A Comparison of North American Surface Temperature and Temperature Extreme Anomalies in Association with Various Atmospheric Teleconnection Patterns
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data and Teleconnection Indices
2.2. Analysis Methods
3. Results
3.1. Variances of North American Surface Temperature and Temperature Extremes
3.2. Winter Temperature Anomalies in Association with the Circulation Patterns
3.2.1. NH Circulation Patterns
3.2.2. Surface Air Temperature
3.2.3. Temperature Extremes
3.3. Summer Temperature Anomalies in Association with the Circulation Patterns
3.3.1. NH Circulation Patterns
3.3.2. Surface Air Temperature
3.3.3. Temperature Extremes
4. Conclusions and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wallace, J.M.; Blackmon, M.L. Observations of low-frequency atmospheric variability. In Large-Scale Dynamical Processes in the Atmosphere; Hoskins, B.J., Pearce, R.P., Eds.; Academic Press: New York, NY, USA, 1983; pp. 55–94. [Google Scholar]
- Van Loon, H.; Rogers, J.C. The Seesaw in Winter Temperatures between Greenland and Northern Europe. Part I: General Description. Mon. Weather Rev. 1978, 106, 296–310. [Google Scholar] [CrossRef] [Green Version]
- Wallace, J.M.; Gutzler, D.S. Teleconnections in the geopotential height field during the Northern Hemisphere Winter. Mon. Weather Rev. 1981, 109, 784–812. [Google Scholar] [CrossRef]
- Mo, K.C.; Livezey, R.E. Tropical-extratropical geopotential height teleconnections during the Northern Hemisphere winter. Mon. Weather Rev. 1986, 114, 2488–2515. [Google Scholar] [CrossRef]
- Barnston, A.G.; Livezey, R.E. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Weather Rev. 1987, 115, 1083–1126. [Google Scholar] [CrossRef]
- Teng, H.; Branstator, G. A zonal wavenumber 3 pattern of Northern Hemisphere wintertime planetary wave variability at high latitudes. J. Clim. 2012, 25, 6756–6769. [Google Scholar] [CrossRef]
- Branstator, G. Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J. Clim. 2002, 15, 1893–1910. [Google Scholar] [CrossRef]
- Yu, B.; Lin, H.; Wu, Z.; Merryfield, W. Relationship between North American winter temperature and large-scale atmospheric circulation anomalies and its decadal variation. Environ. Res. Lett. 2016, 11, 074001. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Li, T. A new paradigm for continental U.S. summer rainfall variability: Asia-North America teleconnection. J. Clim. 2016, 29, 7313–7327. [Google Scholar] [CrossRef]
- Simmons, A.J.; Wallace, J.M.; Branstator, G. Barotropic Wave Propagation and Instability, and Atmospheric Teleconnection Patterns. J. Atmos. Sci. 1983, 40, 1363–1392. [Google Scholar] [CrossRef] [Green Version]
- Horel, J.D.; Wallace, J.M. Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Weather Rev. 1981, 109, 813–829. [Google Scholar] [CrossRef]
- Hoskins, B.J.; Karoly, D.J. The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci. 1981, 38, 1179–1196. [Google Scholar] [CrossRef]
- Lau, N.-C. Variability of the observed midlatitude storm tracks in relation to the low-frequency changes in the circulation pattern. J. Atmos. Sci. 1988, 45, 2718–2743. [Google Scholar] [CrossRef]
