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Abstract: Clouds are critical in mechanisms that impact climate sensitivity studies, air quality and
solar energy forecasts, and a host of aerodrome flight and safety operations. However, cloud forecast
accuracies are seldom described in performance statistics provided with most numerical weather
prediction (NWP) and climate models. A possible explanation for this apparent omission involves
the difficulty in developing cloud ground truth databases for the verification of large-scale numerical
simulations. Therefore, the process of developing highly accurate cloud cover fraction truth data
from manually generated cloud/no-cloud analyses of multispectral satellite imagery is the focus of
this article. The procedures exploit the phenomenology to maximize cloud signatures in a variety of
remotely sensed satellite spectral bands in order to create accurate binary cloud/no-cloud analyses.
These manual analyses become cloud cover fraction truth after being mapped to the grids of the
target datasets. The process is demonstrated by examining all clouds in a NAM dataset along with a
24 h WRF cloud forecast field generated from them. Quantitative comparisons with the cloud truth
data for the case study show that clouds in the NAM data are under-specified while the WRF model
greatly over-predicts them. It is concluded that highly accurate cloud cover truth data are valuable for
assessing cloud model input and output datasets and their creation requires the collection of satellite
imagery in a minimum set of spectral bands. It is advocated that these remote sensing requirements
be considered for inclusion into the designs of future environmental satellite systems.
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1. Introduction

The accuracies of cloud model predictions play critical roles in many real-time meteorological
applications including air quality [1] and solar energy management [2] as well as a host of military and
civilian aerodrome operations [3]. However, the verification of cloud model forecast performance can
be challenging [4] and is seldom addressed by NWP (numerical weather prediction) and climate
modelers. Thus, the WMO (World Meteorological Organization) has established methods for
evaluating clouds and related parameters [5].

In an earlier publication, procedures that follow these WMO guidelines were presented to exploit
remotely sensed satellite imagery and resultant cloud data products for quantitatively assessing
water clouds in datasets commonly used in numerical weather prediction (NWP) and climate
modeling [6]. That study focused on lower-level water clouds because they play a critical role in
cloud feedbacks, which have been identified as the leading source of spread in estimates of climate
sensitivity [7,8]. However, these procedures are equally valid for all cloud types as will be shown
below. The procedures rely upon manually generated cloud/no-cloud (MGCNC) masks created from
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satellite imagery as a basis of establishing cloud cover fraction (CCf) truth or CCftruth data. In the
application demonstrated, CCftruth was derived from multispectral imagery collected by the VIIRS
(Visible Infrared Imager Radiometry Suite) sensor carried on the NASA/NOAA (National Aeronautics
and Space Administration/National Oceanic and Atmospheric Administration) Suomi NPP (National
Polar-orbiting Partnership) or S-NPP mission. These procedures have been applied to both re-analysis
fields created from the North American Mesoscale (NAM) Forecast System and simulations generated
with them using the WRF (Weather Research and Forecasting) model. In essence, VIIRS imagery
and cloud data products derived from them are temporally and spatially collocated within NAM
or WRF gridded fields to identify grid cells for comparison against the CCftruth data. VIIRS cloud
phase products, quality controlled using color-composites of VIIRS imagery, can be to ensure only
lower-level water clouds are considered in the match-up data sets. Comparisons between NAM CCf or
CCfNAM and the CCftruth data, created from the VIIRS imagery, revealed a bias toward under-clouding
in the NAM re-analysis data [6]. However, the bias shifts strongly toward overclouding in the WRF
forecasts based upon these NAM data [9]. While the NAM cloud analysis data tended toward binary,
i.e., gridded fields were mostly all cloud-free or completely cloudy, the WRF cloud forecast fields
became even more highly binary even across large geographic areas which were observed to contain
fields of small-scale stratocumulus in the satellite imagery. Furthermore, WRF was found in this case
study to over-predict cloud cover fraction for lower-level water as well as higher-level clouds and
frequently forecasts multiple cloud layers (at high and low altitudes) when only a single cloud layer
was present. These results for lower-level water clouds are updated in the article to include all clouds.

The question might be logically asked, “How can accurate cloud cover truth measurements
be created that support quantitative analyses of cloud model gridded forecast fields?” Obviously,
the process to create such CCftruth data begins with the expert interpretation of clouds in temporal
and spatial collocated multispectral satellite imagery. Then, the analyst performs a cloud/no-cloud
analysis using one or more of the multispectral images and combines them into a manually generated
cloud/no-cloud (MGCNC) mask, which is mapped to the model gridded cloud fields to form the
CCftruth product, as discussed later in the article. First, in Section 2, the theoretical basis is presented
for understanding qualitatively the cloud signatures in multispectral imagery, which is essential
for creating accurate MGCNC analyses. Since the accuracy of the MGCNC masks depends upon
the strength of the contrast between water and/or ice clouds and their surrounding backgrounds,
a discussion of the spectral characteristics of the bands used to discriminate between these clouds and
various background conditions is presented in Section 3. First, however, an overview is provided of
the software used to create the MGCNC analyses along with results from earlier studies that validate
the utility of these manual cloud analyses. Section 4 provides a discussion of the procedures used
to map the MGCNC analyses into the projection of the gridded data to be evaluated and they are
demonstrated in a new set of analysis for NAM and WRF cloud datasets. Conclusions are presented in
Section 5.

The topics and information presented herein are derived from the experience and knowledge
gained by the authors while generating MGCNC analyses that initially were used in the VIIRS sensor
design process but ultimately became essential to the VIIRS cloud mask (VCM) calibration/validation
project under the NASA/NOAA S-NPP program. (The VIIRS sensor is now carried on the operational
U.S. polar-orbiting environmental satellite (POES) system.) It is the intent of the authors to offer our
software and technical assistance to the larger, global cloud research community, with the hope that
the community will facilitate the construction of large-scale, verification databases of cloud cover truth
measurements, similar to those discussed in this presentation, and ultimately that those cloud cover
truth databases will be made available to interested users and developers of NWP and climate models.

2. Theoretical Basis for Imagery Interpretation

A qualitative understanding of cloud signatures in multispectral imagery is essential for creating
accurate MGCNC analyses; therefore, an overview is provided of key parameters influencing the
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signatures observed in the satellite imagery. The sensitivity of radiometers depends on the ratio of their
internally generated signal to that produced by incoming radiation, i.e., signal-to-noise ratio or SNR.
The optimal sensor design maximizes SNR in a cost-effective manner, e.g., increasing the size of the
aperture, the field of view, and/or the bandwidth or improving detector performance [10]. The SNR
specifications for the VIIRS reflective bands are found in Table 4.13 of Hutchison and Cracknell [11].
However, for simplicity, this discussion focuses on top-of-atmosphere (TOA) radiation independent
of sensor characteristics since MGCNC analyses can be performed on imagery collected by any
satellite sensor. Thus, consider the ability to manually identify a cloud in any given spectral band of
imagery to be based upon the contrast between the cloud and the surrounding cloud-free background.
This contrast is expressed by Equation (1) [11], assuming each pixel is either completely cloudy or
completely cloud-free and noting that, while environmental satellite sensor designs use wavelength
rather than wavenumber, this presentation stays with the latter to conform with Liou [12].

C = Iν(0)cloud /Iν(0)background (1)

Depending upon the wavenumber (ν) of the radiation viewed in a given band, the TOA radiance
at pressure equal zero, i.e., Iν(0), may be composed of reflected solar radiation, emitted thermal
radiation, or both solar and thermal radiation when observations are made in the 3–5 µm wavelength
interval under daytime conditions.

