponderosa pine forest by relaxed eddy accumulation: Field data and model comparison. J. Geophys. Res. Atmos. 1999, 104. [Google Scholar] [CrossRef]
- Schade, G.W.; Goldstein, A.H.; Gray, D.W.; Lerdau, M.T. Canopy and leaf level 2-methyl-3-buten-2-ol fluxes from a ponderosa pine plantation. Atmos. Environ. 2000, 34, 3535–3544. [Google Scholar] [CrossRef]
- Karl, T.; Hansel, A.; Cappellin, L.; Kaser, L.; Herdlinger-Blatt, I.; Jud, W. Selective measurements of isoprene and 2-methyl-3-buten-2-ol based on NO+ ionization mass spectrometry. Atmos. Chem. Phys. 2012, 12, 11877–11884. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.; Duda, M.G.; Huang, X.-Y.; Wang, W.; et al. A Description of the Advanced Research WRF Version 3; NCAR Technical Note NCAR/TN-475+STR; National Center for Atmospheric Research: Boulder, CO, USA, 2008; p. 113. [Google Scholar] [CrossRef]
- NCEP FNL DS083.2 Meteorological Fields, National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce. 2000, Updated Daily. NCEP FNL Operational Model Global Tropospheric Analyses, Continuing from July 1999. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. Available online: http://rda.ucar.edu/datasets (accessed on 31 January 2019).
- Grell, G.A.; Devenyi, D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett. 2002, 29. [Google Scholar] [CrossRef]
- Jiménez, P.A.; Dudhia, J.; González-Rouco, J.F.; Navarro, J.; Montávez, J.P.; García-Bustamante, E. A Revised Scheme for the WRF Surface Layer Formulation. Mon. Weather Rev. 2012, 140, 898–918. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Mitchell, K.; Schaake, J.; Xue, Y.; Pan, H.-L.; Koren, V.; Duan, Q.Y.; Ek, M.; Betts, A. Modeling of land-surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res. 1996, 101, 7251–7268. [Google Scholar] [CrossRef]
- Koren, V.; Schaake, J.; Mitchell, K.; Duan, Q.-Y.; Chen, F.; Baker, J.M. A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J. Geophys. Res. 1999, 104, 19569–19585. [Google Scholar] [CrossRef] [Green Version]
- Chou, M.-D. Parameterization for the absorption of solar radiation by O2 and CO2 with application to climate studies. J. Clim. Appl. Meteorol. 1990, 3, 209–217. [Google Scholar] [CrossRef]
- Chou, M.-D. A solar radiation model for climate studies. J. Atmos. Sci. 1992, 49, 762–772. [Google Scholar] [CrossRef]
- Chou, M.D.; Suarez, M.J. An Efficient Thermal Infrared Radiation Parameterization for Use in General Circulation Models; NASA Technical Memorandum 104606; National Aeronautics and Space Administration: Greenbelt, MD, USA, 1994; Volume 3, p. 85.
