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Abstract: Comparisons of aerosol composition and sources in different cities or regions are rather
limited, yet important for an in-depth understanding of the spatial diversity of aerosol pollution
in China. In this study, the data originating from 25 different winter aerosol mass spectrometer
(AMS)/aerosol chemical speciation monitor (ACSM) studies were used to provide spatial coverage of
the Beijing-Tianjin-Hebei (BTH), Guanzhong (GZ), Yangtze River Delta (YRD), and Pearl River Delta
(PRD) regions. The spatial distribution and diurnal variations in aerosol composition and organic
sources were analyzed to investigate the aerosol characteristics in the four regions. It was found that
there were differences in the compositions of non-refractory particulate matter across the regions,
e.g., more sulfate in the PRD versus more nitrate in the YRD, as well as in the organic sources, e.g., more
coal combustion in BTH versus more biomass burning in GZ. The characteristics of the composition
of NR-PM are similar when the campaigns were classified according to the winter of different years
or the cities of different regions. The diurnal variation of the PRD-sulfate indicated its regional
nature, whereas the organics from burning sources in two regions of northern China exhibited local
characteristics. Based on these findings, we suggest that strict control policies for coal combustion
and biomass burning emissions should be enforced in the BTH and GZ regions, respectively.

Keywords: aerosol composition; organic sources; representative regions; China; wintertime

1. Introduction

In recent years, China has suffered from severe air pollution, especially during wintertime [1–3].
Measurements have shown that the daily average mass concentrations of PM2.5 (particulate matter
with aerodynamic diameter ≤ 2.5 µm) during winter heating seasons in a number of major Chinese
cities were about 1–2 orders of magnitude higher than concentrations in European Countries and in
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the US [1,3,4]. The severe air pollution was often accompanied by a sharp rise in respiratory diseases
and extremely low visibility [5–8].

The urgent need to improve air quality has been recognized by the public and governments [9–11],
and actions have since been taken by the authorities [9]. Identifying the major chemical compositions
and sources is required to implement optimized and targeted pollution control strategies [12].
The quantification of the PM chemical composition and its sources can be acquired by the measurements
of the mass spectrometric fingerprints of ambient PM samples [2].

The aerosol chemical speciation monitor (ACSM) and aerosol mass spectrometry (AMS) have
been extensively used for online measurements of aerosol composition [1,13–16], including organics,
sulfate (SO4

2−), nitrate (NO3
−), ammonium (NH4

+), and chloride (Cl−). The multilinear engine
(ME-2) and positive matrix factorization (PMF) have been widely used for the source identification
of organics [1,13,17–19]. Typically, the organics can be at least separated into primary (POA) and
oxygenated organic aerosols (OOA). Studies have shown that OOA is a good surrogate for secondary
organic aerosol (SOA) [20,21]. The POA sources can be further split up into coal combustion-related
organic aerosol (CCOA), biomass burning-related organic aerosol (BBOA), cooking-related organic
aerosol (COA), and traffic-related hydrocarbon-like organic aerosol (HOA) [2,20,22]. It has been
concluded that the COA at a rural site originated from more than the emissions from cooking
activities [23]. Consequently, COA from rural sites may be overestimated. Given that AMS/ACSM
provide high time-resolution data [24,25], it is particularly useful when investigating the diurnal cycles
and temporal variations of aerosol composition and organic sources.

Recently, several measurements of submicron aerosol compositions have been conducted using
AMS/ACSM during winter heating seasons (see References in Table S1), and these studies mainly
focused on the aerosol characteristics in four representative regions of northern (Beijing-Tianjin-Hebei,
BTH), western (Guangzhong, GZ), eastern (Yangtze River Delta, YRD), and southern (Pearl River
Delta, PRD) China [2]. Given the high cost and complexity of maintaining the instruments, most of
the previous individual studies have mainly focused on the aerosol composition and sources at a
specific location in one or a small number of study regions over a limited time period (see References in
Table S1). Before 2016, the older reviews focused on the mass concentration of gases and particulate in
China, and the differences in chemical compositions between China and other countries (See Table S1
in Li et al. (2017)). Recently, the reviews mainly focused on the interannual variations in aerosol
compositions [26], the differences in aerosol composition and sources in north and south China [4],
and the nitrate/sulfate (N/S) ratios in the four representative regions [2]. Thus, the differences in aerosol
composition across the four representative regions cannot be found in previous individual AMS/ACSM
studies or review papers. On the other hand, a comparison of the aerosol composition and sources
across different cities or regions is important for a comprehensive understanding of the spatial diversity
of aerosol pollution in China, as well as for policy-makers to develop effective air pollution control
measures in specific areas of China.