- Branstator, G. Organization of storm track anomalies by recurring low-frequency circulation anomalies. J. Atmos. Sci. 1995, 52, 207–226. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Branstator, G.W.; Karoly, D.; Kumar, A.; Lau, N.C.; Ropelewski, C. Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res. 1998, 103, 14291–14324. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Alexander, M. Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev. Geophys. 2007, 45, RG2005. [Google Scholar] [CrossRef]
- Black, J.; Johnson, N.C.; Baxter, S.; Feldstein, S.B.; Harnos, D.S.; L’Heureux, M.L. The Predictors and Forecast Skill of Northern Hemisphere Teleconnection Patterns for Lead Times of 3–4 Weeks. Mon. Weather Rev. 2017, 145, 2855–2877. [Google Scholar] [CrossRef]
- Stan, C.; Straus, D.M.; Frederiksen, J.S.; Lin, H.; Maloney, E.D.; Schumacher, C. Review of tropical-extratropical teleconnections on intraseasonal time scales. Rev. Geophys. 2017, 55, 902–937. [Google Scholar] [CrossRef]
- Kistler, R.; Kalnay, E.; Collins, W.; Saha, S.; White, G.; Woollen, J.; Chelliah, M.; Ebisuzaki, W.; Kanamitsu, M.; Kousky, V.; et al. The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bull. Am. Meteorol. Soc. 2001, 82, 247–268. [Google Scholar] [CrossRef]
- Donat, M.G.; Alexander, L.V.; Yang, H.; Durre, I.; Vose, R.; Dunn, R.J.H.; Willett, K.M.; Aguilar, E.; Brunet, M.; Caesar, J.; et al. Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. J. Geophys. Res. Atmos. 2013, 118, 2098–2118. [Google Scholar] [CrossRef] [Green Version]
- Bengtsson, L.; Hagemann, S.; Hodges, K.I. Can climate trends be calculated from reanalysis data? J. Geophys. Res. 2004, 109, D11111. [Google Scholar] [CrossRef]
- Hurrell, J.W.; Kushnir, Y.; Visbeck, M.; Ottersen, G. An Overview of the North Atlantic Oscillation. In The North Atlantic Oscillation: Climate Significance and Environmental Impact; Geophysical Monograph Series; American Geophysical Union: Washington, DC, USA, 2003; Volume 134, pp. 1–35. [Google Scholar]
- Thompson, D.W.J.; Wallace, J.M. The Arctic Oscillation signature in wintertime geopotential height and temperature fields. Geophys. Res. Lett. 1998, 25, 1297–1300. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Hurrell, J.W. Decadal atmosphere-ocean variations in the Pacific. Clim. Dyn. 1994, 9, 303–319. [Google Scholar] [CrossRef]
- Ding, Q.H.; Wang, B. Circumglobal teleconnection in the Northern Hemisphere summer. J. Clim. 2005, 18, 3483–3505. [Google Scholar] [CrossRef]
- Yu, B.; Lin, H.; Wu, Z.; Merryfield, W. The Asian-Bering-North American teleconnection: Seasonality, maintenance, and climate impact on North America. Clim. Dyn. 2017, 50, 2023–2028. [Google Scholar] [CrossRef]
- Bretherton, C.S.; Widmann, M.; Dymnikov, V.P.; Wallace, J.M.; Bladé, I. The effective number of spatial degrees of freedom of a time-varying field. J. Clim. 1999, 12, 1990–2009. [Google Scholar] [CrossRef]
- Livezey, R.E.; Chen, W.Y. Statistical field significance and its determination by Monte Carlo techniques. Mon. Weather Rev. 1983, 111, 46–59. [Google Scholar] [CrossRef]
- Zwiers, F.W.; Wang, X.L.; Sheng, J. Effects of specifying bottom boundary conditions in an ensemble of atmospheric GCM simulations. J. Geophys. Res. 2000, 105, 7295–7315. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.; Zwiers, F. The impact of combined ENSO and PDO on the PNA climate: A 1000-year climate modeling study. Clim. Dyn. 2007, 29, 837–851. [Google Scholar] [CrossRef]
