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Abstract: Radiation is a key process in the atmosphere. Numerous radiative transfer codes have
been developed spanning a large range of wavelengths, complexities, speeds, and accuracies. In the
infrared and microwave, line-by-line codes are crucial esp. for modeling and analyzing high-resolution
spectroscopic observations. Here we present Py4CAtS—PYthon scripts for Computational ATmospheric
Spectroscopy, a Python re-implemen-tation of the Fortran Generic Atmospheric Radiation Line-by-line
Code GARLIC, where computationally-intensive code sections use the Numeric/Scientific Python
modules for highly optimized array processing. The individual steps of an infrared or microwave
radiative transfer computation are implemented in separate scripts (and corresponding functions)
to extract lines of relevant molecules in the spectral range of interest, to compute line-by-line cross
sections for given pressure(s) and temperature(s), to combine cross sections to absorption coefficients
and optical depths, and to integrate along the line-of-sight to transmission and radiance/intensity.
Py4CAtS can be used in three ways: in the (Unix/Windows/Mac) console/terminal, inside the (I)Python
interpreter, or Jupyter notebook. The basic design of the package, numerical and computational
aspects relevant for optimization, and a sketch of the typical workflow are presented. In conclusion,
Py4CAtS provides a versatile environment for “interactive” (and batch) line-by-line radiative
transfer modeling.

Keywords: infrared; radiative transfer; molecular absorption; line-by-line

1. Introduction

Radiative transfer is an important aspect in various branches of physics, esp. in the atmospheric
sciences, both for Earth and (exo-)planets [1–3]. Many radiative transfer models have been developed
in recent decades (see [4], for an early review and https://en.wikipedia.org/wiki/Atmospheric_
radiative_transfer_codes for an up-to-date listing (All links in this paper were checked and active
4 April 2019.)), ranging from simple approximations to complex, often highly optimized codes and
usually tailored to a specific spectral domain.

An essential prerequisite for the analysis of data recorded by atmospheric remote sensing
instruments as well as for theoretical investigations such as retrieval assessments is a flexible, yet
efficient and reliable radiative transfer model (RTM). Furthermore, as the retrieval of atmospheric
parameters is in general a nonlinear optimization problem (inverse problem), the retrieval code must
be closely connected to the radiative transfer code (forward model).

Radiative transfer depends on the state of the atmosphere (pressure, temperature, composition),
the optical properties of the atmospheric constituents (molecules and particles), geometry, and
spectral range. Because of the numerous parameters the setup of a radiative transfer calculation
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can be cumbersome and error prone, and several interfaces have been developed to ease the
application. MODO ([5], see also http://www.rese.ch/products/modo/) is a “graphical front-end” to
the MODTRAN [6] radiative transfer code, and a Python interface to MODTRAN’s predecessor, the
low-resolution band model LOWTRAN, is available at https://pypi.org/project/lowtran/. Wilson [7],
see also http://www.py6s.rtwilson.com/, has developed a Python interface to the widely used 6S
(Second Simulation of the Satellite Signal in the Solar Spectrum, [8]) model.

In the infrared and microwave region, line-by-line (lbl) modeling of molecular absorption is
mandatory esp. for high spectral resolution. Furthermore, lbl models are required for the setup
and verification of fast parameterized models, e.g., band, k-distribution, or exponential sum fitting
models [6,9,10]. Moreover, lbl models are ideal for radiative transfer in planetary atmospheres, where
fast models often parameterized for Earth-like conditions are not suitable [11,12].

An essential input for lbl radiative transfer codes are the molecules’ optical properties compiled
in databases such as HITRAN [13], HITEMP [14], GEISA [15], the JPL and CDMS catalogs [16–18],
or ExoMol [19] that list line parameters (center frequency, line strength, broadening parameters
etc.) for millions to billions of lines of some dozen molecules. Lbl models are computationally
challenging because of the large number of spectral lines to be considered and the large number of
wavenumber grid points required for adequate sampling. Nevertheless, lbl models are available
for almost half a century, e.g., FASCODE or 4A (Fast Atmospheric Signature Code, Automatized
Atmospheric Absorption Atlas, [20,21]). Thanks to the increased computational power (and because
of the increased number of high-resolution Earth and planetary spectra) a variety of codes has been
developed since these early efforts, e.g., ARTS (Atmospheric Radiative Transfer Simulator, [22–24]),
GARLIC (Generic Atmospheric Radiation Line-by-line Code, [25]), GenLN2 [26], KOPRA (Karlsruhe
Optimized & Precise Radiative transfer Algorithm, [27]), LblRTM (Line-by-line Radiative Transfer
Model, [28]), LinePak [29], RFM (Reference Forward Model, [30]), σ-IASI [31], and VSTAR (Versatile
Software for Transfer of Atmospheric Radiation, [32]).

Several web sites offer an Internet access to lbl databases and/or lbl models: “HITRANonline” [33]
at http://hitran.org/ allows the downloading of line and other data from the most recent HITRAN
version. With the “Information System HITRAN on the Web (HotW)” at http://hitran.tsu.ru
(see also http://spectra.iao.ru/) several types of spectra can be simulated using HITRAN data.
The HITRAN Application Programming Interface (HAPI) [34] is “a set of routines in Python which
aims to provide remote access to functionality and data given by the HITRANonline”. A similar
service (visualization etc.) for the GEISA database is offered at https://cds-espri.ipsl.upmc.fr/geisa/.
The “wavelength search engine” SpectraPlot ([35], see also http://www.spectraplot.com/) is a
“web-based application for simulating spectra of atomic and molecular gases” employing, among
others, HITRAN and HITEMP. http://www.spectralcalc.com/ provides a web interface to the widely
used LinePak [29] model (with extended functionality for subscribed users). Goddard’s Planetary
Spectrum Generator (PSG, https://psg.gsfc.nasa.gov/, Villanueva et al. [36]) can be used to generate
high-resolution spectra of planetary bodies (e.g., planets, moons, comets, exoplanets). Knowledge
of the atmospheric transmission is also important for ground-based astronomy observations, and
some tools for the correction of telluric absorption are available, e.g., MolecFit ([37], see also
https://www.uibk.ac.at/eso/software/molecfit.html.en) and TAPAS (Transmissions Atmosphériques
Personnalisées Pour l’AStronomie, [38], online at http://cds-espri.ipsl.fr/tapas/) (both codes use
LblRTM). An early attempt to a “virtual lab” providing a web interface to MIRART (the Fortran 77
predecessor of GARLIC, [39]) and FASCODE is described in Ernst et al. [40].

In general, RTMs incl. lbl models work as a kind of “black-box”. Given a set of specifications
on spectral range, atmospheric conditions, geometry etc. compiled in an input file (or configuration
file etc., e.g., the TAPE5 used by LOWTRAN, MODTRAN, and FASCODE), the program is executed
reading this input file (and probably some further auxiliary files, e.g., the lbl database) and one or
several spectra (transmission, radiance, . . . ) are returned (e.g., saved in file(s)). This approach is clearly
advantageous when numerous transmission and/or radiance spectra must be generated, e.g., for the
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operational analysis of thousands or millions of observed spectra. However, to better understand
the physics of radiative transfer, inspection of intermediate variables can provide useful insight. For
example, the selection of an appropriate spectral range or measurement geometry is crucial for the
design and setup of a new measurement system, and analysis and visualization of line parameters,
absorption cross sections and coefficients, layer optical depths, etc. can be useful. Methods and
tools have been developed for the “automated” definition of “microwindows”, i.e., spectral intervals
optimized for retrieval of temperature or molecular concentrations from thermal emission infrared
observations (e.g., [41–46]). Despite these and similar efforts interactive and flexible RTMs with an
easy access to all kind of intermediate variables (“step-by-step”, similar to a debugger) appear to be
useful, also for pedagogical purposes.

Py4CAtS—Python for Computational Atmospheric Spectroscopy—has been developed with
this intention. Since its first release in the mid-1990s [47,48] Python has become increasingly
popular for scientific computing [49,50]. Thanks to its numerous extension packages, in particular
NumPy/SciPy [51], the “Python-based ecosystem” ([52], https://scipy.org/) is widely considered to
be the language of choice in many areas, e.g., atmospheric science and astrophysics [53–55].

Originally, the development of Py4CAtS was motivated by the idea of computational steering [56],
i.e., numerically time-consuming tasks such as the lbl evaluation of molecular absorption cross sections
are performed by a code (e.g., GARLIC subroutines) written in compiled languages such as Fortran
(or C, C++, . . . ) that is made accessible from Python (or another scripting language) using a wrapper
such as PyFort [57] or F2Py [58]. More precisely, the intention was to call subroutines of GARLIC
from Python. Unfortunately porting the wrapper code from one machine to another turned out to
be difficult and time-consuming with early versions of PyFort. However, thanks to the increased
performance of NumPy a Python implementation of lbl cross sections became feasible, i.e., the interface
to GARLIC’s subroutines became less important. Accordingly, the further development of GARLIC
and Py4CAtS became largely independent, and Py4CAtS is now a full lbl radiative transfer tool
kit delivering absorption cross sections and coefficients, optical depths, transmissions, weighting
functions, and radiances.

The paper is organized as follows: After a brief review of the basic facts of lbl infrared and
microwave (for brevity simply IR in the following) radiative transfer in the following section some
numerical and implementation aspects are discussed in Section 2.2. Usage of the code as well as some
implementation details are presented in Section 3. The paper continues with a discussion of several
aspects in Section 4 before the final conclusion in Section 5. Implementation aspects are described in
the Appendix A.

2. Theory and Methods

2.1. Molecular Absorption and Radiative Transfer

Radiative transfer in the IR is essentially described by the Schwarzschild equation and
Beer-Lambert law (assuming negligible scattering and local thermal equilibrium in an inhomogeneous
atmosphere [1–3]). Given pressure p and temperature T and line parameters from HITRAN, GEISA, etc.
the first step of a simulation is to compute the absorption cross section (xs) for a particular molecule m

km(ν, p, T) = ∑
l

Sml(T) g(ν; ν̂ml , γml(p, T)) . (1)

where ν is the wavenumber and the sum comprises all relevant lines characterized by position ν̂ml ,
strength Sml , and broadening parameter γml . The line strength S(T) at temperature T is obtained as
(note that indices for lines and molecules have been omitted)

S(T) = S(T0)
Q(T0)

Q(T)
exp (−Ei/kBT)
exp (−Ei/kBT0)

1 − exp (−hcν̂/kBT)
1 − exp (−hcν̂/kBT0)

. (2)

https://scipy.org/
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with reference strength S(T0) and lower state energy Ei from the database; Q(T) is the product of
rotational and vibrational partition functions (for details see [25], subsection 3.4 or [59]) and c, h, and
kB are speed of light, the Planck constant, and the Boltzmann constant, respectively. The combined
effect of pressure broadening (corresponding to a Lorentzian profile gL) and Doppler broadening
(corresponding to a Gaussian profile gG) is described by a convolution resulting in the Voigt line
profile [60]

gV(ν− ν̂, γL, γG) = gL ⊗ gG =
∫ ∞

−∞
dν′ gL(ν− ν′, γL) × gG(ν

′ − ν̂, γG) . (3)

The Lorentz and Gauss half widths γ (at half maximum, HWHM) are pressure- and temperature-
dependent,

γL = γ0
L

p
p0

(
T0

T

)n
(4)

γG = ν̂

√
2 ln 2 kBT

µc2 (5)

where the air-broadening coefficient γ0
L and exponent n are given in the database for reference pressure

p0 and temperature T0, and µ is the molecular mass. Please note that contributions to the Lorentzian
width (4) due to self-broadening have been ignored: Except for water at Earth’s bottom of atmosphere
(BoA), molecular mixing ratios are usually very small, and the self-broadening contribution would be
small to negligible. Moreover, the self-broadening coefficient is often close to the foreign broadening
coefficient (or even undefined, at least for older versions of HITRAN and GEISA). Clearly, for planetary
atmospheres (e.g., Mars or Venus) self-broadening can be an important issue.