The socioeconomic and meteorological factors are similar in the four representative regions of
China [27]. Therefore, the air pollution control action issued by the Chinese government (http://www.
jingbian.gov.cn/gk/zfwj/gwywj/41211.htm?from=timeline) mainly focuses on the joint prevention and
control measures in each region [28]. Identification of the major sources and chemical species in
each region is required for implementing the optimized and targeted pollution control strategies [12].
In this study, the data originating from 25 different winter AMS/ACSM measurements were used
to provide spatial coverage of the four representative regions in China. To investigate the aerosol
characteristics in the four regions, the spatial distributions of aerosol composition and organic sources
were analyzed. Based on the findings, suggestions for air pollution control measures were provided to
focus on different components or sources in the different regions.

http://www.jingbian.gov.cn/gk/zfwj/gwywj/41211.htm?from=timeline
http://www.jingbian.gov.cn/gk/zfwj/gwywj/41211.htm?from=timeline
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2. Experiments

2.1. Sources of Data

As clearly articulated by Wang et al. [29]: “We searched studies with publication dates prior
to March 2019 on the Web of Science platform (http://apps.webofknowledge.com/). The adopted
keywords and phrases were the same as Wang et al. [29]. Studies were chosen on the basis of these
conditions: (1) measurements in winter were included; (2) measurements in four representative regions
(Figure 1) were included; (3) organic source apportionment was reported; If a certain source was not
present, the concentration of that source was assumed to be zero; (4) if more than one measurement
from numerous study sites was reported in one article [1,15], we consider each measurement as
an independent study; and (5) If measurements took place at the same site in the same year—as
specifically done by Elser et al., [15], Sun et al., [30], Huang et al., [1], Hu et al., [31], Sun et al., [32],
and Zhang et al., [33]—each measurement was treated as an independent study. We selected 25 articles
on the basis of the aforementioned conditions (Table S1).” The BTH and GZ regions represent a flat
geography in the northern part of China. During wintertime, these two regions are dominated by calm
weather in the winter, while the average temperatures are around zero in these two regions. PRD is
dominated by the flat area. During wintertime, the average wind speed is 1.5–3 m s−1, and the average
temperatures are from 13 to 16 ◦C. YRD is dominated by the flat area. During wintertime, YRD is
characterized by calm weather conditions, where the average temperatures range from 2 to 7 ◦C.
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Figure 1. Locations of the Beijing-Tianjin-Hebei (BTH), Guanzhong (GZ), Yangtze River Delta region,
(YRD), and Pearl River Delta region (PRD) regions. The map scale is 1:32,000,000.

2.2. Data Acquisition

For each selected study, we recorded the sampling site, location, campaign period, aerosol type
(PM1 or PM2.5), mass concentration (µg m−3), mass fractions of aerosol species, and organic sources
over entire campaign period. We used the Engauge Digitizer 2.24 (http://digitizer.sourceforge.net) to
digitize and extract the data from the time-series and diurnal-variation graphs of the aerosol chemical
species, organic sources, gaseous species, and meteorological parameters. The digitized data for each
day was further averaged to obtain the daily averages of the chemical composition and organic sources
at individual sites. Since we wanted to clarify the different contributions of coal combustion and
biomass burning to primary PM in the BTH and GZ regions, we also digitized the BC data if available

http://apps.webofknowledge.com/
http://digitizer.sourceforge.net
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in the AMS/ACSM studies of these two regions. We could not ensure the same interval between the
adjacent digitizing data. Therefore, bias could exist from this method. Given that we used daily
average data, this bias should not have influenced the results from this study. Details regarding data
acquisition can be found in Wang et al. [29].

