Aerosol Optical Thickness over Large Urban Environments of the Arabian Peninsula—Speciation, Variability, and Distributions
Abstract
:1. Introduction
2. Methodology
2.1. Review of the Climatology of the Arabian Peninsula
2.2. Region of Interest
2.2.1. Topography of the Study Area
- Asir and Hejaz mountain ranges: They run along the western edge of Saudi Arabia, and Yemen, parallel to the Red sea. Their height ranges from 1800 m to 2100 m.
- Hadramawt mountain range: Low mountain range along Yemen with an average height of 1000 m.
- Zagros mountain range: Runs along western and south western Iran. One of the highest peaks in the region with many peaks exceeding 2700 m.
- Rub al Khali desert (Saudi Arabia): Also known as the Empty Quarter, this desert is the world’s largest sand-only desert. The northern expanse of this desert is called the Ad Dahna desert and connects to An Nafud desert.
- An Nafud desert: This desert is in north western Saudi Arabia.
- Syrian Desert: Approximately 518,000 km2, is an arid region that extends through Syria, Jordan, Saudi Arabia, and western Iraq.
- Fertile Crescent: An ancient term given to the area with the largest cultivated areas in the region north of the Syrian desert extending from Syria, Jordan, and Iraq, down along the Tigris and Euphrates river valleys of Iraq. This region has been subjected to extended drought periods from 2008, and due to reduced soil moisture, is the largest sources of Aeolian dust in the Arabian Gulf.
2.2.2. Overview of Aerosol Speciation over the Study Area
Dust
Sulfate
Sea Salt
Organic Carbon and Black Carbon
2.3. Research Tools
3. Results
3.1. AOT Distribution over the Arabian Peninsula
3.2. AOT Speciation in Major Population Centers of the Arabian Peninsula
3.3. Annual Variation and Trends in the Urban Environments
3.4. Monthly Variation and Trends in the Urban Environments
3.5. Comparison of MERRA-2 Results with AERONET and MODIS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Al-Thani, H.; Koc, M.; Isaifan, R.J. Investigations on Deposited Dust Fallout in Urban Doha: Characterization, Source Apportionment and Mitigation. Environ. Ecol. Res. 2018, 6, 493–506. [Google Scholar] [CrossRef]
- Yu, Y.; Notaro, M.; Kalashnikova, O.V.; Garay, M.J. Climatology of Summer Shamal Wind in the Middle East. J. Geophys. Res. Atmos. 2015, 121. [Google Scholar] [CrossRef]
- Prakash, P.J.; Stenchikov, G.; Kalenderski, S.; Osipov, S.; Bangalath, H. The Impact of Dust Storms on the Arabian Peninsula and the Red Sea. Atmos. Chem. Phys. 2015, 15, 199–222. [Google Scholar] [CrossRef]
- Al Katheeri, E.; Al Jallad, F.; Al Omar, M. Assessment of Gaseous and Particulate Pollutants in the Ambient Air in Al Mirfa City, United Arab Emirates. J. Environ. Prot. 2012, 3, 640–647. [Google Scholar] [CrossRef]
- Banks, J.R.; Brindley, H.E.; Stenchikov, G.; Schepanski, K. Satellite Retrievals of Dust Aerosol over the Red Sea, 2005–2015. Atmos. Chem. Phys. 2016. [Google Scholar] [CrossRef]