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-L.; Farley, R.D.; Orville, H.D. Bulk Parameterization of the Snow Field in a Cloud Model. J. Clim. Appl. Meteorol. 1983, 22, 1065–1092. [Google Scholar] [CrossRef] [Green Version]
- Wicker, L.J.; Skamarock, W.C. Time-splitting methods for elastic models using forward time schemes. Mon. Weather Rev. 2002, 130, 2088–2097. [Google Scholar] [CrossRef]
- Skamarock, W.C. Positive-Definite and Monotonic Limiters for Unrestricted-Timestep Transport Schemes. Mon. Weather Rev. 2006, 134, 2241–2250. [Google Scholar] [CrossRef]
- Smagorinsky, J. General circulation experiments with the primitive equations: 1. The basic experiment. Mon. Weather Rev. 1963, 91, 99–164. [Google Scholar] [CrossRef]
- Pöschl, U.; von Kuhlmann, R.; Poisson, N.; Crutzen, P.J. Development and Intercomparison of Condensed Isoprene Oxidation Mechanisms for Global Atmospheric Modeling. J. Atmos. Chem. 2000, 37, 29–52. [Google Scholar] [CrossRef]
- Emmons, L.K.; Walters, S.; Hess, P.G.; Lamarque, J.-F.; Pfister, G.G.; Fillmore, D.; Granier, C.; Guenther, A.; Kinnison, D.; Laepple, T.; et al. Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geosci. Model Dev. 2010, 3, 43–67. [Google Scholar] [CrossRef] [Green Version]
- Janssens-Maenhout, G.; Dentener, F.; van Aardenne, J.; Monni, S.; Pagliari, V.; Orlandini, L.; Klimont, Z.; Kurokawa, J.; Akimoto, H.; Ohara, T.; et al. EDGAR-HTAP: A harmonized gridded air pollution emission dataset based on national inventories. In JRC Scientific and Technical Reports; European Union: Luxembourg, 2012; p. 41. [Google Scholar]
- EDGAR-HTAP. Available online: http://edgar.jrc.ec.europa.eu/national_reported_data/htap.php (accessed on 31 January 2019).
- EDGAR v4.1, Dataset in the Global Emission Section. Available online: ftp://aftp.fsl.noaa.gov/divisions/taq/global_emissions/ (accessed on 31 January 2019).
- Guenther, A.; Hewitt, C.N.; Erickson, D.; Fall, R.; Geron, C.; Graedel, T.; Harley, P.; Klinger, L.; Lerdau, M.; Mckay, W.A.; et al. A global model of natural volatile organic compound emissions. J. Geophys. Res. 1995, 100, 8873–8892. [Google Scholar] [CrossRef]
- Guenther, A.; Baugh, B.; Brasseur, G.; Greenberg, J.; Harley, P.; Klinger, L.; Serca, D.; Vierling, L. Isoprene emission estimates and uncertainties for the Central African EXPRESSO study domain. J. Geophys. Res. 1999, 104, 30625–30639. [Google Scholar] [CrossRef]
- Guenther, A.; Jiang, X.; Duhl, T.; Sakulyanontvittaya, T.; Johnson, J.; Wang, X. User’s Guide to the MEGAN Version 2.10. Available online: Lar.wsu.edu/megan/docs/MEGAN2.1_User_GuideWSU.pdf (accessed on 31 January 2019).
- NCAR ACOM. Available online: https://www2.acom.ucar.edu/wrf-chem/wrf-chem-tools-community (accessed on 31 January 2019).
- GEOS-CHEM. Available online: http://acmg.seas.harvard.edu/geos/ (accessed on 31 January 2019).
- Paulot, F.; Henze, D.K.; Wennberg, P.O. Impact of the isoprene photochemical cascade on tropical ozone. Atmos. Chem. Phys. 2012, 12, 1307–1325. [Google Scholar] [CrossRef] [Green Version]
