Arctic Intense Summer Storms and Their Impacts on Sea Ice—A Regional Climate Modeling Study
Abstract
:1. Introduction
2. Model Simulation Data and Analysis Methods
2.1. Model Simulation Data
2.2. Storm Identification and Composite Analysis
3. Results
3.1. Climatology and Variability of Summer Storm Activity
3.2. Intense Storms and Associated Near-Surface Atmospheric Circulation
3.3. Changes in Sea Ice in Association with Intense Storm Activity
4. Summary and Discussions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, X.; Sorteberg, A.; Zhang, J.; Gerdes, R.; Comiso, J.C. Recent radical shifts in atmospheric circulations and rapid changes in Arctic climate system. Geophys. Res. Lett. 2008, 35, L22701. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, X.; Zhang, Q.; Lin, Y.; Hao, M.; Luo, Y.; Zhao, Z.; Yao, Y.; Chen, X.; Wang, L.; et al. Recently amplified arctic warming has contributed to a continual global warming trend. Nat. Clim. Chang. 2017, 7, 875–880. [Google Scholar] [CrossRef]
- Comiso, J.C.; Parkinson, C.L.; Gersten, R.; Stock, L. Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett. 2008, 35, L01703. [Google Scholar] [CrossRef]
- Kwok, R.; Rothrock, D.A. Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophys. Res. Lett. 2009, 36, L15501. [Google Scholar] [CrossRef]
- Sato, K.; Inoue, J.; Watanabe, M. Influence of the Gulf Stream on the Barents Sea ice retreat and Eurasian coldness during early winter. Environ. Res. Lett. 2014, 9, 084009. [Google Scholar] [CrossRef] [Green Version]
- Stroeve, J.C.; Serreze, M.C.; Holland, M.M.; Kay, J.E.; Maslanik, J.; Barrett, A.P. The Arctics rapidly shrinking sea ice cover: A research synthesis. Clim. Chang. 2011, 110, 1005–1027. [Google Scholar] [CrossRef]
- Thompson, D.W.J.; Wallace, J.M. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett. 1998, 25, 1297–1300. [Google Scholar] [CrossRef]
- Zhang, X.; Walsh, J.E.; Zhang, J.; Bhatt, U.S.; Ikeda, M. Climatology and interannual variability of Arctic cyclone activity, 1948–2002. J. Clim. 2004, 17, 2300–2317. [Google Scholar] [CrossRef]
- Sepp, M.; Jaagus, J. Changes in the activity and tracks of Arctic cyclones. Clim. Chang. 2011, 105, 577–595. [Google Scholar] [CrossRef]
- Inoue, J.; Hori, M.E. Arctic cyclogenesis at the marginal ice zone: A contributory mechanism for the temperature amplification? Geophys. Res. Lett. 2011, 38, L12502. [Google Scholar] [CrossRef]
- Inoue, J.; Hori, M.E.; Takaya, K. The role of Barents Sea ice in the wintertime cyclone track and emergence of a warm-Arctic cold-Siberian anomaly. J. Clim. 2012, 25, 2561–2568. [Google Scholar] [CrossRef]
- Basu, S.; Zhang, X.; Wang, Z. Eurasian winter storm activity at the end of the century: A CMIP5 multi-model ensemble projection. Earths Future 2018, 6, 61–70. [Google Scholar] [CrossRef]
- Day, J.J.; Holland, M.; Hodges, K.I. Seasonal differences in the response of Arctic cyclones to climate change in CESM1. Clim. Dyn. 2018, 50, 3885–3903. [Google Scholar] [CrossRef]
- Rigor, I.G.; Wallace, J.M.; Colony, R.L. Response of Sea Ice to the Arctic Oscillation. J. Clim. 2002, 15, 2648–2663. [Google Scholar] [CrossRef]