- Habib, A.; Chen, B.; Khalid, B.; Tan, S.; Che, H.; Mahmood, T.; Shi, G.; Butt, M.T. Estimation and Inter-Comparison of Dust Aerosols Based on MODIS, MISR and AERONET Retrievals over Asian Desert Regions. J. Environ. Sci. 2019, 76, 154–266. [Google Scholar] [CrossRef]
- Farahat, A. Air Pollution in the Arabian Peninsula (Saudi Arabia, the United Arab Emirates, Kuwait, Qatar, Bahrain, and Oman): Causes, Effects, and Aerosol Categorization. Arab J. Geosci. 2016, 9, 1–17. [Google Scholar] [CrossRef]
- Kalenderski, S.; Stenchikov, G.; Zhou, C. Modeling a Typical Winter-Time Dust Event over the Arabian Peninsula and the Red Sea. Atmos. Chem. Phys. 2013, 13, 1999–2014. [Google Scholar] [CrossRef]
- Anisimov, A.; Tao, W.; Stenchikov, G.; Kalenderski, S.; Prakash, P.J. Quantifying Local-Scale Dust Emission from the Arabian Red Sea Coastal Plain. Atmos. Chem. Phys. 2017, 17, 993–1015. [Google Scholar] [CrossRef]
- Prospero, J.M.; Ginoux, P.; Torres, O.; Nicholson, S.E.; Gill, T.E. Environmental Characterization of Global Sources of Atmospheric Soil Dust Identified with the NIMBUS 7 Total Ozone Mapping Spectrometer (TOMS) Absorbing Aerosol Product. Rev. Geophys. 2002, 40, 1–31. [Google Scholar] [CrossRef]
- Goudie, A.S.; Middleton, N.J. Saharan Dust Storms: Nature and Consequences. Earth-Sci. Rev. 2001, 56, 179–204. [Google Scholar] [CrossRef]
- Shalaby, A.; Rappenglueck, R.; Eltahir, E.A.B. The Climatology of Dust Aerosol over the Arabian Peninsula. Atmos. Chem. Phys. 2015, 15, 1523–1571. [Google Scholar] [CrossRef]
- Highwood, E.J.; Ryder, C.L. Mineral Dust: A Key Player in the Earth System; Knippertz, P., Stout, J.-B.W., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 267–283. [Google Scholar]
- Tsiouri, V.; Kakosimos, K.E. Concentrations, Sources and Exposure Risks Associated with Particulate Matter in the Middle East Area—A Review. Air Qual. Atmos. Health 2015, 8, 67–80. [Google Scholar] [CrossRef]
- Brown, K.W.; Bouhamra, W.; Lamoureux, D.P.; John, S.; Koutrakis, P. Characterization of Particulate Matter for Three Sites in Kuwait. J. Air Waste Manag. Assoc. 2012, 58, 994–1003. [Google Scholar] [CrossRef]
- Eager, R.E.; Raman, S.; Wootten, A.; Westphal, D.L.; Reid, J.S.; Al Mandoos, A. A Climatological Study of the Sea and Land Breezes in the Arabian Gulf Region. J. Geophys. Res. 2008, 113, 1–12. [Google Scholar] [CrossRef]
- Rezazadeh, M.; Irannejad, P.; Shao, Y. Climatology of the Middle East Dust Events. Aeolian Res. 2013, 10, 103–109. [Google Scholar] [CrossRef]
- Walters, K.R.; Sjoberg, W.F. The Persian Gulf Region: A Climatological Study; FMFRP 0-54; Department of the Navy, United States Marine Corps: Washington, DC, USA, 1990. [Google Scholar]
- Rao, P.G.; Al-Sulaiti, M.; Al-Mulla, A.H. Winter Shamals in Qatar, Arabian Gulf. Weather 2001, 56, 444–451. [Google Scholar] [CrossRef]
- Abid, M.A.; Almazroui, M.; Kucharski, F.; Brien, E.O.; Yousef, A.E. ENSO Relationship to Summer Rainfall Variability and Its Potential Predictability over Arabian Peninsula Region. Npj Clim. Atmos. Sci. 2018, 1, 1–7. [Google Scholar] [CrossRef]