The increasing quality of spectroscopic observations has indicated deficiencies of the Voigt profile,
and several more advanced profiles have been suggested [61,62]. In addition to the Lorentz, Gauss,
and Voigt profile, implementations of the Rautian and speed-dependent Voigt profile [63] are available.

The absorption coefficient (ac) is defined as the sum of all molecular cross sections scaled by the
molecular number densities nm (in general depending on altitude z and the corresponding pressure)

α(ν, z, p, T) = ∑
m

nm(z) km(ν, p(z), T(z)) . (6)

Integration of the absorption coefficient along the line-of-sight gives the optical depth (od), i.e., for
a plane-parallel atmosphere and a vertical path from altitude zlo to zhi

τ(ν) =
∫ zhi

zlo

α(ν, z, p, T)dz . (7)

This is closely related to the monochromatic transmission describing the ratio of incoming and
outgoing radiation

T (ν) = exp(−τ(ν)) . (8)

Finally, the integral form of Schwarzschild’s equation gives the (spectral) radiance or intensity (ri)

I(ν) = Ib(ν) e−τb(ν) +

τb∫
0

B(ν, T(τ′)) e−τ′ dτ′ (9)

= Ib(ν) e−τb(ν) −
sb∫

0

B(ν, T(s′))
∂T
∂s′

ds′ (10)
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where the first term describes an attenuated background contribution Ib at a distance sb from the
observer (corresponding to the optical depth τb), e.g., from Earth’s (or a planet’s) surface in case of
nadir-viewing. The source function in the second term is Planck’s function depending on temperature,

B(ν, T) =
2hc2ν3

exp(hcν/kBT)− 1
. (11)

The finite spectral resolution of measured spectra can be modeled by convolution of the
monochromatic transmission (8) and/or radiance (9) with an appropriate spectral response function
(SRF, a.k.a. instrument line shape, ILS), e.g.,

Ĩ = I ⊗ SRF . (12)

Weighting functions (wf ) are an important concept for atmospheric temperature sounding and
are a measure of the contribution of a particular atmospheric layer to the radiation seen by an observer,
see Equation (10). They are defined by ∂T

∂z for a vertical path, or more generally

∂T (ν, s)
∂s

= − T (ν, s) α(ν, s) (13)

for a slant path with s = z/ cos θ and zenith angle θ (with θ = 0 and θ = 180◦ for vertical uplooking
and downlooking, respectively).

2.2. Numerics

2.2.1. Lbl Molecular Absorption Cross Sections: Multigrid Voigt Function

For the computation of the Voigt profile gV (3) depending on three variables it is convenient to
introduce the Voigt function K(x, y) depending on two variables, essentially the distance x to the center
peak and the ratio y of the line widths

gV(ν− ν̂, γL, γG) =

√
ln 2/π

γG
K(x, y) (14)

K(x, y) =
y
π

∞∫
−∞

e−t2

(x− t)2 + y2 dt (15)

with x =
√

ln 2 (ν− ν̂)/γG and y =
√

ln 2 γL/γG. As there is no closed-form solution for this
convolution integral, numerical approximations are mandatory. Most modern algorithms consider the
complex error function [64,65] whose real part is identical to the Voigt function

w(z) ≡ K(x, y) + iL(x, y) =
i
π

∫ ∞

−∞

e−t2

z− t
dt with z = x + iy . (16)

Rational approximations, closely related to continued fractions and defined as the quotient of
two polynomials [66,67], have been used successfully for a large variety of functions including the
complex error function (e.g., [68–70]). Py4CAtS (like GARLIC) uses an optimized combination [71] of
the Humlíček [69] and Weideman [70] algorithms

w(z) =


iz/
√

π

z2− 1
2

|x|+ y > 15

π−1/2

L−iz + 2
(L−iz)2

N−1
∑

n=0
an+1Zn otherwise

(17)
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where Z = L+iz
L−iz and L = 2−1/4N1/2. For N = 24 this provides an accuracy better than 10−4

everywhere except for very small y and intermediate x that are hardly relevant in practice; for N = 32
the relative error |∆K|/K is less than 8× 10−5 for all x, y of interest.

Because of the huge number of Voigt function evaluations even highly optimized complex error
function algorithms are insufficient and further optimizations are mandatory. Py4CAtS evaluates the
monochromatic cross sections on a uniform (equidistant) wavenumber grid with the spacing estimated
as a fraction of the “typical” line widths, i.e., δν = 〈γ〉/n with the mean half width 〈γ〉 and a default
sampling rate n = 4. In case of the Voigt line profile (3), its width is estimated using an approximation
due to Whiting [72] (accurate to about one percent)

γV ≈ 1
2

(
γL +

√
γ2

L + 4γ2
G

)
. (18)

Please note that δν and hence the number of grid points and cross section values are dependent
on pressure, temperature, and molecular mass (via Equations (4), (5), and (18)), and change with
atmospheric level and molecule. These wavenumber steps are clearly appropriate in the line center
region; however, in the line wings the profiles are relatively smooth (roughly g(ν− ν̂) ≈ 1/(ν− ν̂)2

for the Lorentz or Voigt profile) and a coarser grid would be sufficient.
Py4CAtS uses a two- or three-grid approach [73]. In the two-grid scheme, the Voigt line profile is

calculated on the fine grid only in the line center region, and on a coarse grid (typically with spacing
∆ν = 8δν) in the entire spectral region. The line profiles are accumulated independently to the fine and
coarse grid cross sections, i.e., the interpolation of the coarse grid cross section is done only once after
all lines have been summed up. This allows a speed-up roughly in the order of the ratio of fine and
coarse grid points. A significant further speed-up can be achieved with three grids of fine, medium,
and coarse resolution and exploitation of the asymptotic properties of the profile function.

2.2.2. Integration of the Beer and Schwarzschild Equations

From the very beginning of the code development (MIRART, GARLIC, and Py4CAtS) numerical
schemes have been used whenever possible. Hence, in contrast to most lbl radiative transfer
codes dividing the atmosphere into a series of layers with constant pressure, temperature, and
concentrations (Curtis-Godson approximation), Py4CAtS and GARLIC are level-based and exploit
numerical quadrature for Equations (7) and (9). In particular, the optical depth is approximated by
the sum of absorption coefficients according to the trapezoid rule (e.g., [66]). For the Schwarzschild
Equation (9) both codes use optical depth τ as integration variable and assume that the Planck function
varies linearly or exponentially with optical depth within a layer,

B(τ) = b0B(τl) + b1B(τl+1) with b0 =
τl+1 − τ

τl+1 − τl
and b1 =

τ − τl
τl+1 − τl

(19)

B(τ) = B(τl) eβ(τ−τl) with β = log
(

B(τl)/B(τl+1)
)
/(τl+1 − τl) (20)

for τl ≤ τ ≤ τl+1 (corresponding to the altitude interval [zl , zl+1]). Note the slightly different notation
for the Planck function’s argument here compared to Equation (11) (the optical depth depends on
wavenumber and temperature). With both approximations the integral (9) can be computed analytically
within a layer.

Because the overall runtime is essentially determined by the evaluation of the cross sections, the
speed of level-based and layer-based radiative transfer is equivalent (assuming that the number of
levels and layers is comparable). With respect to accuracy, none of the two approaches is superior or
inferior; in fact, neither of the intercomparison studies [74–76] identified path integration as an issue.
For an in-depth discussion of the “linear-in-τ” vs. “exponential-in-τ” approximations as well as some
further quadrature schemes see subsection 4.1 of the GARLIC paper [25].
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3. The Package: Usage and Implementation

In Py4CAtS the individual steps of an IR radiative transfer computation are implemented in a
series of modules and functions, see Figure 1:

• higstract: extract (select) lines of relevant molecules in the spectral range of interest;
• lbl2xs: compute lbl cross sections for given pressure(s) and temperature(s): Equation (1);
• xs2ac: multiply cross sections with number densities and sum over all molecules: Equation (6);
• ac2od: integrate absorption coefficients along the line-of-sight through the atmosphere to the

vertical optical depth (7);
• od2ri: solve Schwarzschild equation (9), i.e., integrate the Planck function (11) vs. optical depth

along the line-of-sight through atmosphere (assuming a plane-parallel, non-scattering atmosphere
in local thermal equilibrium).

Version May 3, 2019 submitted to Atmosphere 7 of 26

lines xs ac od ri
higstract lbl2xs xs2ac ac2od od2ri

lbl2od
lbl2ac xs2od

wf

ac2wfp, T VMR Geo

Figure 1. From Hitran/Geisa via cross sections (xs) and absorption coefficients (ac) to optical depths
(od) and radiation intensity (ri). Note that cross sections are pressure and temperature (pT) dependent,
absorption coefficients also depend on composition (VMR), and optical depth and radiation intensity
depends on path geometry (geo).

• od2ri: solve Schwarzschild equation (9), i.e. integrate the Planck function vs. optical depth along215

the line-of-sight through atmosphere (assuming a plane-parallel, non-scattering atmosphere in216

local thermal equilibrium).217

All Python source files along with supplementary files are delivered as a single tarball. Unpacking218

this file will create four directories with the source files in src, data in data, documentation in doc,219
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in the src directory (e.g. bin/lbl2xs is a link to src/lbl2xs.py), and in the following subsection221
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/home/schreier/py4cats/src/py4cats.py. Importing Py4CAtS can be easily done automatically by225
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to run at IPython startup3
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3.1. Running Py4CAtS in the Classical Console228

A typical session in a Unix/Linux environment (console/terminal) is shown in Fig. 2. After229

creating a new directory the first step is to extract the relevant lines from the HITRAN or GEISA data230
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range (here 50 to 60 cm−1) or a molecule has to be specified (for convenience, higstract -m main ...232

can be used to extract line data for the first seven molecules (H2O, CO2, . . . , O2) of HITRAN or GEISA.)233

higstract saves the data in several tabular ASCII files, one file per molecule. By default, each file has234

five columns for line position ν̂, strengths S, energy E, air-broadening parameter γ0
L, and the exponent235

n and is named as H2O.vSEan etc., where the extension indicates the columns (further parameters, e.g.236

for self-broadening, can be requested with the format option -f).237

The next step is to compute absorption cross sections according to Eq. (1). Without any option,238

cross sections are computed for the reference pressure and temperature used in the line parameter239

database, i.e. p0 = 1013.25 mb and T0 = 296 K for HITRAN and GEISA. Alternatively, pressure(s) and240

temperature(s) can be specified with the -p and -T option. For atmospheric applications it is more241

convenient to read the data from a file (e.g. “midlatitude summer” (mls) data assuming the first three242

3 In IPython 6 this list is defined by c.InteractiveShellApp.exec_files in .ipython/profile_default/iypthon_config.py.
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GEISA, the format of a single record (corresponding to a “physical line”) has changed slightly from version to version, and
Py4CAtS parses the file name to select the appropriate reader.