2.3. Estimation of BC and Cl− Sources

In winter in northern China, BC and Cl− are mainly from primary emissions [15,32], and the
contribution to Cl− from traffic is negligible [2]. Thus, the daily averages of OA sources were used to
apportion the sources of BC and Cl− in northern China through the linear decomposition algorithm
described in References [15,34]:

tBC =
3∑

p=1

tp × cp (1)

tCl− =
2∑

p=1

tp × cp (2)

where the tBC represents the daily averages of the BC concentrations, tp in Equation (1) represents the
daily averages of the HOA, BBOA, and CCOA, tp in Equation (2) represents the daily averages
of the BBOA and CCOA, and cp represents the corresponding fitting parameters of the daily
average concentrations.

3. Results

3.1. Mass Concentrations and Chemical Composition of Non-refractory Particulate Matter (NR-PM)

As shown in Table S1, the concentrations of average NR-PM concentrations at individual sites
ranged from 15.4 to 247.0 µg m−3. The highest NR-PM value was observed at Xi’an in the GZ region [15],
whilst the lowest was at Hong Kong in the PRD region [35]. The NR-PM concentrations were typically
higher in the BTH and GZ regions, which were characterized by low wind speeds, low temperature,
strong anthropogenic emissions, and heterogeneous reactions [36,37].

On the basis of 29 campaigns in China, the organics contributed 38–55% of NR-PM during
wintertime. The average contributions of organics to NR-PM in BTH and GZ (53–55%) were higher
than the contributions in the PRD and YRD (45–47%). Figure 2a shows the average chemical composition
of inorganic species in the four regions. The relative contributions of inorganic species (i.e., SO4

2−,
NO3

−, NH4
+, and Cl−) to NR-PM were different across the regions. NR-PM in the PRD and YRD

regions was dominated by secondary inorganic aerosol (SIA), e.g., 52% in the PRD and 53% in the
YRD. In contrast, this contribution dropped to 41% in BTH and 40% in GZ. In terms of SIA species
in the PRD and YRD regions, the contribution from sulfate was higher than that from nitrate by 15%
in the PRD, whilst nitrate contributed 6% more than sulfate in the YRD. The relative contribution of
primary inorganic species (i.e., chloride) was notably higher in BTH (6.0%) and GZ (5.7%) compared to
that in the PRD (1.9%) and YRD (2.4%). The higher chloride mass fractions and concentrations in the
BTH and GZ regions were due to the enhanced burning activities during wintertime [1,16].

Note that the absolute sulfate concentrations were comparable between urban sites (Shenzhen and
Guangzhou, 10.0–12.8 µg m−3) and nonurban sites (Heshan, 10.0 µg m−3) in the PRD region, indicating
its similar regional distribution. The abundant sulfate in the PRD region was also attributed to the
low contributions of other compositions (organics, nitrate, and ammonium) due to the low emission
from local sources (e.g., limited coal combustion and biomass burning) and depletion during regional
transport [38]. The high nitrate mass fraction in the YRD may be related to the intra-regional transport
of air masses, which plays an important role in PM pollution in the YRD region [39]. Since nitrogen
oxide shows a faster oxidation rate than sulfur dioxide [40], the high NO3

−/SO4
2− ratio was expected

in the air masses over short-range transport. The nitrate could also be influenced by the temperature.
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This was proven through anti-correlation of the diurnal variations between the nitrate and temperature.
Details can be found in the Section 3.3.
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Figure 2. (a) Chemical compositions of non-refractory particulate matter (NR-PM) and (b) fractions of
organic sources in the four representative regions of China during wintertime. The dotted box refers to
the primary organic aerosols. The numbers above the bars represent the average mass concentrations
of (a) total NR-PM and (b) organic aerosols across the four regions. BTH: Beijing-Tianjin-Hebei Region;
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The inorganic and organic compositions of NR-PM were similar in the same region when the
results were classified and averaged according to the year of the campaign (Figure 3a) or the cities of
regions (Figure 3b). SIA dominated the NR-PM composition, with contributions ranging from 50%
to 66% in the PRD and YRD regions. As an exception, only 40% of the NR-PM was made up of SIA
in Shanghai in January 2013, which could be explained by the high organic mass fraction attributed
mainly to SOA formations [1]. The higher mass fraction of sulfate in 2012 in the PRD was due to the
influence of the regional transport of pollutants and the low level of local emissions in Hong Kong [35].
In the PRD region, SO4

2− was the most abundant SIA species, with contributions ranging from 24% to
40%. In the YRD region, the contribution from NO3

− was higher than other SIA species, ranging from
16% to 27%. On the contrary, the organics and chloride dominated the NR-PM with contributions of
51–67% in the BTH and GZ regions.

