Nature-Based Designs to Mitigate Urban Heat: The Efficacy of Green Infrastructure Treatments in Portland, Oregon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Cluster Analysis
2.3. Description of Simulation Tools
2.4. Scenario Development
3. Results
4. Discussion
4.1. Relationship to Previous Studies
4.2. Nature-Based Designs
4.3. Transferability of the Study
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mote, P.W.; Salathé, E.P., Jr. Future climate in the Pacific Northwest. Clim. Chang. 2010, 102, 29–50. [Google Scholar] [CrossRef] [Green Version]
- Meehl, G.A.; Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 2004, 305, 994–997. [Google Scholar] [CrossRef] [PubMed]
- Hayhoe, K.; Wuebbles, D.J.; Easterling, D.R.; Fahey, D.W.; Doherty, S.; Kossin, J.; Sweet, W.; Vose, R.; Wehner, M. Capter 2: Our Changing Climate. In Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment; Reidmiller, D.R., Avery, C.W., Easterling, D.R., Kunkel, K.E., Lewis, K.L.M., Maycock, T.K., Stewart, B.C., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2018; Volume II, pp. 72–144. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, T.H.; Begley, C.E. Impact of the 2011 heat wave on mortality and emergency department visits in Houston, Texas. Environ. Health 2015, 14, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Knowlton, K.; Rotkin-Ellman, M.; King, G.; Margolis, H.G.; Smith, D.; Solomon, G.; Trent, R.; English, P. The 2006 California heat wave: Impacts on hospitalizations and emergency department visits. Environ. Health Persp. 2009, 117, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Dhainaut, J.F.; Claessens, Y.E.; Ginsburg, C.; Riou, B. Unprecedented heat-related deaths during the 2003 heat wave in Paris: Consequences on emergency departments. Crit. Care 2003, 8, 1–2. [Google Scholar] [CrossRef]
- Klinenberg, E. Denaturalizing disaster: A social autopsy of the 1995 Chicago heat wave. Theory Soc. 1999, 28, 239–295. Available online: https://www.jstor.org/stable/3108472 (accessed on 22 October 2018). [CrossRef]
- Smoyer-Tomic, K.E.; Kuhn, R.; Hudson, A. Heat wave hazards: An overview of heat wave impacts in Canada. Nat. Hazards 2003, 28, 465–486. [Google Scholar] [CrossRef]
- Huang, G.; Zhou, W.; Cadenasso, M.L. Is everyone hot in the city? Spatial pattern of land surface temperatures, land cover and neighborhood socioeconomic characteristics in Baltimore, MD. J. Environ. Manag. 2011, 92, 1753–1759. [Google Scholar] [CrossRef]
- Graham, J.D.; Chang, B.H.; Evans, J.S. Poorer is riskier. Risk Anal. 1992, 12, 333–337. [Google Scholar] [CrossRef]
- Gronlund, C.J.; Zanobetti, A.; Schwartz, J.D.; Wellenius, G.A.; O’Neill, M.S. Heat, heat waves, and hospital admissions among the elderly in the United States, 1992–2006. Environ. Health Perspect. 2014, 122, 1187–1192. [Google Scholar] [CrossRef]
- Åströma, D.O.; Forsberg, B.; Rocklövab, J. Heat wave impact on morbidity and mortality in the elderly population: A review of recent studies. Maturitas 2011, 69, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Howard, L. The Climate of London: Deduced from Meteorological Observations Made at Different Places in the Neighbourhood of the Metropolis; W. Phillips: London, UK, 1820; ISBN 978-144-602-480-5. [Google Scholar]
- Peng, S.; Piao, S.; Ciais, P.; Friedlingstein, P.; Ottle, C.; Bréon, F.; Nan, H.; Zhou, L.; Myneni, R.B. Surface urban heat island across 419 global big cities. Environ. Sci. Tech. 2012, 46, 696–703. [Google Scholar] [CrossRef]
- Debbage, N.; Shepherd, J.M. The urban heat island effect and city contiguity. Comput. Environ. Urban 2015, 54, 181–194. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Seto, K.C.; Shepherd, J.M. Global urban land-use trends and climate impacts. Curr. Opin. Environ. Sustain. 2009, 1, 89–95. [Google Scholar] [CrossRef]