Figure 1. From HITRAN/GEISA via cross sections (xs) and absorption coefficients (ac) to optical
depths (od) and radiation intensity (ri). Please note that cross sections are pressure and temperature
(pT) dependent, absorption coefficients also depend on composition (VMR), and optical depth and
radiation intensity depends on path geometry (geo).

All Python source files along with supplementary files are delivered as a single tarball. Unpacking
this file will create four directories with the source files in src, data in data, documentation in doc,
and executable scripts in bin. Actually, the files in the bin directory are just links to the scripts in
the src directory (e.g., bin/lbl2xs is a link to src/lbl2xs.py), and in the following subsection
it is assumed that the bin directory is included in the shell’s search path for executables (PATH
environment variable for Unix-like systems). When Py4CAtS is used inside the IPython interpreter
(see Section 3.2), all functions etc. should have been imported using a statement such as %run
/home/schreier/py4cats/src/py4cats.py. Importing Py4CAtS can be easily done automatically by
an appropriate modification of the (I)Python configuration file, e.g., by adding this file to the list of files
to run at IPython startup. (In IPython 6 this list is defined by c.InteractiveShellApp.exec_files in
.ipython/profile_default/iypthon_config.py.)

3.1. Running Py4CAtS in the Classical Console

A typical session in a Unix/Linux environment (console/terminal) is shown in Figure 2. After
creating a new directory, the first step is to extract the relevant lines from the HITRAN or GEISA data
base using higstract. (Data are available at hitran.org and http://cds-espri.ipsl.upmc.fr/. Py4CAtS
can read the original data file as is, i.e., the 160-byte fixed-width format used since HITRAN 2004
or the 100-byte format of the older HITRAN versions. Regarding GEISA, the format of a single
record (corresponding to a “physical line”) has changed slightly from version to version, and Py4CAtS
parses the file name to select the appropriate reader.) Please note that for this command at least one
option is mandatory, i.e., the spectral range (here 50 to 60 cm−1) or a molecule must be specified (for
convenience, higstract -m main ... can be used to extract line data for the first seven molecules
(H2O, CO2, . . . , O2) of HITRAN or GEISA.) higstract saves the data in several tabular ASCII files,
one file per molecule. By default, each file has five columns for line position ν̂, strengths S, energy E,

hitran.org
http://cds-espri.ipsl.upmc.fr/
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air-broadening parameter γ0
L, and the exponent n and is named as H2O.vSEan etc., where the extension

indicates the columns (further parameters, e.g., for self-broadening, can be requested with the format
option -f).
Version May 3, 2019 submitted to Atmosphere 8 of 26

mkdir example; cd example
higstract -x 50,60 /data/hitran/2000/lines
lbl2xs H2O.vSEan CO2.vSEan O3.vSEan # one cross section per molecule at HITRAN p, T
lbl2xs -o xSec --pT /data/atmos/mls.xy --cpT 1,2 H2O.vSEan CO2.vSEan O3.vSEan
xs2od -o mls.od /data/atmos/mls.xy H2O.xSec CO2.xSec O3.xSec
od2ri -o mls_uplook.ri mls.od # default zenith angle 0dg, downwelling radiation
od2ri -o mls_nadir.ri -T 294 -z 180 mls.od # observer @ ToA, upwelling rad. incl. surface

# bypassing the cross section and absorption coefficient file I/O
lbl2od -o mls.od /data/atmos/mls.xy H2O.vSEan CO2.vSEan O3.vSEan

Figure 2. Typical workflow for lbl modelling with Py4CAtS in a Unix-like shell: Hitran/Geisa→ line
parameter extracts→ cross sections→ absorption coefficients→ optical depth→ radiance / intensity.
Output is not shown. All functions support the -h option to ask for help, in particular a list of all
available options/flags. For some notes on option parsing see Appendix A.7.
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Figure 2. Typical workflow for lbl modeling with Py4CAtS in a Unix-like shell: Hitran/Geisa→ line
parameter extracts→ cross sections→ absorption coefficients→ optical depth→ radiance / intensity.
Output is not shown. All functions support the -h option to ask for help, in particular a list of all
available options/flags. For some notes on option parsing see Appendix A.7.

The next step is to compute absorption cross sections according to Equation (1). Without any
option, cross sections are computed for the reference pressure and temperature used in the line
parameter database, i.e., p0 = 1013.25 mb and T0 = 296 K for HITRAN and GEISA. Alternatively,
pressure(s) and temperature(s) can be specified with the -p and -T option. For atmospheric applications
it is more convenient to read the data from a file (e.g., “midlatitude summer” (mls) data assuming the
first three column list altitudes, pressure, and temperature). Again, the cross sections will be saved
in files, one per molecule, using NumPy’s pickle format or alternatively ASCII tabular or HITRAN
formatted files.

The computation continues to absorption coefficients by summing all cross sections (level-by-level)
scaled with the molecular concentrations, cf. Equation (6), and integrating these to the layer (or delta)
optical depth, Equation (7). Finally, the radiance seen by an observer at ground and by a spaceborne
observer (actually an observer at top of atmosphere, ToA) is computed.

In each step of the calculation the results are written to file(s), and read in for the next step.
Obviously, this can be quite time-consuming esp. for ASCII files (reading NumPy pickled files is
surprisingly fast). In particular, the cross section files can be very large (depending on the spectral
region, the size of the spectral interval, the number of molecules, and atmospheric levels, etc.). For
many applications some of the intermediate quantities are not of interest, and the file transfer operations
can be omitted, e.g., (see the dashed arrows in Figure 2)

• lbl2ac compute lbl cross sections and combine to absorption coefficients;
• lbl2od compute lbl cross sections and absorption coefficients, then integrate to optical depth.
• xs2od multiply cross sections with densities, sum over molecules, and integrate to optical depth.

In addition to these scripts there are several further Python files that contain functions used by
these “main” scripts (e.g., to read or write the data), but can also be executed stand-alone. (Technically,
the very first line of all executable scripts is something like #!/usr/bin/env python and the last
segment of the module starts with if __name__==’__main__’:.) The scripts lines.py, xSection.py,
absCo.py, oDepth.py can be used to read, extract subsets in the spectral or altitude regime, summarize,
plot, or reformat the respective data. molecules.py collects properties (e.g., mass) of the IR relevant
molecules and the ID numbers used in the HITRAN and GEISA database. atmos1D.py is useful to
handle the atmospheric data (p, T, VMRs, . . . ). The functions in hitran.py and geisa.py are used by
higstract.py, but can be used as a “low-level” interface to the respective dataset. Unit conversions are
implemented in the cgsUnit.py module (note that internally Py4CAtS uses cgs units consistently, see
Appendix A.6). Furthermore, radiance2radiance.py and radiance2Kelvin.py allow the conversion
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of radiance spectra, e.g., wavenumber←→ wavelength or to equivalent brightness temperature using
the inverse of Planck’s function (11).

The lbl2ac, lbl2od, or xs2od scripts clearly help to avoid the time-consuming reading and
writing of some of the intermediate quantities, however, these scripts turn Py4CAtS back into the
“black-box” radiative transfer discussed above.

When executing the series of individual steps, the subsequent steps must re-read the data saved in
the previous step(s) from file(s) and check the consistency of the data. For example, the xs2ac.py script
will test if all cross sections cover the same spectral interval, and if the pressures and temperatures
match those in the atmospheric data file. Accordingly, a substantial part of the code is devoted to
implement appropriate tests. A prerequisite for these tests is that all relevant attributes are saved in
the file along with the spectra; for example, a single cross section is saved along with its pressure,
temperature, and wavenumber grid specification.

3.2. Py4CAtS Used within the (I)Python and Jupyter Shell

Access to intermediate quantities is especially useful for visualization. In the (I)Python interpreter,
graphics packages such as Matplotlib [77] allow the plotting of any kind of array. For plotting as well
as for the subsequent processing steps it is important to have all attributes of a spectrum available.
However, a function returning an array for the spectrum together with its attributes (e.g., with a
call such as lines_h2o, pRef, tRef = higstract(’/data/hitran/86/lines’, ’H2O’)) would be
cumbersome, and collecting the return values in a dictionary would not significantly improve this. In
Py4CAtS this problem is solved by means of subclassed and/or structured NumPy arrays that will be
briefly described (in Appendices A.4 and A.5) after a presentation of the typical workflow illustrated
in Figure 3.

3.2.1. Atmospheric Data

Knowledge of the atmospheric state, i.e., pressure, temperature, and molecular composition as
a function of altitude, is indispensable for lbl modeling and radiative transfer. The Py4CAtS scripts
called from the console automatically read these data from a file (along with the line data, cross
section data, etc.) This is essentially accomplished by the function atmRead of the atmos1D.py module,
e.g., the command mls = atmRead(’/data/atmos/20/mls.xy’) returns the data of the “midlatitude
summer” atmosphere of the AFGL dataset [78] regridded to 20 levels (see the very first input labelled
In[1]: in Figure 3). atmRead essentially expects a tabular ascii file with rows corresponding to
the atmospheric levels and columns for altitudes, pressure (and/or air density), temperature, and
molecular concentrations. Two comment lines are mandatory: #what: followed by the column
identifiers and #units: followed by the physical units (e.g., “km”).

mls is an example of a structured array (see Appendix A.5), where the individual profiles can
be accessed by their name, e.g., mls[’T’] or mls[’H2O’], and the data for a specific level l are given
by the row index, e.g., mls[0] or mls[-1] for the bottom and top level, respectively. Please note that
“rows” and “columns” can be specified in two ways; for example, the BoA temperature is mls[’T’][0]
== mls[0][’T’].
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Jupyter QtConsole 4.3.1
Python 3.6.5 (default, Mar 31 2018, 19:45:04) [GCC]

In[1]: # get two mid latitude atmospheres
...: mls = atmRead('/data/atmos/20/mls.xy')
...: mlw = atmRead('/data/atmos/25/mlw.xy', zToA=50)

Atmos1d: got p, T, air and 7 gases at 20 levels
Atmos1d: got p, T, air and 7 gases at 18 levels

In [2]: # HItran-GeiSa-exTRACT ---> lineListDictionary
...: llDict = higstract('/data/geisa/87/lines', (2100,2150), molecule='main')

9771 lines of 5 molecule(s), returning a dictionary

In [3]: # CO cross section at database pressure and temperature
...: xs = lbl2xs(llDict['CO'])
...: # cross sections for other pressures or temperatures
...: xs_10mb = lbl2xs(llDict['CO'], 1e4) # p=10mb
...: xss = lbl2xs(llDict['CO'], temperature=[200,250,300])
...: # a dictionary of x-section lists (for all p, T and gases)
...: xssDict = lbl2xs(llDict, mls['p'], mls['T'])

In [4]: # proceed step-by-step
...: acList = xs2ac(mls, xssDict) # absorption coefficients
...: dodList = ac2dod(acList) # delta optical depths

In [5]: # alternatively bypass intermediate quantities, e.g.
...: dodList = lbl2od(mls,llDict) # delta opt.depths

In [6]: # sum/combine optical depths and plot
...: odPlot([dodList[0], dodList[1]]) # the bottom layers
...: odPlot(dodList[0]+dodList[1]) # and their sum

In [7]: # radiation intensity seen by uplooking observer at BoA
...: radUp = dod2ri(dodList)
...: # and downlooking observer at ToA (incl. surface @ 294K)
...: radNadir = dod2ri(dodList, 180, mls['T'][0])

Figure 3. Typical workflow of an IPython session (output not shown except for first two commands).
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All data are stored internally in cgs units, e.g., pressure is converted to dyn/cm2 = g/cm/s2.
Molecular concentrations are stored as number densities (i.e., if the data file contains volume
mixing ratios (VMR), these are converted to densities by multiplication with the air number density
n = p/(kT)). VMR can be obtained with the vmr function, e.g., vmr(mls). Further convenience
functions of the atmos1D.py module include vcd to integrate the (molecular and air) number densities
along a vertical path through the atmosphere to the “Vertical Column Density” (N =

∫
n(z)dz with

default limits given by top and bottom of atmosphere, zToA and zBoA), cmr for the “Column Mixing
Ratio”, i.e., the ratio of the molecular VCDs and the air VCD.