- Safronov, A.N.; Fokeeva, E.V.; Rakitin, V.S.; Yurganov, L.N.; Grechko, E.I. Carbon monoxide emissions in summer 2010 in the central part of the Russian Plain and estimation of their uncertainties with the use of different land-cover maps. Izv. Atmos. Ocean. Phys. 2012, 48, 925–940. [Google Scholar] [CrossRef]
- Baldocchi, D.; Guenther, A.; Harley, P.; Klinger, L.; Zimmerman, P.; Lamb, B.; Westberg, H. The fluxes and air chemistry of isoprene above a deciduous hardwood forest. Philos. Trans. Phys. Sci. Eng. 1995, 351, 279–296. [Google Scholar]
- Doughty, D.; Fuentes, J.D.; Sakai, R.; Hu, X.-M.; Sanchez, K. Nocturnal isoprene declines in a semi-urban environment. J. Atmos. Chem. 2015, 72, 215–234. [Google Scholar] [CrossRef]
- Cheung, K.; Guo, H.; Ou, J.M.; Simpson, I.J.; Barletta, B.; Meinardi, S.; Blake, D.R. Diurnal profiles of isoprene, methacrolein and methyl vinyl ketone at an urban site in Hong Kong. Atmos. Environ. 2014, 84, 323–331. [Google Scholar] [CrossRef]
- Xiong, F.; McAvey, K.M.; Pratt, K.A.; Groff, C.J.; Hostetler, M.A.; Lipton, M.A.; Starn, T.K.; Seeley, J.V.; Bertman, S.B.; Teng, A.P.; et al. Observation of isoprene hydroxynitrates in the southeastern United States and implications for the fate of NOx. Atmos. Chem. Phys. 2015, 15, 11257–11272. [Google Scholar] [CrossRef]
- Biesenthal, T.A.; Wu, Q.; Shepson, P.B.; Wiebe, H.A.; Anlauf, K.G.; Mackay, G.I. A study of relationships between isoprene, its oxidation products and ozone, in the lower fraser valley, BC. Atmos. Environ. 1997, 98, 2049–2058. [Google Scholar] [CrossRef]
- Biesenthal, T.A.; Bottenheim, J.W.; Shepson, P.B.; Li, S.-M.; Brickell, P.C. The chemistry of biogenic hydrocarbons at a rural site in eastern Canada. J. Geophys. Res. Atmos. 1998, 103, 25487–25498. [Google Scholar] [CrossRef] [Green Version]
- Montzka, S.A.; Trainer, M.; Goldan, P.D.; Kuster, W.C.; Fehsenfeld, F.C. Isoprene and its oxidation products, methyl vinyl ketone and methacrolein, in the rural troposphere. J. Geophys. Res. Atmos. 1993, 98, 1101–1111. [Google Scholar] [CrossRef] [Green Version]
- Langford, B.; Misztal, P.K.; Nemitz, E.; Davison, B.; Helfter, C.; Pugh, T.A.M.; MacKenzie, A.R.; Lim, S.F.; Hewitt, C.N. Fluxes and concentrations of volatile organic compounds from a South-East Asian tropical rainforest. Atmos. Chem. Phys. 2010, 10, 8391–8412. [Google Scholar] [CrossRef] [Green Version]
- Kalogridis, C.; Gros, V.; Sarda-Esteve, R.; Langford, B.; Loubet, B.; Bonsang, B.; Bonnaire, N.; Nemitz, E.; Genard, A.-C.; Boissard, C.; et al. Concentrations and fluxes of isoprene and oxygenated VOCs at a French Mediterranean oak forest. Atmos. Chem. Phys. 2014, 14, 10085–10102. [Google Scholar] [CrossRef] [Green Version]
- Brown, S.S.; deGouw, J.A.; Warneke, C.; Ryerson, T.B.; Dubé, W.P.; Atlas, E.; Weber, R.J.; Peltier, R.E.; Neuman, J.A.; Roberts, J.M.; et al. Nocturnal isoprene oxidation over the Northeast United States in summer and its impact on reactive nitrogen partitioning and secondary organic aerosol. Atmosp. Chem. Phys. 2009, 9, 3027–3042. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, J.; Skog, K.M.; Baumann, K.; Bertman, S.B.; Brown, S.B.; Brune, W.H.; Crounse, J.D.; de Gouw, J.A.; Edgerton, E.S.; Feiner, P.A.; et al. Speciation of OH reactivity above the canopy of an isoprene-dominated forest. Atmos. Chem. Phys. 2016, 16, 9349–9359. [Google Scholar] [CrossRef] [Green Version]