- Baldinelli, G.; Bonafoni, S. Analysis of Albedo Influence on Surface Urban Heat Island by Spaceborne Detection and Airborne Thermography. In International Conference on Image Analysis and Processing; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Takebayashi, H.; Moriyama, M. Study on the urban heat island mitigation effect achieved by converting to grass-covered parking. Sol. Energy 2009, 83, 1211–1223. [Google Scholar] [CrossRef] [Green Version]
- Hamdi, R.; Schayes, G. Sensitivity study of the urban heat island intensity to urban characteristics. Int. J. Climatol. 2008, 28, 973–982. [Google Scholar] [CrossRef] [Green Version]
- Voelkel, J.; Shandas, V. Towards systematic prediction of urban heat islands: Grounding measurements, assessing modeling techniques. Climate 2017, 5, 41. [Google Scholar] [CrossRef]
- United Nations Department of Economic and Social Affairs, Population Division. World urbanization prospects: The 2014 revision. Available online: http://esa.un.org/unpd/wup/Publications/Files/WUP2014-Report.pdf (accessed on 7 October 2018).
- Gunawardenaa, K.R.; Wellsb, M.J.; Kershawa, T. Utilising green and bluespace to mitigate urban heat island intensity. Sci. Total Environ. 2017, 584–585, 1040–1055. [Google Scholar] [CrossRef]
- Aflakia, A.; Mirnezhada, M.; Ghaffarianhoseinibg, A.; Ghaffarianhoseini, A.; Omranyd, H.; Wange, Z.; Akbarif, H. Urban heat island mitigation strategies: A state-of-the-art review on Kuala Lumpur, Singapore and Hong Kong. Cities 2017, 62, 131–145. [Google Scholar] [CrossRef]
- Santamouris, M.; Ding, L.; Fiorito, F.; Oldfield, P.; Osmond, P.; Paolini, R.; Prasad, D.; Synnefa, A. Passive and active cooling for the outdoor built environment—Analysis and assessment of the cooling potential of mitigation technologies using performance data from 220 large scale projects. Sol. Energy 2017, 154, 14–33. [Google Scholar] [CrossRef]
- Santamouris, M.; Synnefa, A.; Karlessi, T. Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions. Sol. Energy 2011, 85, 3085–3102. [Google Scholar] [CrossRef]
- Younger, M.; Morrow-Almeida, H.R.; Vindigni, S.M.; Dannenberg, A.L. The built environment, climate change, and health: Opportunities for co-benefits. Am. J. Prev. Med. 2008, 35, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Hart, M.A.; Sailor, D.J. Quantifying the influence of land-use and surface characteristics on spatial variability in the urban heat island. Theor. Appl. Climatol. 2009, 95, 397–406. [Google Scholar] [CrossRef]
- Susca, T.; Gaffin, S.R.; Dell’Osso, G.R. Positive effects of vegetation: Urban heat island and green roofs. Environ. Pollut. 2011, 159, 2119–2126. [Google Scholar] [CrossRef] [PubMed]
- Upreti, R.; Wang, Z.; Yang, J. Radiative shading effect of urban trees on cooling the regional built environment. Urban For. Urban Green. 2017, 26, 18–24. [Google Scholar] [CrossRef]
- Oliveira, S.; Andrade, H.; Vaz, T. The cooling effect of green spaces as a contribution to the mitigation of urban heat: A case study in Lisbon. Build. Environ. 2011, 46, 2186–2194. [Google Scholar] [CrossRef]
- Santamouris, M. Cooling the cities—A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol. Energy 2014, 103, 682–703. [Google Scholar] [CrossRef]
- Kyriakodis, G.; Santamouris, M. Using reflective pavements to mitigate urban heat island in warm climates—Results from a large scale urban mitigation project. Urban Clim. 2018, 24, 326–339. [Google Scholar] [CrossRef]