The atmRegrid (mls, zNew, ...) function allows interpolation of the atmospheric data to a
new altitude grid. If the limits of the new grid exceed the old limits, atmRegrid prints a warning.
The actual results are depending on the chosen interpolation scheme; in case of the default linear
interpolation NumPy’s interp function simply repeats the very first or last value at BoA or ToA,
respectively.

Data from different files can be combined with the atmMerge function, e.g.,
combiAtm = atmMerge (mlw, traceGases) (here the second data set “traceGases” is likely
comprising only concentration profiles that can be read with the vmrRead function.) If the two data
sets are given on different altitude grids, profiles from the second set are interpolated to the grid of
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the first set. If a profile is defined in both data, then by default the second is ignored unless the flag
replace is “switched on”.

The data can be easily visualized using the standard Matplotlib [77] functions
(e.g., plot(mls[’T’],mls[’z’])), but for convenience Py4CAtS provides a function atmPlot
that expects a single structured array or a list thereof as first argument. (For some general remarks on
visualization see Appendix A.2.) For example, atmPlot(mls) shows temperature vs. altitude, and
atmPlot([mls,mlw], ’O3’, ’mb’) compares ozone profiles of the midlatitude summer and winter
atmospheres with pressure as vertical axis. Finally, the function atmSave can be used to write the data
to file (see also Appendix A.1).

3.2.2. Line Data

For the following presentation assume that you are interested in carbon monoxide (CO) retrievals
from the thermal IR observations as done by IASI (e.g., [79,80]) or AIRS [81].
llDict = higstract(’/data/hitran/2012/lines’, (2100,2150)) returns about 26 thousand lines
in a dictionary of 22 line lists, more precisely structured arrays, one array for each molecule with
transitions in this spectral range around the CO fundamental band around 2143 cm−1. Actually,
these arrays are subclassed NumPy arrays (with type lineArray) holding some extra information as
attributes, e.g., llDict[’CO’].p and llDict[’CO’].t gives HITRAN’s reference pressure 1013.25×
103 dyn/cm2 and temperature 296.0 K, respectively. If lines of a single molecule are extracted
(e.g., higstract(’/data/geisa/2003/lines’, molecule=’CO’)), a single lineArray is returned.
The option molecule=’main’ returns the line parameters of the “main” molecules only, i.e., the
molecules with ID numbers ≤ 7 of the HITRAN and GEISA database.

Similar to the atmospheric data, the line data can be plotted using Matplotlib’s functions, or,
more conveniently, with Py4CAtS’ function, e.g., atlas(llDict). The atlas function (named after
Park et al. [82]) can be used with a single lineArray or a list or dictionary of lineArrays and displays
line strength vs. position by default.

3.2.3. Cross Sections

In the next step the line parameters can be used to compute molecular cross sections, see the
In[3]: block in Figure 3. xs = lbl2xs(llDict[’CO’]) returns the cross section of CO in the spectral
range around 2140 cm−1 for the database (here HITRAN) reference pressure and temperature. A single
cross section is stored in a subclassed NumPy array (i.e., type(xs) → xsArray) with “attributes”
such as lower and upper wavenumber bound, pressure, temperature, and molecule stored in further
items, e.g., xs.x or xs.p. As a default, the Voigt profile is considered. Please note that the cross sections
are evaluated on a uniform wavenumber grid (with spacing defined by the mean line width, see
Section 2.2.1), so it is sufficient (and more memory efficient) to save the very first and very last grid
point only.

Cross sections for different pressures and temperatures are obtained by specifying the second or
third function argument of lbl2xs. Please note that the data type returned by lbl2xs in these examples
is different, i.e., the type is depending on the number of p, T pairs and the type of the line data (a single
or a dictionary of lineArray, essentially the number of molecules). In the very first example (CO and
one p, T) in Figure 3 a single subclassed NumPy array xsArray is returned, whereas a list of xsArray’s
is returned for a list of p, T pairs and a single molecule. Finally, the last example gives a dictionary of
lists of xsArray’s, each list for a single molecule and a dictionary entry for each molecule.

The xSection.py module has a function xsPlot to visualize the cross sections, e.g., xsPlot(xss).
This function works recursively (cf. Appendix A.3), i.e., it can be called with a single xsArray, a list
thereof, or a dictionary of (lists of) xsArray’s. Figure 4 demonstrates the combined use of the atlas
and xsPlot functions exploiting Matplotlib’s function twinx to share the common wavenumber axis.
The functions xsInfo and xsSave can be used with a single cross section array, a list of cross sections,
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or a dictionary of lists to summarize the cross sections’ properties or to write the data to file(s); Reading
cross section data from file(s) is possible with the xsRead function.
Version May 3, 2019 submitted to Atmosphere 11 of 26
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Figure 4. Combination of line atlas and xsPlot. This example has been generated with
dll = higstract(’/data/hitran/2000/lines’,(4273,4312), ’main’) # dict of line lists
xss = lbl2xs(dll) # dict of cross sections
atlas(dll); twinx(); xsPlot(xss)
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.

3.2.4. Absorption Coefficients

Given cross sections of some molecules on a set of p, T levels along with the atmospheric data, in
particular the molecular number densities, the absorption coefficient (6) for all levels are generated
with acList = xs2ac (mls, xssDict). The list contains a spectrum for each atmospheric p, T level,
where each spectrum is stored in a subclassed NumPy array: type(acList[0]) → acArray similar
to the cross sections, i.e., with attributes stored as, e.g., ac.x and ac.z for the wavenumber range and
altitude, respectively. Please note that the number of levels in the atmospheric data set (here mls)
and the lengths of the cross section lists in the xssDict dictionary must be identical. Furthermore, all
molecules with cross section data must be contained in the atmospheric data (but there can be some
“unused” molecules in the atmospheric data set).

The absorption coefficients can be plotted with the standard Matplotlib functions, but Py4CAtS
also has a function to make this easier: acPlot(acList). The function acInfo(acList) prints essential
information about the absorption coefficients (Actually it is a loop calling the corresponding info
method of acArray, i.e., for ac in acList: ac.info()).

The data can be saved to file (tabular ascii) with the standard NumPy savetxt or Py4CAtS’
awrite function. The acSave function automatically saves the absorption coefficients along with
the atmospheric data, and the acRead function allows reading of the data (incl. the associated
atmosphere) back from file, e.g., absCo = acRead(acFile). Both acSave and acRead also support
HITRAN formatted files or Python/NumPy’s internal pickle format.

3.2.5. Optical Depths

The next step is to integrate the absorption coefficients along the (vertical) path through the
atmosphere using the function ac2dod (see In[4] in Figure 3). Similar to cross sections and absorption
coefficients this returns a list of (nLevels-1) subclassed NumPy arrays odArray, where each list
member is essentially the delta / differential / layer optical depth spectrum along with its attributes
lower and upper altitudes, pressures, and temperatures (and the wavenumber interval, too).

The optical depths instances can be combined by addition or subtraction, e.g., the delta optical
depths of the first (bottom) two layers can be added by dodList[0]+dodList[1] (see Figure 5).
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The main purpose of the __add__ special method is to combine the optical depths from neighboring
layers, but it can also be used to sum the optical depths of different molecules in one layer.
Version May 3, 2019 submitted to Atmosphere 12 of 26

# delta optical depth list
dodl = lbl2od(mls, dictOfLineLists)

# the first two layers and their sum
odPlot([dodl[0], dodl[1],

dodl[0]+dodl[1]])
# also plot total optical depth
odPlot(dod2tod(dodl))
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Figure 5. Computing and combining optical depths.
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Figure 5. Computing and combining optical depths.

Please note that the ac2dod function (and the xs2dod, lbl2od, . . . function discussed below) only
return delta optical depths (dod), further functions can be used to convert to cumulative or total optical
depth. Summation of all layer optical depths with the dod2tod function delivers the total optical depth
and dod2cod returns the (ac)cumulated optical depth. By default, the accumulation is starting with
the very first layer (usually at BoA) and the very last element of the generated list should be the total
optical depth, whereas cod = dod2cod(dodList,True) starts accumulating with the very last layer
and the very first cod[0] corresponds to the total optical depth.

A quick-look of optical depth(s) can be generated with the odPlot function, and the data (incl. the
attributes) can be saved to file using odSave using ASCII, netcdf, or pickle format. Later, the optical
depth data can be read from file into a (new) IPython session with oDepth = odRead (odFile).

The oDepthOne function returns the distance s1 from the (uplooking or downlooking) observer
to the point, where the optical depth is one, τ(ν, s1) = 1.0, corresponding to a transmission that has
decreased to T = 1/e. This distance should roughly correspond to the location of the weighting
function maximum.

3.2.6. Weighting Functions

wgtFct = ac2wf(acList[, angle, zObs]) computes weighting functions according to
Equation (13) for an observer at altitude zObs looking in direction angle (default 180◦) and returns
a subclassed 2D NumPy array of type wfArray (with wgtFct.shape = (len(vGrid), len(sGrid))).
By default, the observer is assumed to be at ToA or BoA for viewing angles larger or smaller than 90◦.
The attributes define the wavenumber interval, path distance grid sGrid (relative to the observer (in
cm), i.e., from ToA to BoA in case of a downlooking nadir view), observer altitude, and viewing angle.
Optionally ac2wf also allows the treatment of finite field-of-view effects with an extra argument FoV to
set the type and width (HWHM, in degree) (e.g., FoV=’Gauss 7.5’).

Alternatively, given the delta/layer optical depths the weighting functions can be approximated
by finite differencing using the dod2wf(dodList,zObs,angle) function, but starting from the
absorption coefficient is much more reliable. For weighting functions of a horizontal path (zenith angle
θ = 90◦) see the first remark in Section 4.2.