- Reissell, A.; Arey, J. Biogenic volatile organic compounds at Azusa and elevated sites during the 1997 Southern California Ozone Study. J. Geophys. Res. 2001, 106, 1607–1621. [Google Scholar] [CrossRef] [Green Version]
- Steinbacher, M.; Dommen, J.; Ordonez, C.; Reimann, S.; Gruebler, F.C.; Staehelin, J.; Andreani-Aksoyoglu, S.; Prevot, A.S.H. Volatile Organic Compounds in the Po Basin. Part B: Biogenic VOCs. J. Atmos. Chem. 2005, 51, 293–315. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Zhang, H.; Pye, H.O.T.; Zhang, Z.; Marth, W.J.; Park, S.; Arashiro, M.; Cui, T.; Budisulistiorini, S.H.; Sexton, K.G.; et al. Epoxide as a precursor to secondary organic aerosol formation from isoprene photooxidation in the presence of nitrogen oxides. Proc. Natl. Acad. Sci. USA 2013, 110, 6718–6723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.-H.; Arashiro, M.; Martin, E.; Chen, Y.; Zhang, Z.; Sexton, K.G.; Gold, A.; Jaspers, I.; Fry, R.C.; Surratt, J.D. Isoprene-derived secondary organic aerosol induces the expression of oxidative stress response genes in human lung cells. Environ. Sci. Technol. Lett. 2016, 3, 250–254. [Google Scholar] [CrossRef]
- Jiang, H.; Jang, M. Dynamic Oxidative Potential of Atmospheric Organic Aerosol under Ambient Sunlight. Environ. Sci. Technol. 2018, 52, 7496–7504. [Google Scholar] [CrossRef] [PubMed]
- Tuet, W.Y.; Chen, Y.; Fok, S.; Champion, J.A.; Ng, N.L. Inflammatory responses to secondary organic aerosols (SOA) generated from biogenic and anthropogenic precursors. Atmos. Chem. Phys. 2017, 17, 11423–11440. [Google Scholar] [CrossRef] [Green Version]
- Vilà-Guerau de Arellano, J. Bridging the gap between atmospheric physics and chemistry in studies of small-scale turbulence. Bull. Am. Meteorol. Soc. 2003, 84, 51–56. [Google Scholar] [CrossRef]
- Damköhler, G. Influence of turbulence on the velocity flames in gas mixtures. Z. Elektrochem. 1940, 46, 601–626. [Google Scholar]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Kluwer Academic Publishers: Dortrecht, The Netherlands, 1988. [Google Scholar]
- Stockwell, W.R. Effects of Turbulence on Gas-Phase Atmospheric Chemistry: Calculation of the Relationship Between Time Scales for Diffusion and Chemical Reaction. Meteorol. Atmos. Phys. 1995, 57, 159–171. [Google Scholar] [CrossRef]
- Vilà-Guerau de Arellano, J.; Duynkerke, P.G.; Zeller, K.F. Atmospheric surface layer similarity theory applied to chemically reactive species. J. Geophys. Res. 1995, 100, 1397–1408. [Google Scholar] [CrossRef]
- Molemaker, M.J.; Vilà-Guerau de Arellano, J. Turbulent control of chemical reactions in the convective boundary layer. J. Atmos. Sci. 1998, 55, 568–579. [Google Scholar] [CrossRef]
- Verver, G.H.L.; van Dop, H.; Holtslag, A.A.M. Turbulent mixing and the chemical breakdown of isoprene in the atmospheric boundary layer. J. Geophys. Res. 2000, 105, 3983–4002. [Google Scholar] [CrossRef] [Green Version]
- Vinuesa, J.-F.; Vilà-Guerau de Arellano, J. Introducing effective reaction rates to account for the inefficient mixing of the convective boundary layer. Atmos. Environ. 2005, 39, 445–461. [Google Scholar] [CrossRef]