- Radhi, H.; Sharples, S.; Taleb, H.; Fahmy, M. Will cool roofs improve the thermal performance of our built environment? A study assessing roof systems in Bahrain. Energy Build. 2017, 135, 324–337. [Google Scholar] [CrossRef] [Green Version]
- Ali-Toudert, F.; Mayer, H. Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate. Build. Environ. 2006, 41, 94–108. [Google Scholar] [CrossRef]
- Skelhorn, C.; Lindley, S.; Levermore, G. The impact of vegetation types on air and surface temperatures in a temperate city: A fine scale assessment in Manchester, UK. Landsc. Urban Plan. 2014, 121, 129–140. [Google Scholar] [CrossRef]
- Kabisch, N.; Frantzeskaki, N.; Pauleit, S.; Naumann, S.; Davis, M.; Artmann, M.; Haase, D.; Knapp, S.; Korn, H.; Stadler, J.; et al. Nature-based solutions to climate change mitigation and adaptation in urban areas: Perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecol. Soc. 2016, 21, 634–648. [Google Scholar] [CrossRef]
- Scott, M.; Lennon, M. Nature-based solutions for the contemporary city. Plan. Theory Pract. 2016, 17, 267–300. [Google Scholar] [CrossRef]
- International Union for the Conservation of Nature (IUCN). Nature-Based Solutions to Address Global Societal Challenges. Cohen-Shacham, E., Walters, G., Janzen, C., Maginnis, S., Eds.; Available online: https://portals.iucn.org/library/sites/library/files/documents/2016-036.pdf (accessed on 7 October 2018).
- International Union for the Conservation of Nature (IUCN). Nature-Based Solutions. Available online: https://www.iucn.org/commissions/commission-ecosystem-management/our-work/nature-based-solutions (accessed on 7 October 2018).
- World Maps of Koeppen-Gieger Climate Classification. Available online: http://koeppen-geiger.vu-wien.ac.at/ (accessed on 7 October 2018).
- National Weather Service Climatological Report. Available online: https://forecast.weather.gov/product.php?site=NWS&issuedby=PDX&product=CLA&format=CI&version=1&glossary=0 (accessed on 7 October 2018).
- Charles, S.L. A typology of mansionization in the inner-ring suburbs of Chicago, Illinois, 2000–2015. Housing Policy Debate 2018, 28, 832–853. [Google Scholar] [CrossRef]
- Fraley, C.; Raftery, A.E. Model-based methods of classification: using the mclust software in chemometrics. J. Stat. Softw. 2007, 18, 1–13. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. Available online: https://www.jstor.org/stable/2958889 (accessed on 22 October 2018). [CrossRef]
- Connors, J.P.; Galletti, C.S.; Chow, W.T. Landscape configuration and urban heat island effects: Assessing the relationship between landscape characteristics and land surface temperature in Phoenix, Arizona. Landsc. Ecol. 2013, 28, 271–283. [Google Scholar] [CrossRef]
- How Big Is a City Block? Available online: http://www.land4ever.com/block.htm (accessed on 22 October 2018).
- City of Portland Bureau of Planning and Sustainability. Better Housing by Design. Available online: https://www.portlandoregon.gov/bps/71903 (accessed on 10 October 2018).
- Bruse, M. Die Auswirkungen kleinskaliger Umweltgestaltung auf das Mikroklima. Entwicklung des prognostischen numerischen Modells ENVI-met zur Simulation der Wind-, Temperatur- und Feuchteverteilung. Städtischen Strukturen. Univ. Bochum 1999. [Google Scholar] [CrossRef]
- Höppe, P. The physiological equivalent temperature—A universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef]
- Gagge, A.P. An effective temperature scale based on a simple model of human physiological regulatory response. Ashrae Trans. 1971, 77, 247–262. Available online: http://hdl.handle.net/2115/37901 (accessed on 22 October 2018).
- Weather Underground WunderMap, Portland, OR. Available online: https://www.wunderground.com/wundermap?lat=45.50999832&lon=-122.69000244 (accessed on 25 April 2017).