The function wfSave(wgtFct, ...) and wfRead(wfFile, ...) can be used to save and read the
data, and wfPlot(wgtFct[, wavenumber, ...]) provides a simple visualization tool. If (a) specific
wavenumber(s) are given, a 2D plot is presented, otherwise a contour plot is generated. An example of
weighting functions for microwave temperature sounding in the region of the oxygen rotation band is
given in Figure 6.
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Figure 6. Combination of wfPlot. The labels in the left plot correspond to the central wavenumbers
(in cm−1) for each of the seven SSM/T channels shown in Fig. 7.13 of Liou [2]. The second number
indicates the altitude grid point (in km) next to the maximum. This example has been generated with
sas = atmRead(’/data/atmos/50/subarcticSummer.xy’, zToA=80)
dll = higstract(’/data/hitran/2000/lines’,(0,10), ’main’); del dll[’CO’]
acList = lbl2ac(sas, dll, (1.65,2))
wgtFct = ac2wf(acList, 180)
ssmtFreqs=array([50.5, 53.2, 54.35, 54.9, 58.825, 59.4, 58.4,])*1e9/c
subplot(121); wfPlot(wgtFct, wavenumber=ssmtFreqs)
subplot(122); wfPlot(wgtFct, nLevels=50)
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Figure 6. Combination of wfPlot. The labels in the left plot correspond to the central wavenumbers
(in cm−1) for each of the seven SSM/T channels shown in Fig. 7.13 of Liou [2]. The second number
indicates the altitude grid point (in km) next to the maximum. This example has been generated with
sas = atmRead(’/data/atmos/50/subarcticSummer.xy’, zToA=80)
dll = higstract(’/data/hitran/2000/lines’,(0,10), ’main’); del dll[’CO’]
acList = lbl2ac(sas, dll, (1.65,2))
wgtFct = ac2wf(acList, 180)
ssmtFreqs=array([50.5, 53.2, 54.35, 54.9, 58.825, 59.4, 58.4,])*1e9/c
subplot(121); wfPlot(wgtFct, wavenumber=ssmtFreqs)
subplot(122); wfPlot(wgtFct, nLevels=50)

.

3.2.7. Radiance/Intensity

The dod2ri function evaluates the Schwarzschild integral (9) and returns the radiance or intensity,
again a subclassed NumPy array riArray with attributes for wavenumber interval, altitude, pressure,
and temperature minimum/maximum, observer zenith angle, and background temperature, see the
last block in Figure 3. Without optional arguments, the radiance seen by an uplooking observer at the
surface (BoA) is computed, whereas dod2ri (dodList, 180.0, mls[’T’][0]) gives the radiance for
a nadir-viewing observer looking down from ToA with an angle of 180.0◦ (relative to the zenith angle)
to Earth; the third argument specifies the surface temperature Tb (here the BoA temperature of the
midlatitude summer (mls) atmosphere) that is used to evaluate a Planck background contribution in
(9) with Ib(ν) = B(ν, Tb).

Please note that dod2ri does not have any argument to specify the observer altitude, i.e., it
computes the radiance at BoA or ToA for an angle smaller or larger than 90◦ (a horizontal path with
angle 90◦ is not implemented). If you want to model the radiance, say, for an airborne observer
downlooking from 10 km and have a list of layer optical depths for an atmosphere with a uniform
altitude grid of 1 km (hence layer thickness 1 km), supply a list of the first ten optical depths only, i.e.,
dod2ri(dodList[:10],180). (See also the remark on limitations in Section 4.6.)

A further Boolean optional argument can be given to switch to the “B exponential-in τ”
approximation instead of the default “B linear-in τ”, see Section 2.2.2.

To plot and save the radiance spectrum (along with the wavenumber grid) in a file use the
riPlot and riSave functions, respectively. To convolve the radiance spectrum I with a spectral
response function according to (12), a special method convolve has been implemented, e.g., radBox1
= radiance.convolve() uses the default “box” with a half width 1.0 cm−1. Likewise, radGauss2
= radiance.convolve(2.0,’G’) uses a Gaussian response function with HWHM 2.0 cm−1. The
convolve special method is also available for the odArray and wfArray classes (in the first case the
convolution operates on the corresponding transmission).
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3.2.8. Shortcuts

If some of the intermediate quantities are not required, it is possible to go directly from line and
atmospheric data to optical depths using dodList = lbl2od (mls, llDict). Likewise, cross sections
and absorption coefficients can be bypassed with the lbl2ac and xs2dod functions. Please note that
lbl2ac and lbl2od “inherit” most options accepted by lbl2xs or xs2ac.

4. Discussion

4.1. Selection of Spectral Range, Contributions from Line Wings

To compute cross sections, absorption coefficients, and optical depths for some spectral range
νlo . . . νhi, all lines in an extended spectral range νlo − δ . . . νhi + δ should be considered, where δ is
typically some wavenumbers ( cm−1). However, unless specified as fourth optional argument xLimits
of the lbl2xs function or as option -x of the command line script lbl2xs.py (and similarly for the
lbl2ac and lbl2od functions), the cross sections, absorption coefficients, and optical depths returned
by Py4CAtS are computed on a uniform grid in the interval [νfirst, νlast] where the lower and upper
limits correspond to the position of the very first and last line returned by higstract. As the higstract
and lbl2xs scripts are completely independent, this extension is not done automatically. The impact
of line wing contributions on cross sections is demonstrated in Figure 7.

10 15 20 25

position ν̂ [cm−1]

10−33

10−31

10−29

10−27

10−25

10−23

10−21

10−19

S
tr

en
gt

h
S

[c
m
−

1
/(

m
ol

ec
.c

m
−

2
)]

Hitran 2008 — H2O

228 lines in 6 – 26cm−1

74 lines in 14 – 19 cm−1

43 lines in 15 – 18 cm−1

17 lines in 16 – 17 cm−1

16.0 16.2 16.4 16.6 16.8 17.0

wavenumber ν [cm−1]

10−23

10−22

cr
os

s
se

ct
io

n
k
(ν

)
[c

m
2
/m

ol
ec

]

p=1 atm and T=296 K

228 lines in 6 – 26cm−1

74 lines in 14 – 19 cm−1

43 lines in 15 – 18 cm−1

17 lines in 16 – 17 cm−1

Figure 7. Impact of line wings on H2O cross section in the ODIN [83] 501 GHz channel. A series of
cross sections has been computed taking into account more and more lines to the left and right of the
16 to 17 cm−1 window.

4.2. Optical Depths, Transmissions, and Weighting Functions for a Horizontal View

The functions ac2dod or lbl2od do not have an angle as argument, so the optical depth returned is
always the vertical optical depth through the atmosphere. If transmission (or weighting functions) for a
horizontal path (i.e., zenith angle 90◦, hence a homogeneous atmosphere) are needed, the transmission
T (ν, s) = exp (−α(ν)l) can be readily evaluated as a function of path length l given an appropriate
absorption coefficient α. Likewise, the weighting functions are easily computed according to (13) as
the product of transmission T (ν, s) times the absorption coefficient α for some lengths l.

4.3. Arbitrary Observer Positions

An observer “inside” a layer, i.e., with the observer altitude different from any atmospheric
altitude grid point, is not supported by Py4CAtS. However, if one needs an observer at a specific
altitude (e.g., 3.14159 km), one can interpolate the atmospheric profiles to a new grid including this
point and proceed as usual.
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4.4. GARLIC vs. Py4CAtS

As indicated above, Py4CAtS has originally been a (partial) re-implementation of GARLIC.
GARLIC has been thoroughly verified by intercomparisons with other lbl codes such as ARTS and
KOPRA (e.g., [74–76]). Furthermore, it has been recently validated by intercomparison with spectra
of the ACE-FTS instrument [84–86]. Figure 8 shows an intercomparison of GARLIC and Py4CAtS
brightness temperature spectra. For the monochromatic spectra differences are mostly below one Kelvin
except for a few spikes near strong lines. The convolved spectra agree within some hundredth Kelvin.

Please note that in principle the radiance spectrum could have been generated with
a single statement dod2ri(lbl2od(atmRead(’mls.xy’, higstract(’lines’,(2100,2150)), 180.,
mls[’T’][0]); however, to properly account for line wing contributions (cf. discussion in Section 4.1)
the spectral interval has been specified explicitly.

Despite the efficiency of NumPy’s array processing GARLIC is significantly faster than Py4CAtS.
In GARLIC the computation of molecular cross sections, absorption coefficients, and radiances is
exploiting the multi-core architecture of modern CPUs, i.e., parallelization by means of OpenMP (see
section 3.3 of the GARLIC paper [25]). This allows about a factor 50 speed-up for the Fortran-OpenMP
implementation compared to the NumPy implementation on an eight-core desktop for the radiance
spectra shown here.
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Figure 8. Intercomparison of equivalent brightness temperature spectra with corresponding spectra
generated with GARLIC and their difference (axis on right). Midlatitude summer atmosphere,
downlooking observer at ToA with viewing zenith angle 180◦. (Left) monochromatic spectra; (Right)
radiance convolved with a Gaussian response function with HWHM = 1 cm−1. The Py4CAtS spectra
have been generated with
vLimits = Interval(2100.0,2150.0)
mls = atmRead(’/data/atmos/50/mls.xy’, zToA=100)
dll = higstract(’/data/hitran/2000/lines’,vLimits+20, ’main’) # dict. of line lists
radNadir = dod2ri(lbl2od(mls,dll,vLimits+5),180.,mls[’T’][0]) # monochrom radiance
radNadirG = radNadir.convolve(1.0,’G’) # Gauss spectral response
btNadir = radiance2Kelvin(radNadir.grid(),radNadir) # equ brightness temperature
btNadirG = radiance2Kelvin(radNadirG.grid(),radNadirG)

.

4.5. Batch Processing

Given line and atmospheric data, a radiance spectrum is essentially generated by the sequence
atmRead, higstract, lbl2od, and dod2ri. Likewise, atmospheric transmission can be modeled with
the fourth and last step exp(-dod2tod(...)). If a series of synthetic spectra must be modeled,
a combination of these functions into a single function might be convenient. However, such a
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function is currently not provided in Py4CAtS because the appropriate implementation is clearly
depending on the actual task: For an assessment of the impact of spectroscopic data or spectral range
on atmospheric radiances, a function combining higstract – lbl2od – dod2ri would be adequate
(with atmospheric data ingested only once), whereas the impact of atmospheric data on radiances could
be studied with the combination of atmRead – lbl2od – dod2ri. Furthermore, the main modeling
task can easily be performed with a single statement such as dod2ri(lbl2od(atmData,llDict),...).
Indeed, this can also be easily used for retrieval purposes, e.g., by a combination with the nonlinear
least squares solvers of the scipy.optimize package.

4.6. Current limitations—What Py4CAtS Cannot Do

• Spherical atmospheres: modeling radiance and/or transmission for limb sounding is not possible;
Py4CAtS is assuming a plane-parallel atmosphere. Please note that the quadrature schemes of
Section 2.2.2 also work for limb geometry.

• Continuum or collision-induced absorption [87] contributions to molecular absorption are not
considered. To some extent this is a rather controversial aspect esp. for the water continuum, and
several codes and/or data are available (e.g., [88–93]).

• Jacobians: Several tools have been developed for automatic differentiation of Python code (see
http://www.autodiff.org), so derivatives of spectra w.r.t. atmospheric parameters etc. could be
implemented similar to the approach used in GARLIC [94]. This is currently not foreseen.