Again, for simplicity, consider the case of thermal (infrared) radiation as a narrow (monochromatic)
beam of energy emitted from a surface through a cloud-free atmosphere to space. The monochromatic,
upwelling infrared energy arriving from a cloud-free surface at the sensor is given by Equation (2) [12],
where the first term on right hand side (RHS) is a direct transmission from the surface to the TOA,
the second term is the upwelling atmospheric TOA radiation, and the third term is the downwelling
atmospheric radiation reflect by the surface to the TOA:

Iv(0) = εv Bv[Ts]Tv(Ps) +
∫ 0

Ps
Bv[T(p)]

∂Tv(p)
∂p

dp + (1− εv)
∫ Ps

0
Bv[T(p)]

∂Tv(p)
∂p

dp (2)

where ν = wavenumber of emission;

Bv[T(p)] = Planck function at wavenumber (ν) for temperature (T) in K;
εv = emissivity of surface at wavenumber (ν);
Tv(Ps) = atmospheric transmittance between pressure level (ps) and space;
Iv(0) = monochromatic radiance arriving at satellite;
Ps = surface pressure;
Ts s = surface temperature.

For imaging sensors, as opposed to sounders, the difference in atmospheric transmittance
between adjoining pressure levels (p) is very small which makes the atmosphere, under cloud-free
conditions, a secondary source of energy arriving at the sensor, as described in the integral terms in
Equation (2). Thus, for the purpose of creating a manual cloud analysis, Equation (2) may be closely
approximated by Equation (3), i.e., image quality is not impacted by ignoring energy contributions
from atmospheric emissions.

Iv(0)= εv Bv[Ts]Tv(Ps) (3)

Equation (3) [11] states that the vast majority of energy arriving at the satellite sensor, under
cloud-free conditions, is dependent primarily upon only three primary components: the blackbody
emission from the Earth’s surface, the emissivity of the surface, and the atmospheric transmission
from the surface to the sensor. (A similar analysis would lead to another equation that represents
the radiation arriving from the cloud top to the sensor.) The emissivity of a cloud may differ from
its cloud-free background in some bi-spectral band combinations, thus improving the cloud-ground
contrast [13,14]. However, in individual spectral bands, small temperature differences often occur
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between the cloud top and the background surface causing lower-contrast frequently between cloudy
and cloud-free pixels in nighttime imagery. The lower the contrast, the more difficult it becomes to
create a highly accurate MGCNC product from such imagery. In fact, MGCNC products can be very
difficult to create under polar-nighttime conditions where cloud and surface temperatures may be
extremely low and temperature differences are small. Therefore, again for simplicity, focus turns
toward creating MGCNC products under daytime illumination conditions where contrasts can be
larger between cloud pixels and cloud-free pixels for many background conditions.

For the case of solar radiation, the amount of TOA monochromatic energy reflected by a cloud-free
Earth-atmosphere system into the sensor aperture is more complex and given for cloud-free conditions
by Equation (4) [12]:

Iv(0; µ) = Iv(τ1; µ, ϕ)e−τ1/µ +
∫ τ1

0 Jv(τ; µ, ϕ)e−
τ
µ ∂τ

µ

Term ATerm B
(4)

where

Iv(0; µ) = monochromatic radiance arriving at satellite;
τ = optical depth of each τ′ layer, while the atmosphere has a thickness of τ1;
Term A = surface energy contribution attenuated to space;
Term B = internal atmospheric contributions attenuated to space, sometimes referred to

as path radiance [15];
µ = cosine of the angle between radiation stream and the local zenith angle;
φ = azimuth angle.

The complexity of this calculation lies in the source function term, J(τ; µ, φ), which is described
for solar radiation as [12]

Jv(τ; µ, ϕ) = ω
4π

∫ 2π
0

∫ 1
−1 Iv(τ; µ′, ϕ′)Pv(µ,ϕ; µ′, ϕ′)

Term C

+ ω
4π Pv(µ,ϕ; µ′0, ϕ′0)πF0e−

τ
µ0

Term D

(5)

where

Term C = multiple scattering of diffuse (scattered) energy;
Term D = single scattering of direct solar irradiance, F0;
ω = single scattering albedo;
P(µ,φ;µ’,φ’) = phase function;
F0 = solar irradiance;
µ0 = cosine of solar zenith angle;
φ0 = solar azimuth angle.

Again, a similar but more complex equation can be written to describe the amount of
monochromatic TOA radiation arriving at the sensor under cloudy conditions. However, it should now
be evident from the cloud-free condition that the contrast between a cloudy pixel and its cloud-free
background at any wavelength across the solar spectrum depends upon differences in surface and cloud
particle reflectance characteristics, the solar illumination present in the bandpass, the solar-Earth-sensor
scattering geometry characteristics, and the atmospheric composition and scattering characteristic, e.g.,
particulate matter concentration. Thus, the obvious approach to maximize cloud versus cloud-free
background contrast is to focus on spectral regions where the surface reflectance is low compared to
the reflectance of clouds, as suggestion by Term A of Equation (4), and choose wavelengths, when
possible, to minimize the path radiance effects described in Term B.
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3. Creating Manually Generated Cloud Truth Data

It is possible to create highly accurate cloud truth data from the manually interpretation of satellite
imagery [16]. Such analyses can be created by making a binary cloud/no-cloud (CNC) mask of a
single spectral band, in simplistic scenes such as water clouds over ocean backgrounds, or from
multiple bands of imagery when ice and water clouds exist over heterogeneous background conditions.
The software used to make these manual analyses and the preferred spectral bands needed to construct
them over different cloud and background conditions are discussed in the sections below. However, a
correct understanding of the scene contents is the basis for creating an accurate truth analysis, and
this understanding is typically facilitated through the use of false color composite images [17]. These
color images are created by placing up to three spectral bands into a single RGB image. Bands are
selected to exploit differences in cloud and surface reflectance characteristics as well as atmospheric
transmittance in the bands, as will become more evident in the sub-sections that follow. False color
composites provide a robust approach to accurately interpret all the features in most scenes, and the
use of these composites, which may be composed of various band combinations, is a fundamental
step in creating an accurate MGCNC analysis. Many examples of these composites with VIIRS-type
imagery are shown by Hutchison and Cracknell [11].

3.1. Cloud Truth Software

Once the scene contents have been identified through the use of color composites, the binary CNC
analysis is created in each important spectral band with unique software, i.e., the cloud truth software,
which operates only on gray-scaled imagery. Important bands are those in which cloud signatures are
maximized for each background type or viewing condition. The software does not support the use of
color imagery. It does allow the analyst to segment the image and identify clouds in each sub-region of
the image by making all pixels cloudy that have values that exceed a user-defined threshold. The cloud
truth software then allows the analyst to combine the CNC analysis from each spectral band used in
the analysis to form the final manual CNC analysis or MGCNC for the scene. This final analysis has
also been called a merged CNC (MCNC) analysis.

The cloud truth software was designed over 25 years ago and written in the C-programming
language. It was implemented in X-windows using the Motif graphics package on a DEC (Digital
Equipment Corporation) Alpha workstation running the OSF (open software foundation) operating
system. A complete description of the initial version of the software is available through the United
States Patent Office [18]. More recently, the software has been migrated to Linux and runs under the
Fedora 7, 8, and 9 operating systems on computers that have graphics cards that support the Motif
versions used by these operating systems. The software is being evaluated for migration to more
current versions of Linux and Motif and/or other graphics packages. It is hoped that this final package
could be made available to the user community along with training on its use. An example of the
application of this software, used to analyze a typical VIIRS imagery dataset, follows.