- Zhao, J.; Wang, J.; Xing, Z.; Luan, X.; Jiang, Y. Weather and cycling: Mining big data to have an in-depth understanding of the association of weather variability with cycling on an off-road trail and an on-road bike lane. Transp. Res. Part A Policy Pract. 2018, 111, 119–135. [Google Scholar] [CrossRef]
- Burchfield, R.A.; Fitzhugh, E.C.; Bassett, D.R. The association of trail use with weather-related factors on an urban greenway. J. Phys. Act. Health 2012, 9, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Gebhart, K.; Noland, R.B. The impact of weather conditions on bikeshare trips in Washington, DC. Transportation 2014, 41, 1205–1225. [Google Scholar] [CrossRef]
- Singhal, A.; Kamga, C.; Yazici, A. Impact of weather on urban transit ridership. Transp. Res. Part A Policy Pract. 2014, 69, 379–391. [Google Scholar] [CrossRef]
- Ninan, K.N.; Inoue, M. Building a Climate Resilient Economy and Society: Challenges and Opportunities; Edward Elgar: Cheltenham, UK, 2017; ISBN 978-1-78536-844-8. [Google Scholar]
- Kong, F.; Sun, C.; Liu, F.; Yin, H.; Jiang, F.; Pu, Y.; Cavan, G.; Skelhorn, C.; Middel, A.; Dronova, I. Energy saving potential of fragmented green spaces due to their temperature regulating ecosystem services in the summer. Appl. Energy 2016, 183, 1428–1440. [Google Scholar] [CrossRef]
- Lee, H.; Mayer, H.; Chen, L. Contribution of trees and grasslands to the mitigation of human heat stress in a residential district of Freiburg, Southwest Germany. Landsc. Urban Plan. 2016, 148, 37–50. [Google Scholar] [CrossRef]
- Taleghani, M.; Sailor, D.; Ban-Weiss, G.A. Micrometeorological simulations to predict the impacts of heat mitigation strategies on pedestrian thermal comfort in a Los Angeles neighborhood. Environ. Res. Lett. 2016, 11, 024003. [Google Scholar] [CrossRef] [Green Version]
- Morakinyo, T.E.; Dahanayake, K.K.; Ng, E.; Chow, C.L. Temperature and cooling demand reduction by green-roof types in different climates and urban densities: A co-simulation parametric study. Energy Build. 2017, 145, 226–237. [Google Scholar] [CrossRef]
- Taleghani, M.; Sailor, D.J.; Tenpierik, M.; van den Dobbelsteen, A. Thermal assessment of heat mitigation strategies: The case of Portland State University, Oregon, USA. Build. Environ. 2014, 73, 138–150. [Google Scholar] [CrossRef]
- Al-hafiz, B.; Musy, M.; Hasan, T. A study on the impact of changes in the materials reflection coefficient for achieving sustainable urban design. Procedia Environ. Sci. 2017, 38, 562–570. [Google Scholar] [CrossRef]
- US Environmental Protection Agency. Reducing Urban Heat Islands: Compendium of Strategies, Chapters 4–5. Available online: https://www.epa.gov/heat-islands/heat-island-compendium (accessed on 23 October 2018).