The ion balances are overall neutral within the uncertainty measurements range [41,42] in the
four representative regions. The average equivalent ratios of NH+

4 /SO2−
4 in the four regions were

higher than 1 (BTH (1.83), GZ (1.89), PRD (1.25), YRD (2.0)), indicating the dominance of (NH4)2SO4.
Furthermore, the molar ratios of NH+

4 to [NO−3 + SO2−
4 ] were calculated, and were slightly higher

than unity in BTH (1.08) and GZ (1.15), indicating the presence of NH4NO3 in the NR-PM. However,
the ratio was less than 1 in the PRD (0.92) and YRD (0.98) regions, indicating the presence of chemical
forms other than NH4NO3.
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Figure 3. Relative composition of the non-refractory PM in (a) different years and (b) across the
four regions.

3.2. Sources of Particulate Matter

The organic sources were identified and quantified. Figure 2b shows the relative contributions
of the main organic sources. The terms of low-volatility OOA (LV-OOA) and semi-volatile OOA
(SV-OOA) were originally used, whilst newer studies referred to more oxidized OOA (MO-OOA)
and less-oxidized OOA (LO-OOA) [22,31,35,43–45]. The OOAs at different aging levels are formed
through different atmospheric processes (e.g., aqueous phase reactions and photochemical reactions).
However, there is controversy as to which process dominates the formation of MO-OOA (or LO-OOA).
Hu et al. [46] attribute formation of the LO-OOA (MO-OOA) to the aqueous phase (photochemical)
reactions, whereas the opposite was observed in Xu et al. [47]. The OOA was correlated with the
SIA species, with a coefficient of determination (R2) ranging from 0.59 to 0.93, indicating that the
OOA was mainly secondary in its origin. In the BTH region, OOA was more correlated to nitrate
(R2 = 0.60–0.82) than sulfate (R2 = 0.43–0.65) (e.g., References [22,32,48]). This might be due to the fact
that sulfate increases sharply under high RH conditions (e.g., [22,32]), whilst nitrate and OOA increase
less rapidly than sulfate [49,50]. In the PRD and YRD regions, MO-OOA was more correlated with
SO4

2− (R2 = 0.49–0.93), whilst LO-OOA correlated more with NO3
− (R2 = 0.40–0.83). This was due to

the combined effect of the formation mechanism and volatility. In this study, the subtypes of OOA
were merged for ease of comparison.
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The contributions of organic sources were also different across the four regions (Figure 2b).
Primary sources (e.g., HOA, COA, BBOA, and CCOA) dominated in the northern regions with mass
fractions of 60% in BTH and 58% in GZ, respectively, whilst the major fraction of organics in the PRD
and YRD regions consisted of OOA, that is, 65% in the PRD and 59% in the YRD. The most abundant
POA were emissions from biomass burning in GZ (25%) and coal combustion in BTH (25%).