- Higgins, R.W.; Leetmaa, A.; Kousky, V.E. Relationships between Climate Variability and Winter Temperature Extremes in the United States. J. Clim. 2002, 15, 1555–1572. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.; Shabbar, A.; Zwiers, F. The enhanced PNA-like climate response to Pacific interannual and decadal variability. J. Clim. 2007, 20, 5285–5300. [Google Scholar] [CrossRef]
- Kanno, Y.; Walsh, J.E.; Iwasaki, T. Interannual variability of the North American cold air stream and associated synoptic circulations. J. Clim. 2017, 30, 9575–9590. [Google Scholar] [CrossRef]
- Hurrell, J.W. Influence of Variations in Extratropical Wintertime Teleconnections on Northern Hemisphere Temperatures. Geophys. Res. Lett. 1996, 23, 665–668. [Google Scholar] [CrossRef]
- Thompson, D.W.J.; Wallace, J.M. Regional climate impacts of the Northern Hemisphere annular mode. Science 2001, 293, 85–89. [Google Scholar] [CrossRef]
- Marshall, J.; Kushnir, Y.; Battisti, D.; Chang, P.; Czaja, A.; Dickson, R.; Hurrell, J.; McCartney, M.; Saravanan, R.; Visbeck, M. North Atlantic climate variability: Phenomena, impacts and mechanisms. Int. J. Climatol. 2001, 21, 1863–1898. [Google Scholar] [CrossRef]
- Yu, B.; Lin, H. Coherent changes of wintertime surface air temperatures over North Asia and North America. Sci. Rep. 2018, 8, 5384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnston, A.G.; Livezey, R.E.; Halpert, S. Modulation of Southern Oscillation–Northern Hemisphere mid-winter climate relationships by the QBO. J. Clim. 1991, 4, 203–217. [Google Scholar] [CrossRef]
- Uppala, S.M.; Kållberg, P.W.; Simmons, A.J.; Andrae, U.; Bechtold, V.D.C.; Fiorino, M.; Gibson, J.K.; Haseler, J.; Hernandez, A.; Kelly, G.A.; et al. The ERA-40 re-analysis. Q. J. R. Meteorol. Soc. 2005, 131, 2961–3012. [Google Scholar] [CrossRef] [Green Version]
- Compo, G.P.; Whitaker, J.S.; Sardeshmukh, P.D.; Matsui, N.; Allan, R.J.; Yin, X.; Gleason, B.E.; Vose, R.S.; Rutledge, G.; Bessemoulin, P.; et al. The Twentieth Century Reanalysis project. Q. J. R. Meteorol. Soc. 2011, 137, 1–28. [Google Scholar] [CrossRef]
- Chevan, A.; Sutherland, M. Hierarchical Partitioning. Am. Stat. 1991, 45, 90–96. [Google Scholar]
- Park, T.W.; Ho, C.H.; Yang, S. Relationship between the Arctic oscillation and cold surges over East Asia. J. Clim. 2011, 24, 68–83. [Google Scholar] [CrossRef]
- Zhao, P.; Zhu, Y.N.; Zhang, R.H. An Asian-Pacific teleconnection in summer tropospheric temperature and associated Asian climate variability. Clim. Dyn. 2007, 29, 293–303. [Google Scholar] [CrossRef]
- Rust, H.W.; Richling, A.; Bissolli, P.; Ulbrich, U. Linking Teleconnection Patterns to European Temperature-A Multiple Linear Regression Model. Meteorol. Z. 2015, 24, 411–423. [Google Scholar] [CrossRef]
- Ptak, M.; Tomczyk, A.M.; Wrzesiński, D. Effect of teleconnection on water temperature in Polish lakes. Atmosphere 2018, 9, 66. [Google Scholar] [CrossRef]
- Ionita, M. The Impact of the East Atlantic/Western Russia Pattern on the Hydroclimatology of Europe from Mid-Winter to Late Spring. Climate 2014, 2, 296–309. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Hoerling, M.P.; Perlwitz, J.; Sun, D.Z.; Murray, D. Physics of U.S. Surface Temperature Response to ENSO. J. Clim. 2011, 24, 4874–4887. [Google Scholar] [CrossRef]