Figure 1a depicts clouds and surface features in a false color composite of a VIIRS moderate
resolution granule centered on Azerbaijan and collected on 31 March 2013 at 0939 UTC. This moderate
resolution VIIRS granule contains 3200 pixels in the cross-track direction and 768 pixels along the
in-track direction of the satellites orbital path [11]. Both numbers are doubled for VIIRS imagery
resolution data [11]. The color image, which is used only to help identify the scene contents, was
created with Adobe Photoshop by assigning the VIIRS M1 (centered at 412 nm) band to red, the M10
(1610 nm) band to green, and the M16 (12,013 nm) band to blue in a red–green–blue (RGB) image.
This particular RGB configuration was chosen to show snow/ice as red because the energy contribution
from snow/ice is strong in the M1 band compare to the M10 and M16 bands. Densely vegetated
surfaces appear dark green, since the strongest energy contribution comes from the M10 band while
significant energy also comes from the M1 band. Sparsely vegetated (e.g., sand) surfaces appear light
green because the strongest contribution is from the M10 while the M1 band contributes very little
energy. Water clouds are yellow since they are highly reflective in the M1 and M10 bands but warm in
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the M16 band, while ice clouds have a purplish hue since the maximum energy contributions come
from the M1 and M16 bands while the M10 band contributes much less energy. Since water has a low
reflectance in both bands and is relatively warm, the Black Sea appears dark blue in the upper left
while the Caspian Sea appears similarly in the center-right part of the image. The black horizontal
lines on the left and right third of the scene do not represent missing data: they result from bow-tie
deletion and the oversampling scheme used to ensure a VIIRS pixel growth of no more than 2:1 (e.g.,
750–1500 m) in the cross-track direction [11]. The Garabogaz Aylagy of Turkmenistan is a pronounced
feature along the eastern coastline of the Caspian Sea. A close inspection of the image reveals ice
within many of the smaller lakes in Kazakhstan while extensive snow-covered areas are found in
Caucasus Mountains located between the Black Sea and Caspian Sea. Cold dense ice clouds have
a blue-purplish hue in the lower-left corner while potentially mixed phase clouds appear a lighter
pink in the lower-right corner of the image. Note the ice clouds (purple) over the snow fields and
lower-level water clouds in Eastern Azerbaijan.

Figure 1b contains the MGCNC analysis that was created for this scene with the cloud truth
software. This composited analysis was based upon the segmentation of the scene into different,
near-homogeneous background conditions or regions using VIIRS imagery in the M1 (centered at
412 nm), M5 (672 nm), M9 (1378 nm), M10 (1610 nm), and M16 (12,013 nm) bands. The software
allows the analyst to isolate clouds over a given region using the spectral band that provides the
maximum contrast between the clouds and the background in order to create an accurate CNC image.
Regions with different spectral characteristics are then analyzed with other VIIRS bands. The process
is repeated until all cloudy pixels in the scene have been classified in one or more of the CNC images.
There is no limit to the number of spectral bands that can be used with the software. In this case, five
spectral bands were used to generate CNC images that were the composited into a final MGCNC
analysis shown in the figure. This image segmentation process is briefly illustrated in Section 4.3.1 of
Hutchison and Cracknell [11]. The basis for the segmentation process is discussed in the sub-sections
that follow.

Atmosphere 2019, 10, x FOR PEER REVIEW 6 of 18 

 

could be made available to the user community along with training on its use. An example of the 
application of this software, used to analyze a typical VIIRS imagery dataset, follows.  

Figure 1a depicts clouds and surface features in a false color composite of a VIIRS moderate 
resolution granule centered on Azerbaijan and collected on 31 March 2013 at 0939 UTC. This moderate 
resolution VIIRS granule contains 3200 pixels in the cross-track direction and 768 pixels along the 
in-track direction of the satellites orbital path [11]. Both numbers are doubled for VIIRS imagery 
resolution data [11]. The color image, which is used only to help identify the scene contents, was 
created with Adobe Photoshop by assigning the VIIRS M1 (centered at 412 nm) band to red, the M10 
(1610 nm) band to green, and the M16 (12013 nm) band to blue in a red–green–blue (RGB) image. This 
particular RGB configuration was chosen to show snow/ice as red because the energy contribution 
from snow/ice is strong in the M1 band compare to the M10 and M16 bands. Densely vegetated 
surfaces appear dark green, since the strongest energy contribution comes from the M10 band while 
significant energy also comes from the M1 band. Sparsely vegetated (e.g., sand) surfaces appear light 
green because the strongest contribution is from the M10 while the M1 band contributes very little 
energy. Water clouds are yellow since they are highly reflective in the M1 and M10 bands but warm in 
the M16 band, while ice clouds have a purplish hue since the maximum energy contributions come 
from the M1 and M16 bands while the M10 band contributes much less energy. Since water has a low 
reflectance in both bands and is relatively warm, the Black Sea appears dark blue in the upper left while 
the Caspian Sea appears similarly in the center-right part of the image. The black horizontal lines on the 
left and right third of the scene do not represent missing data: they result from bow-tie deletion and the 
oversampling scheme used to ensure a VIIRS pixel growth of no more than 2:1 (e.g., 750–1500 m) in the 
cross-track direction [11]. The Garabogaz Aylagy of Turkmenistan is a pronounced feature along the 
eastern coastline of the Caspian Sea. A close inspection of the image reveals ice within many of the 
smaller lakes in Kazakhstan while extensive snow-covered areas are found in Caucasus Mountains 
located between the Black Sea and Caspian Sea. Cold dense ice clouds have a blue-purplish hue in the 
lower-left corner while potentially mixed phase clouds appear a lighter pink in the lower-right corner 
of the image. Note the ice clouds (purple) over the snow fields and lower-level water clouds in Eastern 
Azerbaijan. 

Figure 1b contains the MGCNC analysis that was created for this scene with the cloud truth 
software. This composited analysis was based upon the segmentation of the scene into different, 
near-homogeneous background conditions or regions using VIIRS imagery in the M1 (centered at 412 
nm), M5 (672 nm), M9 (1378 nm), M10 (1610 nm), and M16 (12013 nm) bands. The software allows the 
analyst to isolate clouds over a given region using the spectral band that provides the maximum 
contrast between the clouds and the background in order to create an accurate CNC image. Regions 
with different spectral characteristics are then analyzed with other VIIRS bands. The process is 
repeated until all cloudy pixels in the scene have been classified in one or more of the CNC images. 
There is no limit to the number of spectral bands that can be used with the software. In this case, five 
spectral bands were used to generate CNC images that were the composited into a final MGCNC 
analysis shown in the figure. This image segmentation process is briefly illustrated in Section 4.3.1 of 
Hutchison and Cracknell [11]. The basis for the segmentation process is discussed in the sub-sections 
that follow. 

(a)  
Atmosphere 2019, 10, x FOR PEER REVIEW 7 of 18 

 

(b)  

Figure 1. VIIRS imagery collected on 31 March 2013 at 0939 UTC. Figure 1a shows a color composite 
image constructed by putting VIIRS M1 (412 nm), M10 (1610 nm), and M16 (12013 nm) bands into an 
RGB image, respectively. Water clouds are yellow, colder ice clouds are blue-purple and warmer 
(possibly mixed phase) ice clouds are pink, snow and ice surfaces are red, unfrozen water is dark blue, 
vegetated land features are dark green, and more desert regions are light green. Figure 1b is an image of 
the MGCNC data derived from the human analysis of the VIIRS imagery using the cloud truth software. 