- Zhang, X.; Ikeda, M.; Walsh, J.E. Arctic sea ice and freshwater changes driven by the atmospheric leading mode in a coupled sea ice-ocean model. J. Clim. 2003, 16, 2159–2177. [Google Scholar] [CrossRef]
- Simmonds, I.; Burke, C.; Keay, K. Arctic climate change as manifest in cyclone behavior. J. Clim. 2008, 21, 5777–5796. [Google Scholar] [CrossRef]
- Kriegsmann, A.; Brümmer, B. Cyclone impact on sea ice in the central Arctic Ocean: A statistical study. Cryosphere 2014, 8, 303–317. [Google Scholar] [CrossRef]
- Boisvert, L.N.; Petty, A.A.; Stroeve, J.C. The impact of the extreme winter 2015/16 Arctic cyclone on the Barents-Kara seas. Mon. Weather Rev. 2016, 144, 4279–4287. [Google Scholar] [CrossRef]
- Tanaka, H.L.; Yamagami, A.; Takahashi, S. The structure and behavior of the arctic cyclone in summer analyzed by the JRA-25/JCDAS data. Polar Sci. 2012, 6, 44–69. [Google Scholar] [CrossRef]
- Aizawa, T.; Tanaka, H.L. Axisymmetric structure of the long lasting summer Arctic cyclones. Polar Sci. 2016, 10, 192–198. [Google Scholar] [CrossRef]
- Rinke, A.; Maturilli, M.; Graham, R.M.; Matthes, H.; Handorf, D.; Cohen, L.; Hudson, S.R.; Moore, J.C. Extreme cyclone events in the Arctic: Wintertime variability and trends. Environ. Res. Lett. 2017, 12, 094006. [Google Scholar] [CrossRef] [Green Version]
- Tao, W.; Zhang, J.; Zhang, X. The role of stratosphere vortex downward intrusion in a long-lasting late-summer Arctic storm. Q. J. R. Meteorol. Soc. 2017, 143, 1953–1966. [Google Scholar] [CrossRef]
- Tao, W.; Zhang, J.; Zhang, X. Driving roles of tropospheric and stratospheric thermal anomalies in the intensification and persistence of 2012 Arctic superstorm. Geophys. Res. Lett. 2017, 44, 10017–10025. [Google Scholar] [CrossRef]
- Simmonds, I.; Rudeva, I. The great Arctic cyclone of August 2012. Geophys. Res. Lett. 2012, 39, L23709. [Google Scholar] [CrossRef]
- Zhang, J.; Lindsay, R.; Schweiger, A.; Steele, M. The impact of an intense summer cyclone on 2012 Arctic sea ice retreat. Geophys. Res. Lett. 2013, 40, 720–726. [Google Scholar] [CrossRef] [Green Version]
- Moore, G.W.K. The December 2015 North Pole warming event and the increasing occurrence of such events. Sci. Rep. 2016, 6, 39084. [Google Scholar] [CrossRef]
- Graham, R.M.; Cohen, L.; Petty, A.A.; Boisvert, L.N.; Rinke, A.; Hudson, S.R.; Nicolaus, M.; Granskog, M.A. Increasing frequency and duration of Arctic winter warming events. Geophys. Res. Lett. 2017, 44, 6974–6983. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.-K.; Hong, J.-Y.; Jun, S.-Y.; Zhang, X.; Kwon, H.; Kim, S.-J.; Kim, J.-H.; Kim, S.-W.; Kim, H.-K. Major cause of unprecedented Arctic warming in January 2016: Critical role of an Atlantic windstorm. Sci. Rep. 2017, 7, 40051. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; He, J.; Zhang, J.; Polyakov, I.; Gerdes, R.; Inoue, J.; Wu, P. Enhanced poleward moisture transport and amplified northern high-latitude wetting trend. Nat. Clim. Chang. 2013, 3, 47–51. [Google Scholar] [CrossRef]