- Yu, B.; Lin, H. Modification of the winter Pacific-North American patter related North American climate anomalies by the Asian-Bering-North American teleconnection. Clim. Dyn. 2018. [Google Scholar] [CrossRef]
PNA | TNH | NP | NAO | AO | WP | CGT | ABNA | |
---|---|---|---|---|---|---|---|---|
PNA | __ | −0.47 | −0.88 | −0.04 | −0.34 | 0.08 | −0.47 | 0.0 |
TNH | n/a | __ | 0.64 | 0.22 | 0.31 | 0.13 | 0.30 | −0.28 |
NP | −0.45 | n/a | __ | 0.19 | 0.48 | 0.20 | 0.51 | 0.15 |
NAO | −0.03 | n/a | −0.02 | __ | 0.78 | −0.06 | −0.04 | 0.18 |
AO | −0.34 | n/a | 0.51 | 0.72 | __ | 0.12 | 0.42 | 0.48 |
WP | −0.16 | n/a | 0.10 | 0.12 | 0.07 | __ | 0.36 | 0.42 |
CGT | −0.38 | n/a | 0.49 | 0.07 | 0.48 | 0.06 | __ | 0.37 |
ABNA | 0.0 | n/a | 0.32 | −0.03 | 0.35 | −0.45 | 0.20 | __ |
T2m | TX90p | TN90p | TX10p | TN10p | |
---|---|---|---|---|---|
PNA | 41.4 (7.9) | 43.2 (11.6) | 55.8 (8.9) | 61.0 (13.5) | 62.4 (23.4) |
TNH | 32.6 (n/a) | 8.9 (n/a) | 34.3 (n/a) | 55.3 (n/a) | 69.7 (n/a) |
NP | 35.9 (30.7) | 29.4 (38.9) | 52.1 (39.9) | 51.5 (28.4) | 55.4 (29.7) |
NAO | 27.5 (22.7) | 25.1 (15.5) | 21.8 (22.4) | 16.8 (7.9) | 12.9 (7.3) |
AO | 28.8 (26.3) | 39.3 (19.5) | 38.9 (20.5) | 24.4 (26.1) | 20.5 (26.4) |
WP | 9.2 (23.3) | 11.9 (34.9) | 11.9 (31.7) | 4.0 (33.7) | 2.6 (30.7) |
CGT | 29.7 (20.8) | 39.3 (21.1) | 44.2 (23.1) | 23.1 (45.2) | 31.3 (40.9) |
ABNA | 47.3 (38.9) | 36.3 (24.8) | 32.0 (30.4) | 54.5 (32.0) | 50.8 (37.3) |
T2m | TX90p | TN90p | TX10p | TN10p | |
---|---|---|---|---|---|
PNA | 15.0 (3.8) | 10.5 (5.4) | 17.1 (4.3) | 21.9 (4.7) | 21.1 (6.7) |
TNH | 9.5 (n/a) | 6.1 (n/a) | 11.2 (n/a) | 15.4 (n/a) | 18.5 (n/a) |
NP | 10.1 (8.0) | 8.2 (11.9) | 13.2 (16.1) | 14.4 (8.3) | 15.9 (10.1) |
NAO | 9.0 (6.9) | 7.4 (7.4) | 7.5 (9.0) | 6.3 (4.3) | 5.9 (4.0) |
AO | 9.4 (6.7) | 9.3 (6.0) | 9.9 (7.0) | 6.6 (8.4) | 7.1 (9.0) |
WP | 3.6 (7.3) | 5.0 (8.8) | 5.3 (8.7) | 3.9 (12.1) | 3.9 (11.0) |
CGT | 7.2 (6.5) | 11.3 (4.7) | 11.1 (7.2) | 6.3 (12.5) | 7.4 (11.7) |
ABNA | 17.8 (10.1) | 10.3 (6.8) | 9.4 (8.9) | 17.5 (9.1) | 16.0 (13.6) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, B.; Lin, H.; Soulard, N. A Comparison of North American Surface Temperature and Temperature Extreme Anomalies in Association with Various Atmospheric Teleconnection Patterns. Atmosphere 2019, 10, 172. https://doi.org/10.3390/atmos10040172
Yu B, Lin H, Soulard N. A Comparison of North American Surface Temperature and Temperature Extreme Anomalies in Association with Various Atmospheric Teleconnection Patterns. Atmosphere. 2019; 10(4):172. https://doi.org/10.3390/atmos10040172
Chicago/Turabian StyleYu, Bin, Hai Lin, and Nicholas Soulard. 2019. "A Comparison of North American Surface Temperature and Temperature Extreme Anomalies in Association with Various Atmospheric Teleconnection Patterns" Atmosphere 10, no. 4: 172. https://doi.org/10.3390/atmos10040172
APA StyleYu, B., Lin, H., & Soulard, N. (2019). A Comparison of North American Surface Temperature and Temperature Extreme Anomalies in Association with Various Atmospheric Teleconnection Patterns. Atmosphere, 10(4), 172. https://doi.org/10.3390/atmos10040172