3.2. Evaluation and Validation of MGCNC Products 

MGCNC products have been used successfully to establish and improve the performance of 
individual cloud detection tests [19], evaluate new spectral data to improve cloud detection algorithms 
[20], quantitatively assess the accuracy of operational cloud analysis and forecast models [21], and 
evaluate the accurate of clouds in datasets used in climate modeling [6]. However, only recently did the 
opportunity arise to validate these MGCNC analyses against another source of cloud truth data. That 
opportunity came during the NASA/NOAA S-NPP/JPSS VIIRS Cloud Mask (VCM) Algorithm 
Calibration Validation (Cal/Val) Project when VCM results derived from MGCNC analyses of global 
satellite imagery were compared to global cloud truth data collected by the NASA Cloud-Aerosol Lidar 
with Orthogonal Polarization (CALIOP) payload on the Cloud-Aerosol Lidar and Infrared Pathfinder 
Satellite Observation (CALIPSO) mission. The results from those analyses are summarized by 
Hutchison et al. [22] and Kopp et al. [23], and they are briefly highlighted here. 

Special mention is made of the procedures followed during the development and use of the 
MGCNC analyses to ensure the integrity of the VCM Cal/Val Project. Prior to using any MGCNC 
analysis to quantify the performance of any VCM cloud product, the MGCNC analysis was first 
created by the corresponding author and then quality controlled (QC’d) by two additional subject 
matter experts (SMEs): Dr Andrew Heidinger (NOAA) and Dr Thomas Kopp (The Aerospace 
Corporation). This QC process was facilitated by the review of a presentation that contained color 
composites of the VIIRS imagery along with gray-scale images of the spectral bands used in creating 
the manually generated cloud analysis. The presentation also contained images of the cloud/no-cloud 
data. All images were co-registered. If any SME disagreed with the MGCNC analysis, in any region of 
the scene, the MGCNC analysis was re-examined until agreement was obtained between the SMEs. 
Experience showed that only rarely did an SME request a MGCNC analysis to be re-evaluated. Once 
all three SMEs agreed upon the accuracy of the MGCNC data, it remained unchanged and was used to 
evaluate the VCM cloud products for the duration of the Cal/Val project. 

Two approaches were used to verify the VCM product performance under the Cal/Val program. 
One approach used 32 golden granules, consisting of 96 individual VIIRS granules with corresponding 
MGCNC analyses. The other approach used VIIRS matchups with CALIPSO data. Each golden 
granule consisted of 3-VIIRS granules, which is the minimum number of granules required to 
regenerate the operational results in an offline mode. Thus, there were 96x768x3200 (235,929,600) 
pixels in the MGCNC truth dataset. There were another 2,500,000 data points in the global 
CALIPSO-VIIRS matchup dataset. These match-ups were collected from the operational data stream of 
the S-NPP ground system and afforded no reprocessing capability to the VCM Cal/Val Project.  

The primary VCM product performance metrics were probability of correct typing, false alarms, 
and leakage rates, which were generated from both truth data types. Overall, the performance of the 
VCM algorithm performance was found to be consistent with each source of truth data; however, the 
similarities in VCM performance using these two sets of cloud truth datasets was somewhat 
surprising [20] since the datasets did not cover identical times and locations. For example, PCT with 

Figure 1. VIIRS imagery collected on 31 March 2013 at 0939 UTC. (a) shows a color composite image
constructed by putting VIIRS M1 (412 nm), M10 (1610 nm), and M16 (12,013 nm) bands into an RGB
image, respectively. Water clouds are yellow, colder ice clouds are blue-purple and warmer (possibly
mixed phase) ice clouds are pink, snow and ice surfaces are red, unfrozen water is dark blue, vegetated
land features are dark green, and more desert regions are light green. (b) is an image of the MGCNC
data derived from the human analysis of the VIIRS imagery using the cloud truth software.



Atmosphere 2019, 10, 177 7 of 18

3.2. Evaluation and Validation of MGCNC Products

MGCNC products have been used successfully to establish and improve the performance
of individual cloud detection tests [19], evaluate new spectral data to improve cloud detection
algorithms [20], quantitatively assess the accuracy of operational cloud analysis and forecast
models [21], and evaluate the accurate of clouds in datasets used in climate modeling [6]. However,
only recently did the opportunity arise to validate these MGCNC analyses against another source of
cloud truth data. That opportunity came during the NASA/NOAA S-NPP/JPSS VIIRS Cloud Mask
(VCM) Algorithm Calibration Validation (Cal/Val) Project when VCM results derived from MGCNC
analyses of global satellite imagery were compared to global cloud truth data collected by the NASA
Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) payload on the Cloud-Aerosol Lidar
and Infrared Pathfinder Satellite Observation (CALIPSO) mission. The results from those analyses are
summarized by Hutchison et al. [22] and Kopp et al. [23], and they are briefly highlighted here.

Special mention is made of the procedures followed during the development and use of the
MGCNC analyses to ensure the integrity of the VCM Cal/Val Project. Prior to using any MGCNC
analysis to quantify the performance of any VCM cloud product, the MGCNC analysis was first created
by the corresponding author and then quality controlled (QC’d) by two additional subject matter
experts (SMEs): Dr Andrew Heidinger (NOAA) and Dr Thomas Kopp (The Aerospace Corporation).
This QC process was facilitated by the review of a presentation that contained color composites of the
VIIRS imagery along with gray-scale images of the spectral bands used in creating the manually
generated cloud analysis. The presentation also contained images of the cloud/no-cloud data.
All images were co-registered. If any SME disagreed with the MGCNC analysis, in any region
of the scene, the MGCNC analysis was re-examined until agreement was obtained between the SMEs.
Experience showed that only rarely did an SME request a MGCNC analysis to be re-evaluated. Once
all three SMEs agreed upon the accuracy of the MGCNC data, it remained unchanged and was used to
evaluate the VCM cloud products for the duration of the Cal/Val project.

Two approaches were used to verify the VCM product performance under the Cal/Val program.
One approach used 32 golden granules, consisting of 96 individual VIIRS granules with corresponding
MGCNC analyses. The other approach used VIIRS matchups with CALIPSO data. Each golden granule
consisted of 3-VIIRS granules, which is the minimum number of granules required to regenerate the
operational results in an offline mode. Thus, there were 96 × 768 × 3200 (235,929,600) pixels in
the MGCNC truth dataset. There were another 2,500,000 data points in the global CALIPSO-VIIRS
matchup dataset. These match-ups were collected from the operational data stream of the S-NPP
ground system and afforded no reprocessing capability to the VCM Cal/Val Project.

The primary VCM product performance metrics were probability of correct typing, false alarms,
and leakage rates, which were generated from both truth data types. Overall, the performance of
the VCM algorithm performance was found to be consistent with each source of truth data; however,
the similarities in VCM performance using these two sets of cloud truth datasets was somewhat
surprising [20] since the datasets did not cover identical times and locations. For example, PCT with
the VCM algorithm during daytime conditions over ocean, land, and desert backgrounds, was 96.5%,
94.4%, and 95.7%, respectively, based upon the manually generated cloud truth data. Similar results
obtained with CALIOP-VIIRS match-up data were 95.0%, 93.9%, and 96.0%, respectively. Additional
comparisons between different conditions, e.g., nighttime and backgrounds, are available and show
similar trends between these two sources of cloud truth data [22]. These comparisons help establish
the validity of the MGCNC analyses. It was further concluded that the MGCNC and golden granules
provide unique capabilities to quantitatively establish VCM algorithm performance across the entire
3200 km VIIRS data swath and to support the off-line simulations, i.e., reprocessing of VIIRS granules
to evaluate potential solutions to VCM algorithm deficiencies prior to delivering code updates to the
S-NPP ground station. This capability to support off-line simulations is considered critical to NWP
and climate modeling activities. Finally, if such agreement is possible between two sources of cloud
truth data at the VIIRS pixel level, surely errors in these truth data should be completely negligible
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when MGCNC analyses are converted to CCftruth data to evaluate cloud products from NWP and
climate models run at much larger grid resolutions.