• Other line parameter databases (see also http://hitran.org/links/): In addition to HITRAN/HITEMP
and GEISA, further databases have been developed such as ExoMol [19] and databases dedicated
to specific spectral regions (e.g., JPL and CDMS catalogs, Pickett et al. [16], Endres et al. [18]),
specific molecules (e.g., [95–97]), or satellite missions [96,98]. Some of these databases have a
format similar to HITRAN and GEISA and an appropriate reader could be readily implemented,
whereas an implementation of other databases would require some more effort because of
their different organization. Please note that a Python script ExoMol_to_HITRAN.py has been
developed by the ExoMol consortium, see https://github.com/xnx/ExoMol_to_HITRAN.

• Predefined cross sections: Both HITRAN and GEISA include a large collection of IR (and UV)
cross sections esp. for heavy molecules that can be relevant for atmospheric absorption. Reading
and further processing of these data is not yet implemented in Py4CAtS.

• Scattering: So far only the Schwarzschild equation with thermal emission as source (i.e., Planck
function) is supported. However, the optical depths can be used as input for any multiple
scattering solver (e.g., DISORT, [99]), see libRadtran [100,101].

• Line shapes beyond Voigt: some advanced profiles for modeling line-mixing, Dicke narrowing, or
speed-dependence [61,62] have been implemented recently.

• Py4CAtS stores only the “core” line parameters required for cross section modeling. In contrast,
HAPI [34] can also keep track of line assignments, transition IDs etc. However, Py4CAtS has been
developed with atmospheric spectroscopy as target application, but not molecular spectroscopy.

5. Conclusions

Py4CAtS, a Python package developed for “computational atmospheric spectroscopy”, has
been presented and its usage in a Unix-like console or within the (I)Python interpreter/notebook
(recommended) has been demonstrated. Starting with line data from HITRAN or GEISA and
atmospheric data, the scripts and functions allow the computation of cross sections, absorption
coefficients, optical depths, weighting functions, and radiances. In particular, they also provide easy
access to all intermediate quantities esp. for visualization.

When the development of Py4CAtS started, lbl modeling with Python appeared to be quite
ambitious. However, thanks to NumPy and its dramatic performance improvements, atmospheric
radiative transfer modeling with Python can now be done with reasonable speed. In fact, our
recent benchmark tests of Voigt and complex error function algorithms indicated that NumPy
implementations are not significantly slower than Fortran implementations [102].

http://www.autodiff.org
http://hitran.org/links/
https://github.com/xnx/ExoMol_to_HITRAN
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As emphasized above, the intention for Py4CAtS has not been a highly efficient and accurate lbl
radiative transfer code, and the package is not considered to be a competitor for the codes mentioned
in the introduction. Nevertheless, despite the speed limitations of interpreters such as Python and the
omission of limb geometry, continuum, or scattering Py4CAtS is believed to be attractive because of
the flexibility and ease of use. The future development of Py4CAtS will certainly be driven by further
optimizations and extensions of its functionality.

Supplementary Materials: Py4CAtS is free software and can be redistributed and/or modified under the terms of
the GNU General Public License as published by the Free Software Foundation. A tarball of the Python source files
is available at our department’s server at https://atmos.eoc.dlr.de/tools/Py4CAtS/. Py4CAtS is also registered
at the Astrophysics Source Code Library (ASCL) with the permalink http://ascl.net/1905.002. The sources have
been thoroughly checked with Pep8, PyFlakes, PyChecker, and PyLint. In addition to the sources, the model
atmospheres of the Anderson et al. [78] compilation are available in various resolutions (number of altitude levels),
and an excerpt of the HITRAN 1986 database [103]. Furthermore, a directory doc provides a tutorial/users’ guide
along with extensive documentation of the individual modules. The html files have been produced with pydoc3.
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Abbreviations

The following abbreviations are frequently used in this manuscript:

BoA Bottom of Atmosphere
GARLIC Generic Atmospheric Radiation Line-by-line Infrared Code
HWHM half width half maximum
IR infrared
lbl line-by-line
Py4CAtS PYthon scripts for Computational ATmospheric Spectroscopy
ToA Top of Atmosphere
ac absorption coefficient
od optical depth
ri radiance intensity
wf weighting function
vmr volume mixing ratio
xs cross section

Appendix A. Implementation

In the first three subsections some common aspects of reading, writing, and plotting of the data
are discussed. Special data types implemented in Py4CAtS are described in Appendices A.4 and A.5.
Finally, three modules that should be of interest not only for “computational atmospheric spectroscopy”
are presented.

Appendix A.1. Input/Output

Atmospheric data, cross sections, absorption coefficients, optical depths, weighting functions,
and radiance spectra can be written to data files with the functions atmSave, xsSave, acSave, odSave,
wfSave, and riSave. Likewise, the data are read from file using atmRead, xsRead, acRead, odRead,

https://atmos.eoc.dlr.de/tools/Py4CAtS/
http://ascl.net/1905.002
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wfRead, and riRead. In all cases tabular ASCII files are supported, in some cases Python’s / NumPy’s
pickle format or netcdf I/O is also available. Cross section and absorption coefficient files can also
use the HITRAN format. (The HITRAN cross section format is extensively described at https://
hitran.org/docs/cross-sections-definitions/. In brief, each “portion” starts with a header line defining
the molecule, wavenumber range, number of data in this set, temperature (K), pressure (Torr) etc.
Following this header, the “values are arranged in records containing ten values of fields of ten for
each cross-section”.)

For completeness, the higstract function to read the HITRAN and GEISA database (and
extract some lines) should be mentioned here, too. The extracted lines can be saved to file with
save_lines_core for the “core parameters” only (i.e., position, strength etc.) or save_lines_orig
for the original format (Please note that there is no tool to convert data from HITRAN to GEISA
format or back). To read a set of line data files (HITRAN/GEISA extracts of core parameters) use
read_line_file that returns a single “lineArray” for a single file (molecule) or a dictionary thereof.

All routines saving data in ASCII format use the awrite function from the aeiou module, see
Appendix A.8 for details.

Appendix A.2. Visualization

The functions atmPlot, atlas, xsPlot, acPlot, odPlot, riPlot, and wfPlot can be used to plot
atmospheric profiles (default temperature vs. altitude, with z (default, or p) as vertical abscissa),
spectroscopic line data (default strength vs. position), molecular absorption cross sections and
coefficients, optical depths, radiance/intensity, and weighting functions. Please note that these
functions can be called with a single array or a list of arrays (exploiting Python’s recursive capabilities,
see Appendix A.3). The name atlas goes back to the Atlas of absorption lines from 0 to 17,900 cm−1 by
Park et al. [82] that served as pictorial representation of the HITRAN 86 database.

Please note that these functions serve to provide quicklooks of the various spectra etc. and are not
designed for highly fancy, publication-ready plots. However, the source code of these functions can be
exploited as a starting point for more sophisticated plots. And x or y axis labels and limits, legend
(entries, positions, . . . ), title, and curve colors, markers, styles and widths can be changed interactively
in IPython/Matplotlib.

Appendix A.3. Recursive Functions

Some functions exploit Python’s recursive capabilities to make their use as flexible as possible.
In particular, lbl2xs can be called with

• a single lineArray holding the line parameters (position, strengths, . . . ) of a single molecule and
a single (p, T) pair (that defaults to STP 1 atm, 296 K);

• a dictionary or list of lineArray’s and a single (p, T) pair;
• a single lineArray and a list/array of pressures and/or a list/array of temperatures (if both p

and T are arrays (or lists), their length must be identical!);
• a dictionary (list) of lineArray’s and (a list/array of) pressure(s) and temperature(s).

Likewise, xsPlot can be called with a single cross section xsArray, or with a (nested) list or
dictionary of xsArray’s. Similarly, an odArray instance or a list of optical depths can be visualized using
odPlot, and acPlot and riPlot work in the same way. Furthermore, atmPlot and atmInfo accept a
single or a list of atmospheric data. Finally, ac2wf is called recursively in case of a finite field-of-view.

Appendix A.4. The Subclassed NumPy Arrays

The spectra of molecular cross sections, absorption coefficients, (layer, cumulative, and total)
optical depths, weighting functions, and radiances are stored in subclassed NumPy arrays to hold
extra information as attributes, e.g., the minimum and maximum wavenumber is stored in xs.x,
ac.x, and od.x, respectively (technically the x attribute is an instance of the Interval class defined

https://hitran.org/docs/cross-sections-definitions/
https://hitran.org/docs/cross-sections-definitions/
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in the pairTypes.py module, see Appendix A.9). Pressure and temperature of the cross section and
absorption coefficient are single floats for the corresponding atmospheric level, whereas for optical
depths they are PairOfFloats corresponding to the atmospheric layer.

In addition to these attributes, xsArray defines several methods, e.g., (note the parentheses!)

xs.info() — print “essential” information;
xs.dx() — compute the grid point spacing (essentially xs.x.size()/(len(xs)-1));
xs.grid() — returns the uniform wavenumber grid array;
xs.regrid(n) — interpolate to a denser uniform grid (usually n is larger than len(xs));
xs.__eq__(other) — compare two cross sections using the == operator, i.e., xs1==xs2 returns True if

the wavenumber intervals, pressure, temperature, and the spectra itself agree (approximately).

The same methods are also defined for acArray, odArray, and riArray, where in addition there
is also a method truncate returning the spectrum in a smaller wavenumber interval. Furthermore,
a method convolve has been implemented in the riArray class to smooth the radiance with a box,
triangle, or Gaussian spectral response function.

For odArray there are also __add__ and __sub__ methods to add and subtract optical depths,
see Figure 5. These combinations can only be performed if both spectra are defined in the same
wavenumber interval, i.e., od1.x and od2.x are identical. In general, the two optical depths are given
on different wavenumber grids, so the coarser spectrum is regridded to the resolution of the denser
spectrum first. The __mul__ method can be used to scale optical depths with a (float) number, e.g., to
account for a slant path od/cosdg(60).

The core parameters (position, strength, width, . . . ) of the lines extracted from the HITRAN or
GEISA databases are also saved internally in a subclassed array lineArray. However, in contrast to the
arrays mentioned above (that all have just a single dimension) this has “rows and columns”, where the
rows correspond to the spectral lines/transitions, and the columns correspond to center wavenumber
ν̂l , line strength Sl , etc. To make these columns easily accessible, lineArray is a subclassed structured
array (see next section Appendix A.5) with attributes holding information about molecule and reference
pressure and temperature.

Appendix A.5. Structured Arrays

As described in the NumPy User Guide http://docs.scipy.org/doc/numpy/user/basics.rec.html,
“These arrays permit one to manipulate the data by the structs or by fields of the struct”. The main
difference to standard NumPy arrays is that one can access the “columns” of these arrays by names
(strings) instead of numbers, similar to dictionary entries.

Py4CAtS uses structured arrays for the atmospheric data (see Section 3.2.1) and the line parameters
(see Section 3.2.2, actually lineArray is a subclassed and structured NumPy array). Several utility
functions are collected in the struc_array.py module: loadStrucArray reads tabular ASCII files and
automatically assign names to the fields (columns) given the information in the file header or as an
optional argument to the function. Further functions allow the changing of these field names, to insert
additional fields, to extract fields, or to delete a field.

Appendix A.6. Conversion of Physical Units: The cgsUnits Module

The function cgs from the cgsUnits.py module can be used to convert physical quantities to or
from the cgs base unit, e.g., cgs(′kg′)→ 1000. or cgs(′!km′)→ 1e− 5 or cgs(′mb ! atm′, 1013.25)→ 1.0
(where the exclamation mark separates the original (input) and final (output) unit). Please note that
the optional second argument “data” can be a float, list of floats, or a NumPy array.