- Berardi, U.; GhaffarianHoseini, A.; GhaffarianHoseini, A. State-of-the-art analysis of the environmental benefits of green roofs. Appl. Energy 2014, 115, 411–428. [Google Scholar] [CrossRef]
- Liu, Y.; Peng, J.; Wang, Y. Application of partial least squares regression in detecting the important landscape indicators determining urban land surface temperature variation. Landsc. Ecol. 2018, 33, 1133–1145. [Google Scholar] [CrossRef]
- Huang, M.; Cui, P.; He, X. Study of the cooling effects of urban green space in Harbin in terms of reducing the heat island effect. Sustainability 2018, 10, 1101. [Google Scholar] [CrossRef]
- Zhang, Y.; Murray, A.T.; Turner, B.L. Optimizing green space locations to reduce daytime and nighttime urban heat island effects in Phoenix, Arizona. Landsc. Urban Plan. 2017, 165, 162–171. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Cai, H.; Qiao, Z.; Wang, L.; Jin, C.; Ge, Y.; Wang, L.; Xu, F. Impacts of park landscape structure on thermal environment using QuickBird and Landsat images. Chin. Geogr. Sci. 2017, 27, 818–826. [Google Scholar] [CrossRef]
- Jun, M.J.; Kim, J.I.; Kim, H.J.; Yeo, C.H.; Hyun, J.Y. Effects of two urban development strategies on changes in the land surface temperature: Infill versus suburban new town development. J. Urban Plan. Dev. 2017, 143, 04017010. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhan, Y.; Yu, T.; Ren, X. Urban green effects on land surface temperature caused by surface characteristics: A case study of summer Beijing metropolitan region. Infrared Phys. Technol. 2017, 86, 35–43. [Google Scholar] [CrossRef]
- Peng, L.; Jim, C. Green-roof effects on neighborhood microclimate and human thermal sensation. Energies 2013, 6, 598–618. [Google Scholar] [CrossRef]
- Naeem, S.; Cao, C.; Qazi, W.A.; Zamani, M.; Wei, C.; Acharya, B.K.; Rehman, A.U. Studying the association between green space characteristics and land surface temperature for sustainable urban environments: An analysis of Beijing and Islamabad. ISPRS Int. J. Geo-Inf. 2018, 7, 38. [Google Scholar] [CrossRef]
- Peng, J.; Xie, P.; Liu, Y.; Ma, J. Urban thermal environment dynamics and associated landscape pattern factors: A case study in the Beijing metropolitan region. Remote Sens. Environ. 2016, 173, 145–155. [Google Scholar] [CrossRef]
- Liu, W.; Feddema, J.; Hu, L.; Zung, A.; Brunsell, N. Seasonal and diurnal characteristics of land surface temperature and major explanatory factors in Harris County, Texas. Sustainability 2017, 9, 2324. [Google Scholar] [CrossRef]
- Kuang, W.; Liu, Y.; Dou, Y.; Chi, W.; Chen, G.; Gao, C.; Yang, T.; Liu, J.; Zhang, R. What are hot and what are not in an urban landscape: Quantifying and explaining the land surface temperature pattern in Beijing, China. Landsc. Ecol. 2015, 30, 357–373. [Google Scholar] [CrossRef]
- Voelkel, J.; Hellman, D.; Sakuma, R.; Shandas, V. Assessing vulnerability to urban heat: A study of disproportionate heat exposure and access to refuge by socio-demographic status in Portland, Oregon. Int. J. Environ. Res. Public Health 2018, 15, 640. [Google Scholar] [CrossRef]
- Tzoulas, K.; Korpela, K.; Venn, S.; Vesa, Y.; Kaźmierczak, A.; Niemela, J.; James, P. Promoting ecosystem and human health in urban areas using green infrastructure: A literature review. Landsc. Urban Plan. 2007, 81, 167–178. [Google Scholar] [CrossRef]
- Dunn, A.D. Siting green infrastructure: Legal and policy solutions to alleviate urban poverty and promote healthy communities. BC Envtl. Aff. L. Rev. 2010, 37, 41–66. Available online: https://lawdigitalcommons.bc.edu/ealr/vol37/iss1/3 (accessed on 7 October 2018).
