OPERA the Radar Project
Abstract
:1. Introduction
2. Materials and Methods
2.1. European Radar Network
2.2. Central Processing and Quality Control
3. Results
3.1. Increasing Homogeneity of the European Radar Composites
3.2. Common Data Format
3.3. Data for Users
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AROME | Application of Research to Operations at Mesoscale |
BUFR | Binary Universal Form for the Representation of meteorological data |
CAPPI | Constant Altitude Plan Position Indicator |
COSMO | Consortium for Small-scale Modeling |
dBZ | logaritmic unit of radar reflectivity |
ECMWF | European Centre of Medium-Range Weather forecasting |
ECOMET | Economic interest grouping of the National Meteorological Services of the European Economic Area |
EFAS | European Flood Awareness System |
EUMETNET | European Meteorological Services’ Network |
EUMETSAT | European Organisation for Meteorological Satellites |
GTOPO30 | Global 30 Arc-Second Elevationߝdigital elevation model from United States Geological Survey |
HARMONIE | Hirlam-Aladin Researchߝ(towards) Mesoscale Operational NWP In Europe |
HDF | Hierarchial Data Format |
LACE | Regional Centre for Limited Area modelling in Central Europe |
MAX | Maximum Reflectivity |
MESAN | Mesoscale analysis system |
NCEP | National Centers for Environmental Prediction |
NWP | Numerical Weather Prediction |
ODC | Opera Data Centre (Odyssey) |
ODIM | Opera Data Information Model |
OPERA | Operational Program for Exchange of Weather Radar Information |
PPI | Plan Position Indicator |
QI | Quality Index |
RLAN | Radio Limited Area Network |
SAF | Satellite Application Facility |
TH | Total (unfiltered) reflectivity in horizontal polarization |
TV | Total (unfiltered) reflectivity in vertical polarization |
WMO | World Meteorological Organization |
Z-R | conversion from radar reflectivity factor to precipitation intensity |
ZDR | differential reflectivity |
3DVAR | Three-Dimensional Variational Data Assimilation |
4DVAR | Four-Dimensional Variational Data Assimilation |
References
- Huuskonen, A.; Saltikoff, E.; Holleman, I. The operational weather radar network in Europe. Bull. Am. Meteorol. Soc. 2014, 95, 897–907. [Google Scholar] [CrossRef]
- Saltikoff, E.; Kurri, M.; Leijnse, H.; Barbosa, S.; Stiansen, K. Maintenance keeps radars running. Bull. Am. Meteorol. Soc. 2017, 98, 1833–1840. [Google Scholar] [CrossRef]
- Huuskonen, A.; Holleman, I. Determining weather radar antenna pointing using signals detected from the sun at low antenna elevations. J. Atmos. Ocean. Technol. 2007, 24, 476–483. [Google Scholar] [CrossRef]
- Holleman, I.; Huuskonen, A.; Kurri, M.; Beekhuis, H. Operational monitoring of weather radar receiving chain using the sun. J. Atmos. Ocean. Technol. 2010, 27, 159–166. [Google Scholar] [CrossRef]
- Huuskonen, A.; Kurri, M.; Holleman, I. Improved analysis of solar signals for differential reflectivity monitoring. Atmos. Meas. Tech. 2016, 9, 3183–3192. [Google Scholar] [CrossRef] [Green Version]
- Peura, M. Computer vision methods for anomaly removal. In Proceedings of the European Conference on Radar Meteorology (ERAD), Delft, The Netherlands, 18–22 November 2002; pp. 312–317. [Google Scholar]
- Scovell, R.; Gaussiat, N.; Mittermaier, M. Recent improvements to the quality control of radar data for the OPERA data centre. In Proceedings of the 36th Conference on Radar Meteorology, Breckenridge, CO, USA, 16–20 September 2013. [Google Scholar]
- Henja, A.; Michelson, D. Improving the quality of European weather radar composites with the BALTRAD toolbox. In Proceedings of the Seventh European Conference on Radar in Meteorology and Hydrology, Toulouse, France, 25–29 June 2012. [Google Scholar]
- Marcos, C.; Rodríguez, A. Algorithm Theoretical Basis Document for the Precipitation Product Processors of the NWC/GEO. EUMETSAT NWC SAF. Available online: http://www.nwcsaf.org/ (accessed on 10 June 2019).
- Park, S.; Berenguer, M.; Sempere-Torres, D.; Baugh, C.; Smith, P. Toward seamless high-resolution flash flood forecasting over Europe based on radar nowcasting and NWP: An evaluation with case studies. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 23–28 April 2017; Volume 19, p. 12158. [Google Scholar]
- Bauer, S.; Chapman, J.W.; Reynolds, D.R.; Alves, J.A.; Dokter, A.M.; Menz, M.M.; Sapir, N.; Ciach, M.; Pettersson, L.B.; Kelly, J.F.; et al. From agricultural benefits to aviation safety: Realizing the potential of continent-wide radar networks. BioScience 2017, 67, 912–918. [Google Scholar] [CrossRef] [PubMed]
- Saltikoff, E.; Cho, J.Y.; Tristant, P.; Huuskonen, A.; Allmon, L.; Cook, R.; Becker, E.; Joe, P. The threat to weather radars by wireless technology. Bull. Am. Meteorol. Soc. 2016, 97, 1159–1167. [Google Scholar] [CrossRef]
- Häggmark, L.; Ivarsson, K.I.; Gollvik, S.; Olofsson, P.O. Mesan, an operational mesoscale analysis system. Tellus Dyn. Meteorol. Oceanogr. 2000, 52, 2–20. [Google Scholar] [CrossRef] [Green Version]
- Haase, G.; Johnson, D.; Delobbe, L.; Lukach, M. Eumetnet OPERA Publications. EUMETNET EIG. Available online: http://eumetnet.eu/OPERA (accessed on 10 June 2019).