- Hoell, A.; Funk, C.; Barlow, M. The Regional Forcing of Northern Hemisphere Drought Recent Warm Tropical West Pacific Ocean La Nina Events. Clim. Dyn. 2014, 42, 3289–3311. [Google Scholar] [CrossRef]
- Peyrille, P.; Lafore, J.-P.; Redelsperger, J.-L. An Idealized Two-Dimensional Framework to Study the West African Monsoon. Part 1: Validation and Key Controlling Factors. J. Atmos. Sci. 2007, 64, 2765–2782. [Google Scholar] [CrossRef]
- Romanou, A.; Tselioudis, G.; Zerefos, C.S.; Clayson, C.A.; Curry, J.A.; Anderson, A. Evaporation—Precipitation Variability over the Mediterranean and the Black Seas from Satellite and Reanalysis Estimates. J. Clim. 2010, 23, 5268–5287. [Google Scholar] [CrossRef]
- Notaro, M.; Yu, Y.; Kalashnikova, O.V. Regime Shift in Arabian Dust Activity, Triggered by Persistent Fertile Crescent Drought. J. Geophys. Res. Atmos. 2015, 229–249. [Google Scholar] [CrossRef]
- Draxler, R.R.; Gillette, D.A.; Kirkpatrick, J.S.; Heller, J. Estimating PM 10 Air Concentrations from Dust Storms in Iraq, Kuwait and Saudi Arabia. Atmos. Environ. 2001, 35, 4315–4330. [Google Scholar] [CrossRef]
- Leon, J.-F.; Legrand, M. Mineral Dust Sources in the Surroundings of the North Indian Ocean. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Phillips, M.J.; Smith, E.A.; Mosquin, P.L.; Chartier, R.; Nandasena, S.; Bronstein, K.; Elledge, M.F.; Thornburg, V.; Thornburg, J.; Brown, L.M. Sri Lanka Pilot Study to Examine Respiratory Health Effects and Personal PM2.5 Exposures from Cooking Indoors. Int. J. Environ. Res. Public. Health 2016, 13, 791. [Google Scholar] [CrossRef]
- Vignati, E.; de Leeuw, G.; Berkowicz, R. Modeling Coastal Aerosol Transport and Effects of Surf-Produced Aerosols on Processes in the Marine Atmospheric Boundary Layer. J. Geophys. Res. 2001, 106, 20225–20238. [Google Scholar] [CrossRef]
- Salazar, V.; Bruintjes, R.T.; Breed, D.; Jensen, T.; Piketh, S.; Ross, K.; Al Mangoosh, A.; Al Mandoos, A. Aerosol-Cloud Interactions in the United Arab Emirates. In Proceedings of the 5th Conference on Atmospheric Chemistry: Gases, Aerosols, and Clouds, Long Beach, CA, USA, 8–13 February 2003. [Google Scholar]
- Kam, W.; Liacos, J.W.; Schauer, J.J.; Del, R.J.; Sioutas, C. Size-Segregated Composition of Particulate Matter (PM) in Major Roadways and Surface Streets. Atmos. Environ. 2012, 55, 90–97. [Google Scholar] [CrossRef]
- Satheesh, S.K.; Krishna Moorthy, K. Radiative Effects of Natural Aerosols: A Review. Atmos. Environ. 2005, 39, 2089–2110. [Google Scholar] [CrossRef]
- Chin, M.; Ginoux, P.; Kinne, S.; Torres, O.; Holben, B.N.; Duncan, B.N.; Martin, R.V.; Logan, J.A.; Higurashi, A.; Nakajima, T. Tropospheric Aerosol Optical Thickness from the GOCART Model and Comparisons with Satellite and Sun Photometer Measurements. Am. Meteorol. Soc. 2002, 461–483. [Google Scholar] [CrossRef]
- Cheng, T.; Chen, H.; Gu, X.; Yu, T.; Guo, J.; Guo, H. The Inter-Comparison of MODIS, MISR and GOCART Aerosol Products against AERONET Data over China. J. Quant. Spectrosc. Radiat. Transf. 2012, 113, 2135–2145. [Google Scholar] [CrossRef]