3.3. Phenomenology behind Feature Segmentation in Multispectral Imagery

Figure 2 provides an overview of the phenomenology exploited in the image segmentation process
in order to construct an MGCNC analysis. It contains the spectral signatures of cloud particles and
surface backgrounds in 1.0–3.0 micron range. Similar figures are available in Baker (Figures 1–4) [24]
and Hutchison and Cracknell (Figures 4.8–4.11) [11] for all VIIRS imagery (I) and radiometric (M)
bands that collect energy from the near-UV to the IR bands, i.e., the 412–12,013 nm range.

Figure 2 is color coded as shown by the scale across the bottom of the image. The reflectivities
of vegetated land (R_Veg) are shown in green, those of bare soil or sand (R_Soil) in yellow, those of
snow (R_Snow) in white, and those of water or ocean (R_Water) in dark blue. Solar irradiance (Solar
Irr) is orange, and atmospheric transmittance (T_Atm) is black. VIIRS band (i.e., M9, M10, I3) centers
and widths are shown in medium blue lines with “M” labels at the top of the figure representing
“moderate” resolution (750 m) bands as are the “I” imagery bands (i.e., I3) at 375 m resolution. Solid
turquoise lines show the absorptive part of the index of refraction for water (K_Water) droplets, while
dashed turquiose lines show that for ice particles (K_Ice).
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Figure 2. VIIRS bands and bandpasses, atmospheric transmittances, surface reflectances, and the
absorptive parts of the indices of refraction for ice/water across the 1000–3000 nm range [11].

Inspection of Figure 2 suggests that the contrast between water clouds, which are highly reflective
in most VIIRS solar bands, and snow/ice would be strongest in the M10 band, where the reflectance of
ice is nearly zero. The figure also shows that reflectances for many surfaces are in the 30–40% range
for the M9 bandpass region, including snow/ice. The relatively high reflectances of these surfaces in
the 1378 nm region were instrumental in the decision to reduce the VIIRS bandwidth in the M9 band
to 15 nm [11], compared to the 30 nm bandwidth in MODIS (https://modis.gsfc.nasa.gov/about/
specifications.php), in order to maximize the contrast between clouds and their background surfaces,
especially under dry atmospheric conditions. Thus, based upon the expected improved contrast in the
VIIRS M9 band, one should expect MGCNC analyses with VIIRS data to be more accurate than similar
analyses performed with MODIS data as will be seen later in Figure 7.

https://modis.gsfc.nasa.gov/about/specifications.php
https://modis.gsfc.nasa.gov/about/specifications.php
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3.3.1. Maximizing Cloud Contrast over Water Surfaces

The reflectance of water is small across the entire solar spectrum; therefore, the contrast between
clouds and the open ocean area is large at all these wavelengths. However, atmospheric scattering, i.e.,
path radiance, decreases as wavelength increases, so the maximum contrast occurs at wavelengths
larger than those in the VIIRS M5 (672 nm) band. The impact of path radiance on cloud contrast is
shown in Figure 3, which contains a VIIRS granule of a region of the North Atlantic Ocean at 1612 UTC
on 20 Feb 2014. The cloud features in Figure 3a, i.e., showing the M5 band, appear blurred at both
the edges of the scan and in the middle. The blurred appearance in the middle is due to sunglint
and is unavoidable, i.e., it is due to the NPP orbit and is in the imagery of all solar bands. However,
the blurring of features toward the scan edges is due to molecular scattering, which increases the
path radiance toward the edges of the 3000 km VIIRS swath. This atmospheric scatter causes cloud
versus background contrast to be reduced, thus cloud edges appear less distinct toward the edge of
the scan. On the other hand, path radiance from molecular scattering is smaller in the M10 (1610 nm)
band, seen in Figure 3b, so the cloud-background contrast remains stronger toward the edge of the
swath. The difference in contrast is especially apparent when examining features in the right third
of the image. Water cloud edges appear sharper and cloud-free areas are darker in the M10 band
compared to the M5 band. Additionally, the M7 band (centered at 865 nm) is also useful to enhance
the cloud-background contrast over ocean surfaces, especially in the presence of ice clouds since ice
cloud edges may become less distinct in the M10 band as indicated by Figure 2.
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Figure 3. VIIRS imagery collected at 1612 UTC on 20 Feb 2014 over the north Atlantic Ocean. Figure 3a 
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near the middle of the image. Figure 3b of the M10 (1610 nm) band shows sharper features and 
improved cloud to background contrast in water clouds located toward the edges of scan due to 
reduced path radiance and molecular scattering. 

Figure 3. VIIRS imagery collected at 1612 UTC on 20 Feb 2014 over the north Atlantic Ocean. (a) of the
M5 (672 nm) band shows blurred features toward the edges of scan, while sunglint blurs features near
the middle of the image. (b) of the M10 (1610 nm) band shows sharper features and improved cloud to
background contrast in water clouds located toward the edges of scan due to reduced path radiance
and molecular scattering.

3.3.2. Maximizing Cloud Contrast over Land Surfaces

While the surface reflectances of ocean surfaces are relatively constant at wavelengths across
the solar spectrum, land reflectances vary greatly by wavelength and surface type. Consequently,
several VIIRS bands are typically needed to construct accurate MGCNC analyses for ice and water
clouds found over land backgrounds. For simplicity, however, this discussion is limited to major
global surface types, i.e., densely vegetated land, coastal regions, sparsely vegetated land or bare soil
(e.g., sand), and snow/ice covered surfaces.



Atmosphere 2019, 10, 177 10 of 18

Maximizing Cloud Contrast over Vegetated Land Surfaces

The reflectance of vegetated land is low (5–10%) in wavelengths shorter than the VIIRS M5 band
(centered at 672 nm), as can be seen in Figure 4.8 of Hutchison and Cracknell [11] and Figure 1 of
Baker [24]. It then begins to increase rapidly at about 700 nm and becomes over 50% at wavelengths in
the 750–1000 nm range. The reflectance of vegetated land then drops at longer wavelengths but still
remains over 50% in the VIIRS M8 band (centered at 1240 nm), ~28% in the M9 (1378 nm) band, ~30%
in the M10 (1610 nm) band, and ~15% in the M11 (centered at 2250 nm) band. Therefore, the maximum
cloud to background contrast over much of the global land surfaces is found in the M5 band where
the surface reflectance and path radiance contributions to the total TOA radiance are minimal in the
400-700 nm range. The value of the M5 band for MGCNC analyses over vegetated land surface and
many coastal regions is demonstrated in Figure 4.

Figure 4a shows a false color composite of VIIRS imagery collected over South America on
17 January 2013 at 1714 UTC. The composite was created using the same band assignments in the RGB
as described in Figure 1a. Therefore, vegetated surfaces appear dark green, water clouds are yellow,
and thin ice clouds have a purplish hue while thicker ice clouds appear more pinkish. Ocean and
water surfaces are dark.
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Figure 4. VIIRS imagery collected on 17 January 2013 at 1714 UTC over coastal Argentina and South
America. (a) contains a false color composite from M5 (672 nm), M10 (1610 nm), and M16 (12,013 nm)
in the RGB. (b) shows maximum cloud versus background contrast in the M5 while higher land
reflectances in the M7 (865 nm) band, shown in (c), reduces the utility of this band for MGCNC analyses
over vegetated land surfaces.