Two further modules radiance2radiance.py and radiance2Kelvin.py help to convert radiances.
With the function radiance2radiance one can change the power and/or area and/or spectral unit of
radiances, e.g., nW↔ erg/s or wavenumber↔ frequency↔wavelength. Likewise, radiance2Kelvin
allows the conversion of radiances to equivalent brightness temperatures using the “inverse” of the
Planck function (11).

http://docs.scipy.org/doc/numpy/user/basics.rec.html
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Appendix A.7. The Option Parser Module command_parser.py

When development of the Py4CAtS tools started, Python only offered the getopt module
providing only limited functionality. Parsing the arguments and options given on the (Unix/Linux)
shell command line essentially comprises a series of common tasks, e.g., type checking and conversion,
so these extra steps were finally implemented in a new module command_parser.py building on top of
getopt.py. Later on, a new module optparse had been added to the Python Standard Library, which
is now superseded by the newer and more advanced argparse module.

Although argparse has some nice features currently not available in command_parser, it
also has one serious deficiency related to range checks of the given input. In case of integer
or float input arguments/options it is frequently required to check if the number falls within a
certain range, e.g., pressures and temperatures should be positive, or the percentage concentration
should be in the range (0.0, 100.0). argparse only can check if the input is in a given list of
possibilities, e.g., diceNumber in [1,2,3,4,5,6], but a statement such as 200<=temperature<=300
cannot be used. (Several solutions are discussed in the web, but none of them appears
attractive.) And more sophisticated checks such as constraint=’all([digit.strip().isdigit()
for digit in split(columns,",")])’ are impossible.

Appendix A.8. Input/Output Utilities: The aeiou.py Module

A set of functions for some common tasks as reading and parsing the comments in the file header
are collected in this module. In addition, there is the awrite function that serves as a “slightly better”
version of NumPy’s savetxt function: the format option is more intelligent, and instead of a single
header string to be written to the file header awrite also accepts a list of strings for the header. Most
importantly, there is only a single mandatory argument: the data array to save/write. If no output file
is given, awrite prints the output on the screen (sys.stdout). Accordingly, the sequence of arguments
is changed from savetxt(fname,data,...) to awrite(data,fname=None,...). Furthermore, awrite
makes it easier to save several NumPy arrays (all with the same number of rows), for example awrite
([xGrid, yValues, aMatrix], ’allInOne.file’).

Appendix A.9. The pairTypes.py Module

This module defines several classes for Interval, pairOfInts, and PairOfFloats. The Interval is
frequently used in Py4CAtS, e.g., for the wavenumber region of interest: xLimits=Interval(10.,20.).

References

1. Goody, R.; Yung, Y. Atmospheric Radiation—Theoretical Basis, 2nd ed.; Oxford University Press: Oxford, UK, 1989.
2. Liou, K.N. An Introduction to Atmospheric Radiation; Academic Press: Orlando, FL, USA, 1980.
3. Zdunkowski, W.; Trautmann, T.; Bott, A. Radiation in the Atmosphere—A Course in Theoretical Meteorology;

Cambridge University Press: Cambridge, UK, 2007.
4. Wiscombe, W. Atmospheric Radiation: 1975–1983. Rev. Geophys. Space Phys. 1983, 21, 997. [CrossRef]
5. Schläpfer, D. MODO: An interface to MODTRAN for the simulation of imaging spectrometry at-sensor

signals. In Proceedings of the Tenth Jet Propulsion Laboratory Airborne Earth Science Workshop, Pasadena,
CA, USA, 27 February–2 March 2001; Green, R., Ed.; Volume JPL-02-1, pp. 343–350.

6. Berk, A.; Anderson, G.; Acharya, P.; Bernstein, L.; Muratov, L.; Lee, J.; Fox, M.; Adler-Golden, S.; Chetwynd, J.;
Hoke, M.; et al. MODTRAN 5: A reformulated atmospheric band model with auxiliary species and practical
multiple scattering options: Update. In Proceedings of the Algorithms and Technologies for Multispectral,
Hyperspectral, and Ultraspectral Imagery XI, Orlando, FL, USA, 28 March–1 April 2005; Shen, S., Lewis, P.,
Eds.; Volume 5806, pp. 662–667.

7. Wilson, R. Py6S: A Python interface to the 6S radiative transfer model. Comput. Geosci. 2013, 51, 166–171.
[CrossRef]

8. Vermote, E.; Tanré, D.; Deuzé, J.; Herman, M.; Morcette, J.J. Second Simulation of the Satellite Signal in the
Solar Spectrum, 6S: An Overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [CrossRef]

http://dx.doi.org/10.1029/RG021i005p00997
http://dx.doi.org/10.1016/j.cageo.2012.08.002
http://dx.doi.org/10.1109/36.581987


Atmosphere 2019, 10, 262 22 of 26

9. Lacis, A.; Oinas, V. A Description of the Correlated k Distribution Method for Modeling Nongray
Gaseous Absorption, Thermal Emission, and Multiple Scattering in Vertically Inhomogeneous Atmospheres.
J. Geophys. Res. 1991, 96, 9027–9063. [CrossRef]

10. Wiscombe, W.; Evans, J. Exponential-sum fitting of radiative transmission functions. J. Comput. Phys. 1977,
24, 416–444. [CrossRef]

11. Heng, K.; Marley, M. Radiative Transfer for Exoplanet Atmospheres. In Handbook of Exoplanets; Deeg, H.J.,
Belmonte, J.A., Eds.; Springer International Publishing: New York, NY, USA, 2018; pp. 2137–2152.

12. Madhusudhan, N. Atmospheric Retrieval of Exoplanets. In Handbook of Exoplanets; Deeg, H.J., Belmonte, J.A.,
Eds.; Springer: New York, NY, USA, 2018.

13. Gordon, I.E.; Rothman, L.S.; Hill, C.; Kochanov, R.V.; Tan, Y.; Bernath, P.F.; Birk, M.; Boudon, V.; Campargue, A.;
Chance, K.V.; et al. The HITRAN2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf.
2017, 203, 3–69. [CrossRef]

14. Rothman, L.; Gordon, I.; Barber, R.; Dothe, H.; Gamache, R.; Goldman, A.; Perevalov, V.; Tashkun, S.; Tennyson,
J. HITEMP, the high-temperature molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2010,
111, 2139–2150. [CrossRef]

15. Jacquinet-Husson, N.; Armante, R.; Scott, N.A.; Chédin, A.; Crépeau, L.; Boutammine, C.; Bouhdaoui, A.;
Crevoisier, C.; Capelle, V.; Boonne, C.; et al. The 2015 edition of the GEISA spectroscopic database.
J. Mol. Spectrosc. 2016, 327, 31–72. [CrossRef]

16. Pickett, H.; Poynter, R.; Cohen, E.; Delitsky, M.; Pearson, J.; Müller, H. Submillimeter, millimeter, and
microwave spectral line catalog. J. Quant. Spectrosc. Radiat. Transf. 1998, 60, 883–890. [CrossRef]

17. Müller, H.; Schlöder, F.; Stutzki, J.; Winnewisser, G. The Cologne Database for Molecular Spectroscopy,
CDMS: A useful tool for astronomers and spectroscopists. J. Mol. Struct. 2005, 742, 215–227. [CrossRef]

18. Endres, C.P.; Schlemmer, S.; Schilke, P.; Stutzki, J.; Müller, H.S. The Cologne Database for Molecular
Spectroscopy, CDMS, in the Virtual Atomic and Molecular Data Centre, VAMDC. J. Mol. Spectrosc. 2016,
327, 95–104. [CrossRef]

19. Tennyson, J.; Yurchenko, S.N.; Al-Refaie, A.F.; Barton, E.J.; Chubb, K.L.; Coles, P.A.; Diamantopoulou, S.;
Gorman, M.N.; Hill, C.; Lam, A.Z.; et al. The ExoMol database: Molecular line lists for exoplanet and other
hot atmospheres. J. Mol. Spectrosc. 2016, 327, 73–94. [CrossRef]

20. Clough, S.; Kneizys, F.; Rothman, L.; Gallery, W. Atmospheric transmittance and radiance: FASCOD1B.
Proc. SPIE 1981, 277, 152–166.

21. Scott, N.; Chédin, A. A Fast Line-by-Line Method for Atmospheric Absorption Computations: The
Automatized Atmospheric Absorption Atlas. J. Appl. Meteorol. 1981, 20, 802–812. [CrossRef]

22. Buehler, S.A.; Eriksson, P.; Kuhn, T.; von Engeln, A.; Verdes, C. ARTS, the atmospheric radiative transfer
simulator. J. Quant. Spectrosc. Radiat. Transf. 2005, 91, 65–93. [CrossRef]

23. Eriksson, P.; Buehler, S.A.; Davis, C.; Emde, C.; Lemke, O. ARTS, the atmospheric radiative transfer simulator,
version 2. J. Quant. Spectrosc. Radiat. Transf. 2011, 112, 1551–1558. [CrossRef]

24. Buehler, S.A.; Mendrok, J.; Eriksson, P.; Perrin, A.; Larsson, R.; Lemke, O. ARTS, the atmospheric radiative
transfer simulator—Version 2.2, the planetary toolbox edition. Geosci. Model Dev. 2018, 11, 1537–1556.
[CrossRef]

25. Schreier, F.; Gimeno García, S.; Hedelt, P.; Hess, M.; Mendrok, J.; Vasquez, M.; Xu, J. GARLIC—A General
Purpose Atmospheric Radiative Transfer Line-by-Line Infrared-Microwave Code: Implementation and
Evaluation. J. Quant. Spectrosc. Radiat. Transf. 2014, 137, 29–50. [CrossRef]

26. Edwards, D. Atmospheric transmittance and radiance calculations using line–by–line computer models.
In Proceedings of the Modelling of the Atmosphere, Orlando, FL, USA, 4–8 April 1988; Volume 928,
pp. 94–116.