The organic composition was similar in the same region when the results were classified and
averaged according to the year of the campaign (Figure 4a) or the cities of regions (Figure 4b).
The organics were contributed mainly by POA in the BTH and GZ regions, with mass fractions of
56–79% (Figure 4a,b). Meanwhile, the exception was BTH, in January 2013, where the high OOA
fraction was mainly due to heterogeneous reactions [51]. In terms of the primary organic species,
CCOA contributed the most to OA in BTH with mass fractions of 17–40%, whereas the mass fractions
of BBOA were highest (14–33%) in the GZ region. It should be noted that BBOA contributed 17% and
27% to OA mass concentrations in Handan and Shijiazhuang, respectively, which are two major cities
of Hebei province in the BTH region. This indicated that the biomass burning emissions also played a
nonnegligible role in air pollution in the Hebei province. However, the dominant contributor (27–29%)
was still CCOA in Handan and Shijiazhuang.
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The emissions from coal combustion contributed the most to primary particulate matter
(PPM, including primary OA, Cl−, and BC) in the BTH region, with an average mass contribution of
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44% (Figure 5a,b). The contribution by emissions from coal combustion was highest in the different
cities of this region with mass fractions ranging from 38% to 46% (Figure 6a), or in different years
of the campaigns with mass fractions ranging from 40% to 48% (Figure 6b). Unlike the BTH region,
the biomass burning emissions contributed the most to PPM in the GZ region, with an average of 43%
(Figure 5a). The contributions from biomass burning emissions were highest in different years of the
campaign with mass fractions of 43–62%, and in the city of Xi’an which had an average mass fraction
of 52%. However, the contribution of biomass burning was lower than the emissions from cooking and
traffic in Baoji in 2014 (Figure 6b). Since the campaign in Baoji occurred at the end of the heating season
(27 February to 26 March 2014) and the temperatures had begun to rise, the biomass burning activities
for domestic heating had probably decreased. To summarize, it was found that the dataset in different
regions may represent to some extent the difference in compositions, e.g., more sulfate in the PRD
versus more nitrate in the YRD, and in sources, e.g., more coal combustion in the BTH versus more
biomass burning in GZ. The findings in this study confirmed some of the findings from older reviews,
i.e., higher contributions from burning sources in northern China and secondary aerosols in southern
China [4], high nitrate/sulfate (N/S) ratios in the YRD region, and low N/S ratios in the PRD region [2].
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Figure 5. (a) Total contributions of the primary sources to primary particulate matter (PPM, including
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and Hebei province of the Beijing-Tianjin-Hebei region. The numbers above the bars represent the
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We reported on the enhanced secondary aerosol formations on polluted winter days in the four
regions in China [29]. Specifically, the secondary aerosols increased on polluted days in the BTH
and GZ regions. Thus, the average contributions from burning sources were reduced because of the
enhanced secondary processes on polluted days. The enhanced nitrate formation on polluted days
could increase the average mass fractions of nitrate in the PRD and YRD regions, whereas the reduced
sulfate formation in the PRD region could decrease the average sulfate mass fraction.

We calculated the average composition of aerosol chemical species and organic sources on the days
of the lowest 5% PM concentrations (Figure S1). We could observe that the background was similar to
the average, i.e., more sulfate in the PRD, and more coal combustion in BTH versus more biomass
burning in GZ. The only difference was that the background nitrate mass fraction was comparable to
the sulfate in the YRD region.
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Figure S2 shows the average meteorological data (i.e., wind speed, temperature, solar radiation,
and relative humidity) during the measurements across the four regions. The low wind speed facilitated
the accumulation of PM in the BTH and GZ regions. The high temperature in the PRD region facilitates
the changes in the ammonium nitrate from particle to gas phase, which could partly explain why the
mass fractions of ammonium nitrate were low in this region. The relatively high solar radiation and
relative humidity in the PRD and YRD regions were favorable for the formation of secondary aerosols.
Consequently, the mass fractions of the secondary aerosols were higher in these two regions.

3.3. Diurnal Variations

Figure 7 shows the diurnal variations of BTH-CCOA, GZ-BBOA, PRD-sulfate, and YRD-nitrate,
which were affected by the evolution of the mixing layer height that controlled the vertical dispersion
of pollutants. The diurnal variations of the PRD-sulfate and YRD-nitrate were also influenced by
solar radiation, which increased in the afternoon and favored the formation of secondary aerosols
through gas-phase photochemical reactions. The diurnal variations of BTH-CCOA and GZ-BBOA
were characterized by high concentrations at night and low concentrations in the afternoon. This was
consistent with the enhanced (reduced) heating activities at night (in the afternoon), thereby indicating
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their local nature. In contrast, weak diurnal variations were observed for the PRD-sulfate, further
supporting its regional distribution. The regional nature of the sulfate and its high contribution in
the PRD region indicated that the aerosol characteristics in this region were mainly influenced by the
regional transport. Indeed, previous studies have shown that long-range transport plays an important
role in sulfate pollution over the PRD region, with contributions ranging from 66.8% to 94.0% across
cities in the PRD region [52,53]. The diurnal variation in the YRD showed that nitrate exhibited high
concentrations at night or in the morning and low concentrations in the afternoon, correlating to that
of RH [54]. This indicated that the homogenous reaction might have influenced the nitrate formation.
The diurnal variation of the YRD-nitrate anti-correlated with the temperature, indicating that the
temperature facilitated the transfer of semi-volatile ammonium nitrate from the solid to gas phase.
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4. Discussion