Figure 4b shows the M5 band for this scene, and the absence of land and coastal features is
obvious in this image. Clouds are evident along the river edges, which have distinct boundaries in
the RGB image; however, only the absence of clouds suggests a coastline is present in the M5 image.
On the other hand, the land, river boundaries, and coastlines boundaries are pronounced in the M7
(865 nm) band shown in Figure 4c. Thus, the M5 band is ideal for MGCNC analyses of water clouds
over both vegetated land surfaces and most coastal regions.
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Maximizing Cloud Contrast over Bare Soil Land and Desert Surfaces

Sparsely vegetated surfaces may include a variety of surfaces including desert and rock (mountain)
regions. The MGCNC analysis for these desert-type surfaces typically exploits the relatively low
reflectance of these surfaces in the near UV region of the solar energy spectrum. That makes the VIIRS
M1 (412 nm) band most valuable, as seen in Figure 4.8 of Hutchison and Cracknell [11] or Figure 1
of Baker [24]. The reflectances of this surface type increase constantly from their minimum of ~5%
at 400 nm to 25% at the M5 (672 nm) wavelength to nearly 50% at the M10 (1610 nm) wavelength.
Thus, land and coastal regions in the M1 band appear similar to the features in the M5 band over
vegetated land, as illustrated in Figure 5. However, atmospheric path radiance impacts the M1 band
more severely than the M5 band; therefore, a radiance correction has been developed to reduce the
effect of molecular scattering on features in this band [15]. It is emphasized that the VIIRS sensor
design included M1 as a dual-gain band [11]. This allows M1 data to be used for cloud as well as ocean
color analyses, without experiencing saturation as is commonly seen with similar MODIS imagery.

Figure 5a shows a false color composite of VIIRS imagery collected on 5 May 2012 at 0743 UTC
over the Himalayan Mountains of Asia. Color assignments are as shown in Figures 1a and 4a; water
clouds are yellow, thinner ice clouds purple, thicker ice clouds pink, snow is red, and cloud-free land
is green. The mostly cloud-free Taklamakan Desert appears green in the center of the image. Figure 5b
contains the M1 image of the scene, while Figure 5c shows the scene in the M5 band. These images
show that the contrast between cloud features and cloud-free land surfaces is stronger in the M1 band
than in the M5 band, making the former critical in creating MGCNC analyses over bare soil and desert
land surfaces.
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Figure 5. VIIRS imagery collected 5 May 2012 at 0743 UTC over Himalayan Mountains of Asia. Figure 
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appear green (e.g., in the image center) and reflect poorly in the M1 (412 nm) band shown in Figure 5b, 

Figure 5. VIIRS imagery collected 5 May 2012 at 0743 UTC over Himalayan Mountains of Asia.
(a) shows a color assignments are the same as used in Figure 1a. Cloud-free, sparsely vegetated regions
appear green (e.g., in the image center) and reflect poorly in the M1 (412 nm) band shown in (b), when
compared to the higher reflectances seen in other VIIRS bands, e.g., the M5 (672 nm) band shown by
the lighter gray shades of the cloud-free land just to the right of the dendritic patter in (c). The lower
reflectances in the M1 band make it ideal for identifying clouds over bare or sandy soil.
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Maximizing Cloud Contrast of Snow and Ice Surfaces

There are two options to maximize the contrast between snow/ice and clouds in VIIRS imagery
and both are shown in Figure 6. One uses the conventional method of relying upon the VIIRS M10
(1610 nm) band shown in Figure 6a. However, a superior image exploits a brightness temperature
difference (BTD) image created from the VIIRS M12 (centered at 3700 nm) band minus the M13
(centered at 4050 nm) band, i.e. creating a derived M12-M13 BTD image, and is shown in Figure 6b.

Atmosphere 2019, 10, x FOR PEER REVIEW 12 of 18 

 

when compared to the higher reflectances seen in other VIIRS bands, e.g., the M5 (672 nm) band shown 
by the lighter gray shades of the cloud-free land just to the right of the dendritic patter in Figure 5c. The 
lower reflectances in the M1 band make it ideal for identifying clouds over bare or sandy soil. 

3.3.2.3. Maximizing Cloud Contrast of Snow and Ice Surfaces 
There are two options to maximize the contrast between snow/ice and clouds in VIIRS imagery 

and both are shown in Figure 6. One uses the conventional method of relying upon the VIIRS M10 
(1610 nm) band shown in Figure 6a. However, a superior image exploits a brightness temperature 
difference (BTD) image created from the VIIRS M12 (centered at 3700 nm) band minus the M13 
(centered at 4050 nm) band, i.e. creating a derived M12-M13 BTD image, and is shown in Figure 6b. 

(a)  

(b)  

Figure 6. VIIRS imagery collected 5 May 2012 at 0743 UTC over Himalayan Mountains of Asia and 
shown in Figure 5. Figure 6a shows the VIIRS M10 (1610 nm) imagery of scene while Figure 6b shows 
this same scene in a brightness temperature difference image (BTD) of the M12 (3700 nm) minus M13 
(4050 nm) or (M12-M13) VIIRS bands. Contrast between cirrus and water clouds versus land surfaces 
are more distinct in the BTD M12-M13 image than in the M10 image. 

Snow appears black in both of these figures. In addition, the contrast between water cloud features 
surrounding the snow, shown by the dendritic pattern of Figure 5a, is strong in both images. However, 
the contrast between snow/ice surfaces and ice clouds is weak in the M10 band but much stronger in 
the BTD M12-M13 image as seen through the inspection of the left half of the scene. (Recall that ice 
clouds appear purplish in Figure 5a.) In addition, desert surfaces, such as the Taklamakan, are highly 
reflective in the M10 band but have a weaker signature in the BTD M12-M13 image, which provides 
improved contrast for detecting cloud fields in the upper right half of the scene. For more information 
on signatures in the BTD M12-M13 image, see [25]. 

3.3.2.4. Further Improving Cirrus Cloud Contrast over Snow/Ice Surfaces  
Figures 6a and 6b indicate the potential challenge of creating MGCNC analyses in the presence of 

cirrus clouds, since these clouds can extend across a variety of surfaces that have diverse reflective 
characteristics, as seen in this scene. That challenge becomes even greater when cirrus clouds are found 
in vast snow/ice regions. Therefore, the preferred approach to create MGCNC analyses under cirrus 
cloudy regions employs a top-down technique, i.e., exploit VIIRS imagery in the M9 (1378 nm) band as 
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Figure 6. VIIRS imagery collected 5 May 2012 at 0743 UTC over Himalayan Mountains of Asia and
shown in Figure 5. (a) shows the VIIRS M10 (1610 nm) imagery of scene while (b) shows this same
scene in a brightness temperature difference image (BTD) of the M12 (3700 nm) minus M13 (4050 nm)
or (M12-M13) VIIRS bands. Contrast between cirrus and water clouds versus land surfaces are more
distinct in the BTD M12-M13 image than in the M10 image.

Snow appears black in both of these figures. In addition, the contrast between water cloud features
surrounding the snow, shown by the dendritic pattern of Figure 5a, is strong in both images. However,
the contrast between snow/ice surfaces and ice clouds is weak in the M10 band but much stronger in
the BTD M12-M13 image as seen through the inspection of the left half of the scene. (Recall that ice
clouds appear purplish in Figure 5a.) In addition, desert surfaces, such as the Taklamakan, are highly
reflective in the M10 band but have a weaker signature in the BTD M12-M13 image, which provides
improved contrast for detecting cloud fields in the upper right half of the scene. For more information
on signatures in the BTD M12-M13 image, see [25].