27. Stiller, G.; von Clarmann, T.; Funke, B.; Glatthor, N.; Hase, F.; Höpfner, M.; Linden, A. Sensitivity of trace
gas abundances retrievals from infrared limb emission spectra to simplifying approximations in radiative
transfer modelling. J. Quant. Spectrosc. Radiat. Transf. 2002, 72, 249–280. [CrossRef]

28. Clough, S.; Shephard, M.; Mlawer, E.; Delamere, J.; Iacono, M.; Cady-Pereira, K.; Boukabara, S.; Brown, P.
Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transf.
2005, 91, 233–244. [CrossRef]

29. Gordley, L.; Marshall, B.; Chu, D. LINEPAK: Algorithms for modeling spectral transmittance and radiance.
J. Quant. Spectrosc. Radiat. Transf. 1994, 52, 563. [CrossRef]

http://dx.doi.org/10.1029/90JD01945
http://dx.doi.org/10.1016/0021-9991(77)90031-6
http://dx.doi.org/10.1016/j.jqsrt.2017.06.038
http://dx.doi.org/10.1016/j.jqsrt.2010.05.001
http://dx.doi.org/10.1016/j.jms.2016.06.007
http://dx.doi.org/10.1016/S0022-4073(98)00091-0
http://dx.doi.org/10.1016/j.molstruc.2005.01.027
http://dx.doi.org/10.1016/j.jms.2016.03.005
http://dx.doi.org/10.1016/j.jms.2016.05.002
http://dx.doi.org/10.1175/1520-0450(1981)020<0802:AFLBLM>2.0.CO;2
http://dx.doi.org/10.1016/j.jqsrt.2004.05.051
http://dx.doi.org/10.1016/j.jqsrt.2011.03.001
http://dx.doi.org/10.5194/gmd-11-1537-2018
http://dx.doi.org/10.1016/j.jqsrt.2013.11.018
http://dx.doi.org/10.1016/S0022-4073(01)00123-6
http://dx.doi.org/10.1016/j.jqsrt.2004.05.058
http://dx.doi.org/10.1016/0022-4073(94)90025-6


Atmosphere 2019, 10, 262 23 of 26

30. Dudhia, A. The Reference Forward Model (RFM). J. Quant. Spectrosc. Radiat. Transf. 2017, 186, 243–253.
[CrossRef]

31. Amato, U.; Masiello, G.; Serio, C.; Viggiano, M. The σ–IASI code for the calculation of infrared atmospheric
radiance and its derivatives. Environ. Model. Softw. 2002, 17, 651–667. [CrossRef]

32. Bailey, J.; Kedziora-Chudczer, L. Modelling the spectra of planets, brown dwarfs and stars using VStar.
Mon. Not. R. Astron. Soc. 2012, 419, 1913–1929. [CrossRef]

33. Hill, C.; Gordon, I.E.; Kochanov, R.V.; Barrett, L.; Wilzewski, J.S.; Rothman, L.S. HITRANonline: An online
interface and the flexible representation of spectroscopic data in the HITRAN database. J. Quant. Spectrosc.
Radiat. Transf. 2015, 177, 4–14. [CrossRef]

34. Kochanov, R.; Gordon, I.; Rothman, L.; Wcisło, P.; Hill, C.; Wilzewski, J. HITRAN Application Programming
Interface (HAPI): A comprehensive approach to working with spectroscopic data. J. Quant. Spectrosc.
Radiat. Transf. 2016, 177, 15–30. [CrossRef]

35. Goldenstein, C.; Miller, V.; Spearrin, R.; Strand, C. SpectraPlot.com: Integrated spectroscopic modeling of
atomic and molecular gases. J. Quant. Spectrosc. Radiat. Transf. 2017, 200, 249–257. [CrossRef]

36. Villanueva, G.; Smith, M.; Protopapa, S.; Faggi, S.; Mandell, A. Planetary Spectrum Generator: An accurate
online radiative transfer suite for atmospheres, comets, small bodies and exoplanets. J. Quant. Spectrosc.
Radiat. Transf. 2018, 217, 86–104. [CrossRef]

37. Smette, A.; Sana, H.; Noll, S.; Horst, H.; Kausch, W.; Kimeswenger, S.; Barden, M.; Szyszka, C.; Jones, A.M.;
Gallenne, A.; et al. Molecfit: A general tool for telluric absorption correction. Astron. Astrophys. 2015,
576, A77. [CrossRef]

38. Bertaux, L.; Lallement, R.; Ferron, S.; Boonne, C.; Bodichon, R. TAPAS, a web-based service of atmospheric
transmission computation for astronomy. Astron. Astrophys. 2014, 564, A46. [CrossRef]

39. Schreier, F.; Böttger, U. MIRART, A Line-By-Line Code for Infrared Atmospheric Radiation Computations
incl. Derivatives. Atmos. Ocean. Opt. 2003, 16, 262–268.

40. Ernst, T.; Rother, T.; Schreier, F.; Wauer, J.; Balzer, W. DLR’s Virtual Lab: Scientific Software just a mouse click
away. Comput. Sci. Eng. 2003, 5, 70–79. [CrossRef]

41. von Clarmann, T.; Echle, G. Selection of Optimized Microwindows for Atmospheric Spectroscopy. Appl. Opt.
1998, 37, 7661–7669. [CrossRef] [PubMed]

42. Echle, G.; von Clarmann, T.; Dudhia, A.; Flaud, J.M.; Funke, B.; Glatthor, N.; Kerridge, B.; López-Puertas, M.;
Martin-Torres, F.; Stiller, G. Optimized Spectral Microwindows for Data Analysis of the Michelson Interferometer
for Passive Atmospheric Sounding on the Environmental Satellite. Appl. Opt. 2000, 39, 5531–5540. [CrossRef]

43. Dudhia, A.; Jay, V.; Rodgers, C. Microwindow selection for high-resolution-sounders. Appl. Opt. 2002, 41,
3665–3673. [CrossRef] [PubMed]

44. Rabier, F.; Fourrié, N.; Chafai, D.; Prunet, P. Channel Selection Methods for Infrared Atmospheric Sounding
Interferometer Radiances. Quart. J. R. Met. Soc. 2002, 128, 1011–2027. [CrossRef]

45. Crevoisier, C.; Chedin, A.; Scott, N.A. AIRS channel selection for CO2 and other trace-gas retrievals. Quart. J.
R. Met. Soc. 2003, 129, 2719–2740. [CrossRef]

46. Kuai, L.; Natraj, V.; Shia, R.; Miller, C.; Yung, Y. Channel selection using information content analysis: A
case study of CO2 retrieval from near infrared measurements. J. Quant. Spectrosc. Radiat. Transf. 2010, 111,
1296–1304. [CrossRef]

47. Dubois, P.; Hinsen, K.; Hugunin, J. Numerical Python. Comput. Phys. 1996, 10, 262–267. [CrossRef]
48. Watters, A.; van Rossum, G.; Ahlstrom, J.C. Internet Programming with Python; M & T Books: New York, NY,

USA, 1996.
49. Oliphant, T. Python for Scientific Computing. Comput. Sci. Eng. 2007, 9, 10–20. [CrossRef]
50. Langtangen, H.P. Python Scripting for Computational Science, 3rd ed., Texts in Computational Science and

Engineering; Springer: New York, NY, USA, 2008; Volume 3.
51. van der Walt, S.; Colbert, S.; Varoquaux, G. The NumPy Array: A Structure for Efficient Numerical

Computation. Comput. Sci. Eng. 2011, 13, 22–30. [CrossRef]
52. Pérez, F.; Granger, B.; Hunter, J. Python: An Ecosystem for Scientific Computing. Comput. Sci. Eng. 2011,

13, 13–21. [CrossRef]
53. Lin, J.W.B. Why Python is the next wave in earth sciences computing. Bull. Am. Met. Soc. 2012, 93, 1823–1824.

[CrossRef]

http://dx.doi.org/10.1016/j.jqsrt.2016.06.018
http://dx.doi.org/10.1016/S1364-8152(02)00027-0
http://dx.doi.org/10.1111/j.1365-2966.2011.19845.x
http://dx.doi.org/10.1016/j.jqsrt.2015.12.012
http://dx.doi.org/10.1016/j.jqsrt.2016.03.005
http://dx.doi.org/10.1016/j.jqsrt.2017.06.007
http://dx.doi.org/10.1016/j.jqsrt.2018.05.023
http://dx.doi.org/10.1051/0004-6361/201423932
http://dx.doi.org/10.1051/0004-6361/201322383
http://dx.doi.org/10.1109/MCISE.2003.1166555
http://dx.doi.org/10.1364/AO.37.007661
http://www.ncbi.nlm.nih.gov/pubmed/18301602
http://dx.doi.org/10.1364/AO.39.005531
http://dx.doi.org/10.1364/AO.41.003665
http://www.ncbi.nlm.nih.gov/pubmed/12078694
http://dx.doi.org/10.1256/0035900021643638
http://dx.doi.org/10.1256/qj.02.180
http://dx.doi.org/10.1016/j.jqsrt.2010.02.011
http://dx.doi.org/10.1063/1.4822400
http://dx.doi.org/10.1109/MCSE.2007.58
http://dx.doi.org/10.1109/MCSE.2011.37
http://dx.doi.org/10.1109/MCSE.2010.119
http://dx.doi.org/10.1175/BAMS-D-12-00148.1


Atmosphere 2019, 10, 262 24 of 26

54. Raspaud, M.; Hoese, D.; Dybbroe, A.; Lahtinen, P.; Devasthale, A.; Itkin, M.; Hamann, U.; Rasmussen, L.Ø.;
Nielsen, E.; Leppelt, T.; et al. PyTroll: An Open-Source, Community-Driven Python Framework to Process
Earth Observation Satellite Data. Bull. Am. Met. Soc. 2018, 99, 1329–1336. [CrossRef]

55. Astropy Collaboration; Robitaille, T.P.; Tollerud, E.J.; Greenfield, P.; Droettboom, M.; Bray, E.; Aldcroft, T.;
Davis, M.; Ginsburg, A.; Price-Whelan, A.; et al. Astropy: A community Python package for astronomy.
Astron. Astrophys. 2013, 558, A33.

56. Parker, S.; Johnson, C.; Beazley, D. Computational Steering Software Systems and Strategies. IEEE Comput.
Sci. Eng. 1997, 4, 50–59. [CrossRef]

57. Dubois, P.; Yang, T.Y. Extending Python with Fortran. Comput. Sci. Eng. 1999, 1, 66–73. [CrossRef]
58. Peterson, P. F2PY: A tool for connecting Fortran and Python programs. Int. J. Comput. Sci. Eng. 2009, 4, 296–305.

[CrossRef]
59. Norton, R.; Rinsland, C. ATMOS data processing and science analysis methods. Appl. Opt. 1991, 30, 389–400.

[CrossRef]
60. Armstrong, B. Spectrum Line Profiles: The Voigt Function. J. Quant. Spectrosc. Radiat. Transf. 1967, 7, 61–88.

[CrossRef]
61. Varghese, P.; Hanson, R. Collisional narrowing effects on spectral line shapes measured at high resolution.

Appl. Opt. 1984, 23, 2376–2385. [CrossRef]
62. Tennyson, J.; Bernath, P.; Campargue, A.; Császár, A.; Daumont, L.; Gamache, R.; Hodges, J.; Lisak, D.;

Naumenko, O.; Rothman, L.; et al. Recommended isolated-line profile for representing high-resolution
spectroscopic transitions (IUPAC Technical Report). Pure Appl. Chem. 2014, 86, 1931–1943. [CrossRef]

63. Schreier, F. Computational Aspects of Speed-Dependent Voigt Profiles. J. Quant. Spectrosc. Radiat. Transf.
2017, 187, 44–53. [CrossRef]

64. NIST Digital Library of Mathematical Functions; Online Companion to [65]; National Institute of Standards
and Technology: Gaithersburg, MD, USA, 2010.

65. Olver, F.; Lozier, D.; Boisvert, R.; Clark, C. (Eds.) NIST Handbook of Mathematical Functions; Print Companion
to [64]; Cambridge University Press: New York, NY, USA, 2010.

66. Ralston, A.; Rabinowitz, P. A First Course in Numerical Analysis, 2nd ed.; McGraw–Hill Book Company:
New York, NY, USA, 1978.

67. Cuyt, A.; Petersen, V.; Verdonk, B.; Waadeland, H.; Jones, W. Handbook of Continued Fractions for Special
Functions; Springer: New York, NY, USA, 2008.
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