There were differences in the compositions of NR-PM across the regions, e.g., more sulfate in the
PRD and more nitrate in the YRD. The regional nature of PRD-sulfate may imply that the air conditions
in the PRD region are influenced more by the regional transport rather than the local emissions. Indeed,
the superregional transport (transport from other regions) was reported to contribute 62% to PM, 80%
to sulfate, and 56% to nitrate in the PRD region during wintertime [53,55]. Thus, the reduction of
local emissions is not enough, and cooperation with other regions is necessary for the control of PM
concentrations in the PRD region.

There were also differences in the organic sources across the regions, e.g., more coal combustion
in BTH versus more biomass burning in GZ. The coal emissions can be from the power sector,
the industrial sector, and the household [56]. Although the power sector consumes most of the coal,
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the emission factor of PM in coal-fired power plants is much lower than the factor from household solid
fuel combustion (coal and biomass) [57,58]. It has been reported that residential emissions (coal and
biomass) dominate the primary PM2.5 and OC emissions in northern China during wintertime [59].
Therefore, the high contributions of burning sources in northern China can be attributed to the
household emissions.

Within the cities of the BTH and GZ regions, over time the control policies had not improved the
air quality during wintertime up until 2017 when the PM2.5 mass concentration decreased by 34–50%
in the BTH region and 23–29% in the GZ region compared to that in 2016 (Figure S3). The obvious
reduction maybe related to the reduction in coal use for domestic heating and cooking by ~10 million
tons in 2017 [28]. Till now, the use of biomass for domestic heating and cooking (household biomass
burning) had not yet received attention, although the PM emission factors of 8.05 and 3.82 g kg−1

for crop residues and wood were much higher than the 1.30 g kg−1 for domestic coal burning and
0.53 g kg−1 for coal-fired power plants [57,58]. This could partly explain why the air condition is still
severe in the cities of the GZ region and Hebei province, where BBOA is the primary or secondary
contributor to POA (Figure S3).

The total compositional information of aerosol constituents in the four regions could provide some
insights into the development of cost-effective measures. The inorganic and organic compositions of
NR-PM are similar in cities of the same region and different across regions. Hence, it would be more
effective to implement an air pollution control approach that prioritizes the reduction from sources
at the regional level. In particular, strict control policies for coal combustion and biomass burning
emissions should be enforced in the BTH and GZ regions, respectively.

5. Conclusions

The spatial distribution and diurnal variations of aerosol composition and organic sources were
analyzed to investigate the aerosol characteristics in four regions. It was found that there were
differences in the compositions of non-refractory particulate matter across the regions, e.g., more sulfate
in the PRD versus more nitrate in the YRD, and in the organic sources, e.g., more coal combustion
in BTH versus more biomass burning in GZ. The characteristics of the composition of NR-PM are
similar when the campaigns were classified according to the winter of different years or the cities of
different regions. The diurnal variations of the PRD-sulfate indicated its regional nature, whereas
the organics from burning sources in two regions of northern China exhibited local characteristics.
Household biomass burning should receive attention in the future, especially in the GZ region and
Hebei province where BBOA is the primary or secondary contributor to POA. Moreover, cooperation
with other regions is necessary for the control of PM concentrations in the PRD region. This study is of
great significance for further understanding air pollution in China and providing a scientific basis for
targeted air pollution control measures in specific regions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/10/5/277/s1,
Figure S1: (a) chemical compositions of inorganic aerosols and (b) fractions of organic sources in four representative
regions of China during wintertime on the days of the lowest 5% PM concentrations. The dotted box refers to
the primary organic aerosols., Figure S2: comparison of meteorological data (wind speed, temperature, relative
humidity, and solar radiation) in the four regions during the selected study period. The SR refers to the average
solar radiation from 12:00 to 18:00, Figure S3: average mass concentration of PM2.5 during wintertime from 2014
to 2017 in representative cities of four regions, Table S1: summary of publications selected in this study.
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