Further Improving Cirrus Cloud Contrast over Snow/Ice Surfaces

Figure 6a,b indicate the potential challenge of creating MGCNC analyses in the presence of
cirrus clouds, since these clouds can extend across a variety of surfaces that have diverse reflective
characteristics, as seen in this scene. That challenge becomes even greater when cirrus clouds are
found in vast snow/ice regions. Therefore, the preferred approach to create MGCNC analyses under
cirrus cloudy regions employs a top-down technique, i.e., exploit VIIRS imagery in the M9 (1378 nm)
band as a first step to identify higher-level ice clouds, then analyze the remaining lower-level water
clouds using the other VIIRS bands discussed in the previous sections.

In Figure 7, attention returns to the VIIRS imagery collected on 31 March 2013 at 0939 UTC as
shown in Figure 1. Figure 7a shows the M7 (865 nm) band. The large area of snow across the Caucasus
Mountains is seen in the dendritic pattern in the left-middle part of the image. Cirrus clouds are
indicated by the milky appearance in the left-lower part of the scene. The snow features turn dark in
the VIIRS M10 (1610 nm) band shown in Figure 7b. In addition, the reflectance of the cirrus clouds
is lower in this band, so the cloud edges in the lower-level corner become less distinct. On the other
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hand, in the BTD M12-M13 (3700–4050 nm) image shown in Figure 7c, the snow remains dark while
the contrast around the cirrus cloud edges is enhanced in the BTD M12-M13 image.
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Figure 7. VIIRS imagery collected on 31 March 2013 at 0939 UTC as first shown in Figure 1. (a) shows
the M7 (865 nm) band of the VIIRS granule shown in Figure 1a. Cloud, ice, and snow features are
bright in this figure. Snow and ice are darker in the VIIRS M10 (1610 nm) band shown in (b), but
poorer contrast is found between ice clouds (in the lower-left corner) and cloud-free land, especially
when compared to the BTD M12-M13 (3700–4050 nm) image shown in (c). (d) shows VIIRS M9
(1378 nm) band where all surface features are dark; however, these cloud-free surfaces are visible in the
corresponding MODIS 26 band (1375 nm), shown in (e).

Finally, the contrast between middle and high altitude clouds is maximized in the VIIRS M9 band
(with a bandwidth of 15 nm and centered at 1378 nm and shown in Figure 7d), while poorer contrast
is seen in the corresponding MODIS band 26 (with a bandwidth of 30 nm and centered at 1375 nm)
found at Figure 7e. (Note Figure 7d,e are not spatially or temporally collocated but are within about
20 min of each other in collection times.) In fact, the outline of the Caspian Sea is clearly visible in
the MODIS image because the wings of this band extend into regions of relatively low atmospheric
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absorption as might be inferred from Figure 2. Thus, the surface reflectance is higher in the MODIS
band, compared to the VIIRS M9 (1378 nm) band, so the contrast between clouds and the cloud free
atmosphere is diminished in the MODIS band. Thus, to maximize the contrast between higher altitude
clouds and all land surfaces, the VIIRS M9 band is the optimum band for exploitation. However, it is
emphasized that the sensor bandpass should not exceed 15 nm in order to obtain the highest quality
imagery with this band.

Therefore, to enable the accurate analysis of clouds in the scene shown in Figure 1, all VIIRS bands
discussed above, i.e., M1 (412 nm), M5 (672 nm), M7 (865 nm), M9 (1378 nm), M10 (1610 nm), M12
(3700 nm), and M13 (4050 nm), provide essential information toward the generation of the MGCNC as
shown in Figure 1b. Coupled with at least one longer-wavelength IR band, e.g., VIIRS M16 (12,013 nm)
band, these 8 bands become the preferred combination of imagery data needed to create accurate
MGCNC datasets under global daytime conditions. Again, to maximize the contrast between higher
altitude clouds and all land surfaces, the 1378 nm band is the optimum band for exploitation. However,
it is emphasized that the sensor bandpass should not exceed 15 nm in order to obtain the high quality
imagery collected with the VIIRS M9 band.

4. Conversion of MGCNC Analyses into Truth Data

The pixel-level, binary MGCNC data, constructed using the phenomenology and procedures
described in the previous sections, form the basis for creating the cloud cover fraction truth (CCftruth)
data needed to quantitatively evaluate cloud model forecast performance. First, however, the MGCNC
“pixel” satellite-based data must be mapped into the “cells” of a common grid with the cloud data
generated by the model under investigation. Thus, the MGCNC pixel data becomes truth after it is
temporally and spatially collocated with the gridded forecast cells on a user-defined grid, matched to
the individual gridded data, and finally, aggregated to form the gridded data’s cloud/no-cloud truth.

A gross temporal collocation is introduced automatically through the selection of the satellite
orbital path to coincide with the date and time of the gridded forecast fields. However, to guard against
significant errors that might result from cloud motions in the satellite imagery, a more precise temporal
constraint of +/− 30 min of the forecast verification time has been chosen. The temporal difference
is readily computed by comparing the satellite sensor’s individual scan row times (for VIIRS, this
information is found in the geolocation file) with the model forecast time. Truth pixels exceeding the
model forecast time by the temporal constraint value are rejected.

For contiguous, equally spaced gridded data (i.e., there exists no gaps between adjacent cells of
a constant resolution, and the data is found to be equally spaced in a specified projection), spatial
collocation is accomplished by first establishing a grid where the gridded field geolocation forms
the center of each cell. With the NAM data, for example, a grid with a resolution of 12.191 km is
established when the data is projected into a Lambert Conformal Mapping. The satellite imagery
geolocation, representing the MGCNC pixel center, is then projected into the same mapping and a
simple interpolation is performed to determine the grid row and column number of the gridded field
in which the MGCNC pixel is contained. MGCNC pixel centers outside the bounds of the gridded
field are rejected. Each MGCNC pixel is furthered constrained to lie within a given radius of its
matched gridded cell center. For earlier studies, an algorithm package implementing the Vincenty
formulae was used to calculate the radial distances, and the radius was specified as 6.5 km [6]. Stricter
constraints could be defined, if appropriate, to further ensure the full extent of the satellite imagery
pixel is contained within the gridded cell, especially if the pixel resolution grows significantly with
satellite scan angle. However, no more stricter constraint is necessary with VIIRS data, which grow to
only 1.5 km at the edge of the VIIRS 3000 km swath from the nominal resolution of 750 m at nadir [11].

For non-contiguous, unequally spaced data (e.g., field data or where no mapping lends to an
equally spaced gridded field), the spatial collocation step becomes complex and a more generalized
approach must be followed. First a new grid must be defined at a resolution where no more than one
sample data point is contained within the new cell. Both the conventional or modeled data and the
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satellite truth data are then mapped to this new grid. Because the conventional or modeled data are
not guaranteed to be located at the center of the user-defined grid cells, a neighborhood of cells must
be tested for nearby truth data. Note that, for the case of a user-defined equally spaced lat/lon grid
(i.e., no projection into an alternative mapping) and a linear distance constraint, the pixel window
defining the neighborhood changes due to the change in longitudinal distance with latitude (e.g.,
assuming a spherical earth, the longitudinal distance at 60 degree latitude is twice that at the equator).
Investigations into this more generalized approach are being considered.