- Giles, D.M.; Sinyuk, A.; Sorokin, M.S.; Schafer, J.S.; Slutsker, I.; Eck, T.F.; Holben, B.N.; Lewis, J.; Campbell, J. Advancements in the Aerosol Robotic Network (AERONET) Version 3 Database—Automated near Real-Time Quality Control Algorithm with Improved Cloud Screening for Sun Photometer Aerosol Optical Depth (AOD) Measurements. Atmos. Meas. Tech. 2019, 12, 169–209. [Google Scholar] [CrossRef]
- Hsu, N.C.; Tsay, S.; King, M.D.; Member, S.; Herman, J.R. Aerosol Properties over Bright-Reflecting Source Regions. IEEE Trans. Geosci. Remote Sens. 2004, 42, 557–569. [Google Scholar] [CrossRef]
- Remer, L.A.; Kleidman, R.G.; Levy, R.C.; Kaufman, Y.J.; Mattoo, S.; Martins, J.V.; Ichoku, C.; Koren, I.; Yu, H.; Holben, B.N. Global Aerosol Climatology from the MODIS Satellite Sensors. J. Geophys. Res. Atmos. 2008, 113, 1–18. [Google Scholar] [CrossRef]
- Klingmüller, K.; Pozzer, A.; Metzger, S.; Stenchikov, G.L.; Lelieveld, J. Aerosol Optical Depth Trend over the Middle East. Atmos. Chem. Phys. 2016, 16, 5063–5073. [Google Scholar] [CrossRef]
- Munir, S.; Gabr, S.; Habeebullah, T.M.; Janajrah, M.A. Spatiotemporal Analysis of Fine Particulate Matter (PM2.5) in Saudi Arabia Using Remote Sensing Data. Egypt. J. Remote Sens. Space Sci. 2016, 19, 195–205. [Google Scholar] [CrossRef]
- Jonsson, S.; Xu, W. Volcanic Eruptions in the Southern Red Sea during 2007–2013. In The Red Sea; Springer Earth System Sciences; Springer: Berlin/Heidelberg, Germany, 2015; pp. 175–186. [Google Scholar] [CrossRef]
- Yu, Y.; Notaro, M.; Liu, Z.; Kalashnikova, O.; Alkolibi, F.; Fadda, E.; Bakhrjy, F. Assessing Temporal and Spatial Variations in Atmospheric Dust over Saudi Arabia through Satellite, Radiometric, and Station Data. J. Geophys. Res. Atmos. 2013, 118, 253–264. [Google Scholar] [CrossRef]
- Provençal, S.; Kishcha, P.; Arlindo, M.; Elhacham, E. Urban Climate AOD Distributions and Trends of Major Aerosol Species over a Selection of the World’s Most Populated Cities Based on the 1st Version of NASA’s MERRA Aerosol Reanalysis. Urban Clim. 2017. [Google Scholar] [CrossRef]
- Massoud, R.; Shihadeh, A.L.; Roumié, M.; Youness, M.; Gerard, J.; Saliba, N.; Zaarour, R.; Abboud, M.; Farah, W.; Aoun, N. Intraurban Variability of PM10 and PM2.5 in an Eastern Mediterranean City. Atmos. Res. 2011, 101, 893–901. [Google Scholar] [CrossRef]
- Engelbrecht, J.P.; Jayanty, R.K.M. Assessing Sources of Airborne Mineral Dust and Other Aerosols, in Iraq. Aeolian Res. 2013, 9, 153–160. [Google Scholar] [CrossRef]
- Gupta, I.; Salunkhe, A.; Kumar, R. Source Apportionment of PM10 by Positive Matrix Factorization in Urban Area of Mumbai, India. Sci. World J. 2012, 2012, 1–13. [Google Scholar] [CrossRef]
- Alolayan, M.A.; Brown, K.W.; Evans, J.S.; Bouhamra, W.S.; Koutrakis, P. Source Apportionment of Fine Particles in Kuwait City. Sci. Total Environ. 2013, 448, 14–25. [Google Scholar] [CrossRef]
- Khodeir, M.; Shamy, M.; Alghamdi, M.; Zhong, M.; Sun, H.; Costa, M.; Lung-Chi, C.; Maciejczjk, P. Source Apportionment and Elemental Composition of PM2.5 and PM10 in Jeddah City, Saudi Arabia. Atmos. Pollut. Res. 2012, 3, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Yin, Y.; Wu, J.; Zhao, D. Numerical Study of Natural Sea Salt Aerosol and Its Radiative Effects on Climate and Sea Surface Temperature over East Asia. Atmos. Environ. 2015, 106, 110–119. [Google Scholar] [CrossRef]