Cluster Number | Name of Cluster Type | Abbreviation |
---|---|---|
Cluster 1 | High-Canopy Neighborhood | HCN |
Cluster 2 | Urban Districts and Corridors | UD |
Cluster 3 | Medium-Canopy Neighborhood | MCN |
Cluster 4 | Hardscaped Industrial | HI |
Cluster 5 | Vegetated Urban | VU |
Cluster 6 | Semi-Rural | SR |
Cluster 7 | Hillside Forest | - |
Color | Corresponding Land Cover Type |
---|---|
GREY | Buildings |
GREEN | Trees and Grass |
BLACK | Asphalt Pavement |
WHITE | Concrete Pavement |
BROWN | Loamy Soils |
Parameter | Initial Value | Final Value |
---|---|---|
Wind speed (m/s) | 1.7 | 1.7 |
Wind direction | 315 (NNW) | 315 (NNW) |
Roughness length | 0.01 | 0.1 |
Initial temperature of atmosphere (C) | 26 | 30 |
Specific humidity at model top (2500 m, g/kg) | 5 | 2 |
Relative humidity | 60 | 30 |
Forcing | No | No |
Lateral Boundary Conditions (LBC) for temperature, humidity | Open | Open |
LBC for Turbulence | Forced | Open |
Initial temperature upper layer (0–20 cm) [K] | 293 | 300 |
Initial temperature middle layer (20–50 cm) [K] | 293 | 300 |
Initial temperature deep layer (50–200 cm) [K] | 293 | 300 |
Relative humidity upper layer (0–20 cm) | 50 | 50 |
Relative humidity middle layer (20–50 cm) | 60 | 60 |
Relative humidity deep layer (50–200 cm) | 60 | 60 |
Relative humidity bedrock layer (below 200 cm) | 60 | 60 |
Time of the Day | HCN | UD | MCN | HI | VU | SR |
---|---|---|---|---|---|---|
Morning (7:00 PST) | 5.9 | 0.7 | 7.3 | 4.5 | 6.4 | 6.5 |
Afternoon (15:00 PST) | 0.2 | 0.1 | 1.3 | −0.6 | −0.6 | 1.7 |
Scenario Name | Scenario Description |
---|---|
Base | Base model; no changes simulated |
NoGreen | No greenspace; any existing greenspace or soils are replaced with asphalt |
AddGreen | Add trees along sidewalks and parking lots; add grass and trees with sizing relevant for spaces on exposed soil |
GreenRoof | Apply green roof (100% coverage with 50 cm grass) to all buildings |
RoofAlbedo | Increase albedo of all roofs by 0.3 |
RoadAlbedo | Increase albedo of asphalt pavements by 0.3 |
Combination | Combined use of the AddGreen, RoofAlbedo and RoadAlbedo scenarios |
Cluster | Heat Mitigation Scenarios (Temperature Change in °C) | |||||
---|---|---|---|---|---|---|
NoGreen | AddGreen | GreenRoof | RoofAlbedo | RoadAlbedo | Combination | |
HCN | +6.9 | −0.5 | −0.1 | −0.2 | −0.2 | −0.7 |
UD | +1.6 | −1.5 | −0.5 | −1.2 | −1.0 | −3.4 |
MCN | +3.4 | −1.5 | −0.1 | −0.2 | −0.8 | −2.2 |
HI | +0.5 | −1.0 | −0.4 | −1.4 | −0.9 | −3.2 |
VU | +6.6 | −1.1 | 0.0 | −0.2 | −0.5 | −1.7 |
SR | +3.9 | −2.6 | −0.1 | −0.2 | −0.8 | −3.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makido, Y.; Hellman, D.; Shandas, V. Nature-Based Designs to Mitigate Urban Heat: The Efficacy of Green Infrastructure Treatments in Portland, Oregon. Atmosphere 2019, 10, 282. https://doi.org/10.3390/atmos10050282
Makido Y, Hellman D, Shandas V. Nature-Based Designs to Mitigate Urban Heat: The Efficacy of Green Infrastructure Treatments in Portland, Oregon. Atmosphere. 2019; 10(5):282. https://doi.org/10.3390/atmos10050282
Chicago/Turabian StyleMakido, Yasuyo, Dana Hellman, and Vivek Shandas. 2019. "Nature-Based Designs to Mitigate Urban Heat: The Efficacy of Green Infrastructure Treatments in Portland, Oregon" Atmosphere 10, no. 5: 282. https://doi.org/10.3390/atmos10050282
APA StyleMakido, Y., Hellman, D., & Shandas, V. (2019). Nature-Based Designs to Mitigate Urban Heat: The Efficacy of Green Infrastructure Treatments in Portland, Oregon. Atmosphere, 10(5), 282. https://doi.org/10.3390/atmos10050282