The collocation process yields a collection of truth data at the satellite pixel resolution for each
gridded cell. Typically about 60–260 MGCNC pixels are matched to each NAM grid, depending upon
the alignment of the VIIRS data within the grid. The CCftruth value for each gridded cell is then found
by simply taking the average of the MGCNC binary pixel values within that grid. In addition, other
satellite-derived cloud products can also be applied at this point. For example, a manually generated
cloud phase analysis or an automated cloud phase product that has been quality-controlled with VIIRS
imagery can be applied to restrict the analyses to water clouds alone as done in earlier studies [6].

To demonstrate the process of mapping MGCNC fields with cloud cover fraction (CCf), results
were generated for a case study that analyzed NAM cloud fields and 24 h cloud forecasts based upon
WRF simulations using them. The results, shown in Table 1, included all clouds in the NAM and
WRF datasets. They are compiled from cases documented in two recent studies that focused only on
lower-level water clouds [6,9].

Table 1 shows, at 10% CCftruth intervals (Column 1) and the performance metrics contained in
Column 2, comparisons of CCfNAM data (Column 3) versus CCftruth (Column 4) valid for NAM data
at 1800 UTC on 18 November 2014. Similar results for the WRF maximum CCf values found at all eta
levels, determined as described by Hutchison et al. [9], at each collocated grid are shown in Column 5
along with the corresponding CCftruth (Column 6) for 1800 UTC on 19 November 2014. Since the CCf
value from a single eta level is used to create these WRF statistics, the total CCfWRF values would be at
least as large and more likely larger for multi-layered cloudy grids. It is emphasized that the results
for the 24 h WRF forecasts shown in Table 1 are generated through the initialization of the same NAM
data presented in this table, using WRF settings shown in Table 1 of Hutchison et al. [9].

The results in Table 1 show that the NAM mean CCf data are smaller than the CCftruth data,
except for the near cloud-free truth bin, i.e., 0 ≤ CCftruth < 10 and 10 ≤ CCftruth < 20. The NAM mean
values for the remaining bins range between about 10 and 50 percent lower than values contained in
the CCftruth intervals. Therefore, in general, NAM under-specifies cloud cover contained in the satellite
imagery. In addition, standard deviations are relatively large, e.g., 24–47 percent, which suggests that
there appears to be a poor correlation between the CCftruth and model data.

Table 1 also shows that the WRF cloud forecast CCf fields are strongly binary in the 24 h forecast
data with a strong tendency to over-predict clouds. Compared to CCftruth data, the CCfWRF mean
values are greater than 80 percent at all CCftruth bins except the most cloud-free, i.e., 0 ≤ CCftruth <
10. In this bin, the CCfWRF mean value is 33.9 percent, while CCftruth is 0.8 percent. The large mean
CCf values across all truth bins indicate that WRF cloud forecasts are much too large compared to
truth data.

Therefore, the results shown in this case study suggests the CCfNAM fields are under-clouded
compared to CCftruth while the resulting 24 h CCfWRF forecasts based upon these NAM data are much
more binary and strongly over-clouded compared to the CCftruth. Analyses of additional case studies
are needed to confirm these results; however, the ability to quantify the cloud cover fraction results
of both input and output cloud fields greatly aids in the diagnosis of shortcomings found in these
simulations. If these initial results are confirmed in additional studies containing larger datasets,
a plan of action can be developed to better understanding the implications found in these NWP cloud
analysis and forecast datasets pursuant to producing more reliable cloud forecast products.
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Table 1. Comparisons between respective CCftruth data and all clouds in NAM data at 1800 UTC on
18 November 2014 (CCfNAM) as well as the maximum cloud cover fraction in WRF 24 h forecast profiles
generated from these NAM data and valid at 1800 UTC on 19 November 2014 (CCfWRF).

CCf Interval (%) Performance Metric CCfNAM (%) CCftruth (%) CCfWRF (%) CCftruth (%)

0 ≤ CCf < 10 count 16316 7678

mean 7.9 1.8 33.9 0.8

standard deviation 24.2 2.8 47.3 2.1

10 ≤ CCf < 20 count 3511 756

mean 12.5 14.5 80.6 14.5

standard deviation 29.4 2.8 39.3 2.9

20 ≤ CCf < 30 count 2298 494

mean 15.4 24.6 81.1 24.7

standard deviation 31.8 2.9 39.0 2.9

30 ≤ CCf < 40 count 1443 423

mean 19.2 34.7 82.7 34.8

standard deviation 34.2 2.9 37.7 2.9

40 ≤ CCf < 50 count 1168 348

mean 26.5 44.6 82.3 44.9

standard deviation 37.6 2.9 38.0 2.9

50 ≤ CCf < 60 count 990 405

mean 30.6 54.8 83.9 55.1

standard deviation 39.5 3.0 36.3 3.0

60 ≤ CCf < 70 count 950 480

mean 35.6 64.9 83.5 65.1

standard deviation 41.8 2.9 36.9 2.8

70 ≤ CCf < 80 count 1026 552

mean 40.0 74.9 85.8 75.1

standard deviation 43.2 2.8 34.6 2.9

80 ≤ CCf < 90 count 1310 741

mean 46.7 85.2 85.7 85.6

standard deviation 45.0 2.9 34.7 2.9

90 ≤ CCf < 100 count 2733 2327

mean 62.5 96.0 87.6 96.5

standard deviation 43.7 2.8 32.9 2.8

100 count 18813 12215

mean 86.3 100.0 96.2 100.0

standard deviation 30.4 0.0 18.9 0.0

5. Conclusions

Clouds are of critical importance to mechanisms that impact climate sensitivity studies as well
as operational meteorological applications. However, the apparent difficulty in developing truth
measurements for NWP and climate model cloud forecast verification results in an apparent omission
in model performance statistics.

Therefore, a process of developing highly accurate cloud cover fraction truth data from
manually generated cloud/no-cloud analyses of multispectral satellite imagery has been developed.
The procedures to create the manually generated cloud analyses exploit the phenomenological features
to maximize cloud signatures in a variety of remotely sensed satellite spectral bands to facilitate scene
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interpretation and create accurate cloud/no-cloud analyses. These MGCNC analyses have been used
extensively to establish and improve the performance of individual cloud detection tests, evaluate
new spectral data to improve cloud detection algorithms, and quantitatively assess the accuracy of
operational cloud analysis and forecast models. However, the newer procedures discussed in this
article collocate the MGCNC analyses with gridded cloud data to assess model cloud cover fraction
(CCf) forecast performance of NWP and climate models. The process was demonstrated with NAM
reanalysis fields and 24 h WRF cloud forecasts based upon these NAM data. The results showed strong
over-clouding in the short-range WRF forecast, suggesting a potential issue in the conversion of WRF
forecast variables into cloud cover fraction at the eta levels; however, further analyses of additional
cases are needed before proceeding with the suggested plan of action.

It is concluded that highly accurate cloud cover truth data requires the collection of satellite
imagery in a minimum set of spectral bands represented by the VIIRS bands M1 (412 nm), M5
(672 nm), M7 (865 nm), M9 (1378 nm), M10 (1610 nm), M12 (3700 nm), and M13 (4050 nm), and M16
(12,013 nm). In addition, it is emphasized that the design characteristics of the M1 band should be
dual-gain, to eliminate saturation in cloudy conditions, and that the M9 bandpass should be restricted
to no more than 15 nm, to ensure maximum contrast between cloud and surface features under dry
atmospheric conditions.

Finally, it is recommended that the global cloud research community provide advocacy to ensure
all future sensors provide cloud observations in these minimal set of spectral bands. Furthermore,
this community should consider the construction of a large-scale, verification database of cloud cover
truth measurements, similar to those discussed in this presentation, and develop an archival system to
ensure those verification data sets are made available to interested users and developers of NWP and
climate models.
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