- Matthews, S.; Dupuy, P.; Scovell, R.; Kergomard, A.; Urban, B.; Huuskonen, A.; Smith, A.; Gaussiat, N. EUMETNET OPERA Radar Data Center: Providing operational, homogeneous European radar rainfall composites. In Proceedings of the Weather Radar and Hydrology Symposium, Exeter, UK, 18–21 April 2011; pp. 9–14. [Google Scholar]
- Simonin, D.; Pierce, C.; Roberts, N.; Ballard, S.P.; Li, Z. Performance of Met Office hourly cycling NWP-based nowcasting for precipitation forecasts. Q. J. R. Meteorol. Soc. 2017, 143, 2862–2873. [Google Scholar] [CrossRef]
- Lopez, P. Direct 4D-Var assimilation of NCEP stage IV radar and gauge precipitation data at ECMWF. Mon. Weather Rev. 2011, 139, 2098–2116. [Google Scholar] [CrossRef]
- Stephan, K. Applying OPERA rain rate composite for assimilation into COSMO model. In Proceedings of the Eighth European Conference on Radar in Meteorology and Hydrology, Garmisch-Partenkirchen, Germany, 1–5 September 2014. [Google Scholar]
- Bick, T.; Simmer, C.; Trömel, S.; Wapler, K.; Hendricks Franssen, H.J.; Stephan, K.; Blahak, U.; Schraff, C.; Reich, H.; Zeng, Y.; et al. Assimilation of 3D radar reflectivities with an ensemble Kalman filter on the convective scale. Q. J. R. Meteorol. Soc. 2016, 142, 1490–1504. [Google Scholar] [CrossRef] [Green Version]
- Ridal, M.; Dahlbom, M. Assimilation of multinational radar reflectivity data in a mesoscale model: A proof of concept. J. Appl. Meteorol. Climatol. 2017, 56, 1739–1751. [Google Scholar] [CrossRef]
- Caumont, O.; Ducrocq, V.; Wattrelot, É.; Jaubert, G.; Pradier-Vabre, S. 1D+ 3DVar assimilation of radar reflectivity data: A proof of concept. Tellus Dyn. Meteorol. Oceanogr. 2010, 62, 173–187. [Google Scholar] [CrossRef]
- Wattrelot, E.; Caumont, O.; Mahfouf, J.F. Operational implementation of the 1D+ 3D-Var assimilation method of radar reflectivity data in the AROME model. Mon. Weather Rev. 2014, 142, 1852–1873. [Google Scholar] [CrossRef]
- Park, S.; Berenguer, M.; Sempere-Torres, D. Long-term analysis of gauge-adjusted radar rainfall accumulations at European scale. J. Hydrol. 2019, 573, 768–777. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, C.; Dokter, A.M.; Verlinden, L.; Shamoun-Baranes, J.; Schmid, B.; Desmet, P.; Bauer, S.; Chapman, J.; Alves, J.A.; Stepanian, P.M.; et al. Revealing patterns of nocturnal migration using the European weather radar network. Ecography 2019, 42, 876–886. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saltikoff, E.; Haase, G.; Delobbe, L.; Gaussiat, N.; Martet, M.; Idziorek, D.; Leijnse, H.; Novák, P.; Lukach, M.; Stephan, K. OPERA the Radar Project. Atmosphere 2019, 10, 320. https://doi.org/10.3390/atmos10060320
Saltikoff E, Haase G, Delobbe L, Gaussiat N, Martet M, Idziorek D, Leijnse H, Novák P, Lukach M, Stephan K. OPERA the Radar Project. Atmosphere. 2019; 10(6):320. https://doi.org/10.3390/atmos10060320
Chicago/Turabian StyleSaltikoff, Elena, Günther Haase, Laurent Delobbe, Nicolas Gaussiat, Maud Martet, Daniel Idziorek, Hidde Leijnse, Petr Novák, Maryna Lukach, and Klaus Stephan. 2019. "OPERA the Radar Project" Atmosphere 10, no. 6: 320. https://doi.org/10.3390/atmos10060320
APA StyleSaltikoff, E., Haase, G., Delobbe, L., Gaussiat, N., Martet, M., Idziorek, D., Leijnse, H., Novák, P., Lukach, M., & Stephan, K. (2019). OPERA the Radar Project. Atmosphere, 10(6), 320. https://doi.org/10.3390/atmos10060320