- Vilà-Guerau de Arellano, J.; Gioli, B.; Miglietta, F.; Jonker, H.; Baltink, H.; Hutjes, R.; Holtslag, A. Entrainment process of carbon dioxide in the atmospheric boundary layer. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef]
- Dlugi, R.; Berger, M.; Zelger, M.; Hofzumahaus, A.; Siese, M.; Holland, F.; Wisthaler, A.; Grabmer, W.; Hansel, A.; Koppmann, R.; et al. Turbulent exchange and segregation of HOx radicals and volatile organic compounds above a deciduous forest. Atmos. Chem. Phys. 2010, 10, 6215–6235. [Google Scholar] [CrossRef] [Green Version]
- Pugh, T.A.M.; MacKenzie, A.R.; Hewitt, C.N.; Langford, B.; Edwards, P.M.; Furneaux, K.L.; Heard, D.E.; Hopkins, J.R.; Jones, C.E.; Karunaharan, A.; et al. Simulating atmospheric composition over a South-East Asian tropical rainforest: Performance of a chemistry box model. Atmos. Chem. Phys. 2010, 10, 279–298. [Google Scholar] [CrossRef]
- Pugh, T.A.M.; MacKenzie, A.R.; Langford, B.; Nemitz, E.; Misztal, P.K.; Hewitt, C.N. The influence of small scale variations in isoprene concentrations on atmospheric chemistry over a tropical rainforest. Atmos. Chem. Phys. 2011, 11, 4121–4134. [Google Scholar] [CrossRef]
- van Stratum, B.J.H.; Vilà-Guerau de Arellano, J.; Ouwersloot, H.G.; van den Dries, K.; van Laar, T.W.; Martinez, M.; Lelieveld, J.; Diesch, J.-M.; Drewnick, F.; Fischer, H.; et al. Case study of the diurnal variability of chemically active species with respect to boundary layer dynamics during DOMINO. Atmos. Chem. Phys. 2012, 12, 5329–5341. [Google Scholar] [CrossRef] [Green Version]
- Karl, T.; Misztal, P.K.; Jonsson, H.H.; Shertz, S.; Goldstein, A.H.; Guenther, A.B. Airborne flux measurements of BVOCs above Californian oak forests: Experimental investigation of surface and entrainment fluxes, OH densities and Damkohler numbers. J. Atmos. Sci. 2013, 70, 3277–3287. [Google Scholar] [CrossRef]
- Dlugi, R.; Berger, M.; Zelger, M.; Hofzumahaus, A.; Rohrer, F.; Holland, F.; Lu, K.; Kramm, G. The balances of mixing ratios and segregation intensity: A case study from the field (ECHO 2003). Atmos. Chem. Phys. 2014, 14, 10333–10362. [Google Scholar] [CrossRef]
- Kaser, L.; Karl, T.; Yuan, B.; Mauldin III, R.L.; Cantrel, C.A.; Guenther, A.B.; Patton, E.G.; Weinheimer, A.J.; Knote, C.; Orlando, J.; et al. Chemistry-turbulence interactions and mesoscale variability influence the cleansing efficiency of the atmosphere. Geophys. Res. Lett. 2015, 42, 10894–10903. [Google Scholar] [CrossRef]
Parameter | Scheme, (Main Features) | Reference |
---|---|---|
Cumulus parameterization | Grell 3D scheme, improved version of Grell-Devenyi scheme | (Grell and Devenyi, 2002) [27] |
Surface layer | Revised MM5 Monin-Obukhov scheme | (Jiménez et al., 2012), [28] |
Boundary layer scheme | Yonsei University non-local-K scheme | (Hong et al., 2006), [29] |
Land-surface model | unified Noah land-surface scheme with soil temperature and moisture in 4-layers | (Chen et al., 1996), |
(Koren et al., 1999), [30,31] | ||