- Vihma, T. Effects of Arctic sea ice decline on weather and climate: A review. Surv. Geophys. 2014, 35, 1175–1214. [Google Scholar] [CrossRef]
- Brümmer, B.; Múller, G.; Hoeber, H. A Fram Strait cyclone: Properties and impact on ice drift as measured by aircraft and buoys. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Asplin, M.G.; Galley, R.; Barber, D.G.; Prinsenberg, S. Fracture of summer perennial sea ice by ocean swell as a result of Arctic storms. J. Geophys. Res. 2012, 117, C06025. [Google Scholar] [CrossRef]
- Wei, J.; Zhang, X.; Wang, Z. Impacts of extratropical storm tracks on Arctic sea ice export through Fram Strait. Clim. Dyn. 2019, 52, 2235–2246. [Google Scholar] [CrossRef]
- Serreze, M.C.; Barrett, A.P. The summer cyclone maximum over the central Arctic Ocean. J. Clim. 2008, 21, 1048–1065. [Google Scholar] [CrossRef]
- Dorn, W.; Dethloff, K.; Rinke, A. Improved simulation feedbacks between atmosphere and sea ice cover over the Arctic Ocean in a coupled regional climate model. Ocean Model. 2009, 29, 103–114. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef]
- Dorn, W.; Dethloff, K.; Rinke, A. Limitations of a coupled regional climate model in the reproduction of the observed Arctic sea ice retreat. Cryosphere 2012, 6, 985–998. [Google Scholar] [CrossRef]
- Rinke, A.; Dethloff, K.; Dorn, W.; Handorf, D.; Moore, J.C. Simulated Arctic atmospheric feedbacks associated with late summer sea ice anomalies. J. Geophys. Res. Atmos. 2013, 118. [Google Scholar] [CrossRef]
- Jaiser, R.; Dethloff, K.; Handorf, D.; Rinke, A.; Cohen, J. Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation. Tellus 2012, 64, 11595. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, C.; Guan, Z. Weakened cyclones, intensified anticyclones, and the recent extreme cold winter weather events in Eurasia. Environ. Res. Lett. 2012, 7, 044044. [Google Scholar] [CrossRef]
- Akperov, M.G.; Mokhov, I.I.; Rinke, A.; Dethloff, K.; Matthes, H. Cyclones and their possible changes in the Arctic by the end of the 21st century from regional climate model simulations. Theor. Meteorol. Clim. 2015, 122, 85–96. [Google Scholar] [CrossRef]
- Tilinina, N.; Gulev, S.K.; Bromwich, D.H. New view of Arctic cyclone activity from the Arctic system reanalysis. Geophys. Res. Lett. 2014, 41, 1766–1772. [Google Scholar] [CrossRef] [Green Version]
- Akperov, M.; Rinke, A.; Mokhov, I.I.; Matthes, H.; Semenov, V.A.; Adakudlu, M.; Cassano, J.; Christensen, J.H.; Dembitskaya, M.A.; Dethloff, K.; et al. Cyclone activity in the Arctic from an ensemble of regional climate models (Arctic CORDEX). J. Geophys. Res. Atmos. 2018, 123, 2537–2554. [Google Scholar] [CrossRef]
- Bromwich, D.H.; Hines, K.M.; Bai, L.-S. Development and testing of Polar WRF: 2. Arctic Ocean. J. Geophys. Res. 2009, 114, D08122. [Google Scholar] [CrossRef]
- Bromwich, D.H.; Wilson, A.B.; Bai, L.-S.; Liu, Z.; Barlage, M.; Shih, C.-F.; Maldonado, S.; Hines, K.M.; Wang, S.H.; Woollen, J.; et al. The Arctic system reanalysis version 2. Bull. Am. Meteorol. Soc. 2017, 99, 805–828. [Google Scholar] [CrossRef]