- Kutiel, H.; Furman, H. Dust Storms in the Middle East: Sources of Origin and Their Temporal Characteristics. Indoor Built Environ. 2014. [Google Scholar] [CrossRef]
- Pozzer, A.; Meij, A.D.; Yoon, J.; Tost, H.; Georgoulias, A.K.; Astitha, M. AOD Trends during 2001–2010 from Observations and Model Simulations. Atmos. Chem. Phys. 2015, 15, 5521–5535. [Google Scholar] [CrossRef]
Latitude-Longitude | W | S | E | N |
---|---|---|---|---|
Dammam | 49.75 | 26.00 | 50.25 | 26.50 |
Doha | 51.25 | 25.00 | 51.75 | 25.50 |
Dubai | 55.00 | 25.00 | 55.50 | 25.50 |
Jeddah | 39.00 | 21.25 | 39.50 | 21.75 |
Kuwait | 47.75 | 29.00 | 48.25 | 29.50 |
Manama | 50.25 | 26.00 | 50.75 | 26.50 |
Muscat | 58.25 | 23.35 | 58.75 | 23.85 |
Riyadh | 46.50 | 24.50 | 47.00 | 25.00 |
Sanaa | 44.50 | 15.00 | 45.00 | 15.50 |
City | Total AOT | Mineral Dust AOT | Mineral Dust % | SO4 AOT | SO4 % | Sea Salt AOT | Sea Salt % | OC AOT | OC % | BC AOT | BC % |
---|---|---|---|---|---|---|---|---|---|---|---|
Dammam | 0.49 | 0.36 | 72% | 0.09 | 19% | 0.02 | 4% | 0.02 | 4% | 0.01 | 2% |
Doha | 0.45 | 0.32 | 71% | 0.08 | 18% | 0.02 | 5% | 0.02 | 4% | 0.01 | 2% |
Dubai | 0.40 | 0.27 | 68% | 0.07 | 18% | 0.03 | 7% | 0.02 | 4% | 0.01 | 3% |
Jeddah | 0.40 | 0.23 | 59% | 0.10 | 25% | 0.04 | 10% | 0.02 | 4% | 0.01 | 2% |
Kuwait | 0.50 | 0.36 | 71% | 0.10 | 20% | 0.01 | 2% | 0.02 | 4% | 0.01 | 2% |
Manama | 0.45 | 0.31 | 69% | 0.09 | 20% | 0.02 | 5% | 0.02 | 4% | 0.01 | 2% |
Muscat | 0.35 | 0.24 | 68% | 0.06 | 18% | 0.02 | 7% | 0.02 | 5% | 0.01 | 2% |
Riyadh | 0.43 | 0.30 | 71% | 0.09 | 21% | 0.01 | 3% | 0.02 | 4% | 0.01 | 2% |
Sanaa | 0.30 | 0.20 | 66% | 0.07 | 23% | 0.01 | 5% | 0.01 | 5% | 0.01 | 2% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roshan, D.R.; Koc, M.; Isaifan, R.; Shahid, M.Z.; Fountoukis, C. Aerosol Optical Thickness over Large Urban Environments of the Arabian Peninsula—Speciation, Variability, and Distributions. Atmosphere 2019, 10, 228. https://doi.org/10.3390/atmos10050228
Roshan DR, Koc M, Isaifan R, Shahid MZ, Fountoukis C. Aerosol Optical Thickness over Large Urban Environments of the Arabian Peninsula—Speciation, Variability, and Distributions. Atmosphere. 2019; 10(5):228. https://doi.org/10.3390/atmos10050228
Chicago/Turabian StyleRoshan, Dillan Raymond, Muammer Koc, Rima Isaifan, Muhammad Zeeshaan Shahid, and Christos Fountoukis. 2019. "Aerosol Optical Thickness over Large Urban Environments of the Arabian Peninsula—Speciation, Variability, and Distributions" Atmosphere 10, no. 5: 228. https://doi.org/10.3390/atmos10050228
APA StyleRoshan, D. R., Koc, M., Isaifan, R., Shahid, M. Z., & Fountoukis, C. (2019). Aerosol Optical Thickness over Large Urban Environments of the Arabian Peninsula—Speciation, Variability, and Distributions. Atmosphere, 10(5), 228. https://doi.org/10.3390/atmos10050228