Shortwave radiation | Goddard (4-stream discrete-ordinate scattering, 8 bands) with ozone from climatology | (Chou, 1990), |
(Chou, 1992), | ||
(Chou and Suarez, 1994), [32,33,34] | ||
Longwave radiation | RRTM (Long-wave correlated-k 16 bands with cloud optical depth) | (Mlawer et al., 1997), [35] |
Microphysics | Lin (Purdue cloud model, Mixed-phase with graupel) | (Lin et al., 1983), [36] |
Advection scheme | RK3 scheme | (Wicker and Skamarock, 2002), |
(Skamarock, 2006), [37,38] | ||
Subgrid horizontal mixing | horizontal deformation | (Smagorinsky, 1963), [39] |
Compound | Reaction Lifetimes Day/Night, Hours | Total Compound Lifetime, Hours | |||
---|---|---|---|---|---|
τOH | τNO3 | τO3 | Day | Night | |
Isoprene | 1.38/– | –/1.63 | 12.40/21.70 | 1.24 | 1.52 |
Methyl vinyl ketone | 7.39/– | –/1851.85 | 34.81/60.92 | 6.09 | 58.98 |
Methacrolein | 4.15/– | –/336.70 | 139.24/243.66 | 4.03 | 141.36 |
Object | Process | Stage | Volume/Size |
---|---|---|---|
Chemistry Science 1 | homogenic chemistry – heterogenic chemistry | 2 | common statement |
Box Chemistry Models | homogenic chemistry (good mixing) – heterogenic chemistry (none-mixing) | 2 | particular case; flask or camera; ~litres |
Atmospheric mixing | good mixing (noon) – half mixing (morning/evening) – weakly mixing (nocturnal) | 3 | In the daytime – convective cell; PBL ~ 4 km. At night – height of nocturnal temperature inversion; ~200–600 m. |
modern CTM models | gas chemistry (good mixing, homogenic chemistry) – aerosol chemistry (none-mixing, heterogenic chemistry) | 2 | domain cell: gas ~10 km in lat–lon scale; aerosol – μm scale |
Real Atmospheric Chemistry 2 | good mixing, (homogenic gas chemistry) – half mixing, (quasi-heterogenic gas chemistry) – non-mixing, (heterogenic gas chemistry and heterogenic aerosol chemistry) | 3 | Stockwell limits in CTM modelling |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Safronov, A.N.; Shtabkin, Y.A.; Berezina, E.V.; Skorokhod, A.I.; Rakitin, V.S.; Belikov, I.B.; Elansky, N.F. Isoprene, Methyl Vinyl Ketone and Methacrolein from TROICA-12 Measurements and WRF-CHEM and GEOS-CHEM Simulations in the Far East Region. Atmosphere 2019, 10, 152. https://doi.org/10.3390/atmos10030152
Safronov AN, Shtabkin YA, Berezina EV, Skorokhod AI, Rakitin VS, Belikov IB, Elansky NF. Isoprene, Methyl Vinyl Ketone and Methacrolein from TROICA-12 Measurements and WRF-CHEM and GEOS-CHEM Simulations in the Far East Region. Atmosphere. 2019; 10(3):152. https://doi.org/10.3390/atmos10030152
Chicago/Turabian StyleSafronov, Alexander N., Yury A. Shtabkin, Elena V. Berezina, Andrey I. Skorokhod, Vadim S. Rakitin, Igor B. Belikov, and Nikolai F. Elansky. 2019. "Isoprene, Methyl Vinyl Ketone and Methacrolein from TROICA-12 Measurements and WRF-CHEM and GEOS-CHEM Simulations in the Far East Region" Atmosphere 10, no. 3: 152. https://doi.org/10.3390/atmos10030152
APA StyleSafronov, A. N., Shtabkin, Y. A., Berezina, E. V., Skorokhod, A. I., Rakitin, V. S., Belikov, I. B., & Elansky, N. F. (2019). Isoprene, Methyl Vinyl Ketone and Methacrolein from TROICA-12 Measurements and WRF-CHEM and GEOS-CHEM Simulations in the Far East Region. Atmosphere, 10(3), 152. https://doi.org/10.3390/atmos10030152