- Zahn, M.; Akperov, M.; Rinke, A.; Feser, F.; Mokhov, I.I. Trends of cyclone characteristics in the Arctic and their patterns from different reanalysis data. J. Geophys. Res. Atmos. 2018, 123, 2737–2751. [Google Scholar] [CrossRef]
- Vinje, T. Fram Strait ice fluxes and atmospheric circulation 1950–2000. J. Clim. 2001, 14, 3508–3517. [Google Scholar] [CrossRef]
- Overland, J.E. Meteorology of the Beaufort Sea. J. Geophys. Res. 2009, 114, C00A07. [Google Scholar] [CrossRef]
- Serreze, M.C.; Barrett, A.P. Characteristics of the Beaufort Sea high. J. Clim. 2011, 24, 159–182. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, J.; Zhang, X.; Tao, W. Interannual variability and long-term changes of atmospheric circulation over the Chukchi and Beaufort seas. J. Clim. 2014, 27, 4871–4889. [Google Scholar] [CrossRef]
- Parkinson, C.L.; Comiso, J.C. On the 2012 record low Arctic sea ice cover: Combined impact of preconditioning and an August storm. Geophys. Res. Lett. 2012, 40, 1356–1361. [Google Scholar] [CrossRef]
- Bluestein, H.B. Synoptic-Dynamic Meteorology in Midlatitudes, Observations and Theory of Weather Systems; Oxford University Press: Oxford, UK, 1993; Volume 2, 594p. [Google Scholar]
- Ogi, M.; Yamazaki, K.; Wallace, J.M. Influence of winter and summer surface wind anomalies on summer Arctic sea ice extent. Geophys. Res. Lett. 2010, 37, L07701. [Google Scholar] [CrossRef]
- Rae, J.G.L.; Todd, A.D.; Blockley, E.W.; Ridley, J.K. How much should we believe correlations between Arctic cyclones and sea ice extent? Cryosphere 2017, 11, 3023–3034. [Google Scholar] [CrossRef] [Green Version]
Data Source | Central Arctic | Beaufort Sea | Chukchi Sea | East Siberian Sea | Laptev Sea | Kara Sea | Greenland Sea | Norwegian Sea | Entire Arctic | |
---|---|---|---|---|---|---|---|---|---|---|
HIRHAM–NAOSIM | Max | 77 | 19 | 16 | 26 | 26 | 26 | 16 | 36 | 191 |
Min | 33 | 1 | 2 | 4 | 3 | 8 | 2 | 9 | 95 | |
Ave | 55 | 9 | 8 | 11 | 16 | 17 | 8 | 24 | 148 | |
NCEP–NCAR | Max | 70 | 21 | 19 | 21 | 19 | 28 | 16 | 35 | 186 |
Min | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10 | |
Ave | 28 | 6 | 5 | 8 | 7 | 9 | 3 | 11 | 79 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semenov, A.; Zhang, X.; Rinke, A.; Dorn, W.; Dethloff, K. Arctic Intense Summer Storms and Their Impacts on Sea Ice—A Regional Climate Modeling Study. Atmosphere 2019, 10, 218. https://doi.org/10.3390/atmos10040218
Semenov A, Zhang X, Rinke A, Dorn W, Dethloff K. Arctic Intense Summer Storms and Their Impacts on Sea Ice—A Regional Climate Modeling Study. Atmosphere. 2019; 10(4):218. https://doi.org/10.3390/atmos10040218
Chicago/Turabian StyleSemenov, Alexander, Xiangdong Zhang, Annette Rinke, Wolfgang Dorn, and Klaus Dethloff. 2019. "Arctic Intense Summer Storms and Their Impacts on Sea Ice—A Regional Climate Modeling Study" Atmosphere 10, no. 4: 218. https://doi.org/10.3390/atmos10040218
APA StyleSemenov, A., Zhang, X., Rinke, A., Dorn, W., & Dethloff, K. (2019). Arctic Intense Summer Storms and Their Impacts on Sea Ice—A Regional Climate Modeling Study. Atmosphere, 10(4), 218. https://doi.org/10.3390/atmos10040218