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Abstract: Nature has been adversely affected by increasing industrialization, especially during the
latter part of the last century, as a result of accelerating technological development, unplanned
urbanization, incorrect agricultural policies and deforestation, which have contributed to the elevated
concentration of the greenhouse gases (GHGs) in the environment. GHG accumulation has an
adverse impact on meteorological and hydro-meteorological parameters, particularly temperature.
Temperature plays a prominent and well-known role in evaporation, transpiration and changes in
water demand, and thus significantly affects both water availability and food security. Therefore,
a systematic understanding of temperature is important for fighting food insecurity and household
poverty. Variations in temperature are often assessed and characterized through trend analysis. Hence,
the objective of this paper is to determine long-term trends in mean monthly maximum and minimum
air temperatures for the Maloti-Drakensberg region. The Mann–Kendall test, a non-parametric test,
was applied on mean air temperature for the 1960–2016 period. A significant rising trend (p < 0.001)
was detected with a yearly change in the long term annual mean maximum and mean minimum
temperature by 0.03 ◦C/annum and 0.01 ◦C/annum, respectively. This knowledge has important
implications for both the state of the environment and livelihoods in the region, since its use can
be useful in planning and policymaking in water resource management, biodiversity conservation,
agriculture, tourism and other sectors of the economy within the region.
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1. Introduction

Recently, the warming of the climate system (i.e., the increase of mean temperature) has been
concluded in many researches carried out at different regions of the world [1]. The rise in global
temperature caused by natural, as well as anthropogenic drivers, is unequivocal [2].

Africa is among the most vulnerable regions projected to be affected by climate change and
variability, due to its low adaptability to the projected climate change impacts [2]. As the Earth warms,
climate and weather variability will increase. Global warming will have significant consequences on
the rate of occurrence and severity of extreme weather events, which are projected to increase in the
rest of this century; this will result in serious consequences for human and natural systems and is
expected to have many adverse impacts on the environment [3].

Since the early 1980s, atmospheric temperature has increased significantly in the equatorial and
southern parts of Eastern Africa, where the average seasonal temperatures have risen over the past
50 years. The higher temperatures and more frequent heat waves between 1961 and 2008 have been

Atmosphere 2019, 10, 471; doi:10.3390/atmos10080471 www.mdpi.com/journal/atmosphere

http://www.mdpi.com/journal/atmosphere
http://www.mdpi.com
http://www.mdpi.com/2073-4433/10/8/471?type=check_update&version=1
http://dx.doi.org/10.3390/atmos10080471
http://www.mdpi.com/journal/atmosphere


Atmosphere 2019, 10, 471 2 of 17

observed in countries bordering the western part of the Indian Ocean [4]. This is consistent with the
conclusion of [5] who reported that the frequency of temperature extremes increased significantly
during the period 1961–2000. Extreme rainfall events have become more frequent since the end of
the 1950s and 1970s [6]. The warming of the climate system, the increase in climate variability and
changes in frequency and severity of extreme events can result in significant effects on the spread and
distribution of pests, weeds and crops, and livestock diseases [7].

A combination of drought followed by heavy rainfall has led to the spreading of diseases such
as rift valley fever and blue tongue in East Africa and the African horse’s disease in South Africa [8].
However, while climate change-related problems may affect the whole world, the mountain regions
are expected to be more vulnerable than other regions [9] due to the fact that mountain regions are
extremely sensitive by nature. Kohler, Wehrli and Jurek [10] maintain that large mountain ranges
could be considered as climatic barriers, whose boundaries could shift due to climate change, with
dire consequences for ecosystems, especially through habitat changes, as well as through increased
frequency of occurrence of natural hazards and disruption of economic activities and land uses.
Mountain climates often exhibit spatially complex patterns [11]. This is most evident in their effect on
vertical gradients of microclimates, species distribution, availability of natural resources such as water,
soil and biological resources and land uses. The elevation distribution of these conditions is expected to
change with climate change, making them even more complicated in the future. For instance, elevation
gradients of species are expected to shift as a result of climate change [12]. Unfortunately, due to the
inaccessible nature of mountains there is a dearth of research on mountains and how they might be
affected by climate change. Yet, there is need for this information since mountains are a platform for
various economical activities such as agriculture, mining and tourism, as well as infrastructure that
might be vulnerable to climate change and climate variability [10]. One of the factors limiting research
in mountain regions is the paucity of climate data. In mountain regions, most of the meteorological
stations are located in valleys, leaving slopes and peaks underrepresented [13,14]. This situation is
particularly evident in the Maloti-Drakensberg region, which is the focus of the current study.

2. The Study Area

The current study was undertaken in the Maloti-Drakensberg region (the region lies between
28.49◦ and 31.38◦ S and between 27.04◦ and 29.72◦ E) with an area of around 39,750 km2 (see Figure 1).
The Maloti-Drakensberg region comprises mountain ranges that rise to the altitude of about 3473 m
above sea level (masl) in the northeast and dip down to a height of 1213 masl in the south. The
region is ecologically complex and is characterized by rare ecosystems and endemic species. It is also
characterized by a diversity of land uses, including agriculture, tourism and mining. In this region, the
agricultural growing season starts from October to December (OND). The region consists of the major
catchments on which Lesotho and South Africa rely on for water supply, namely the Thukela River
Basin, which drains eastwards into the India Ocean, and the Sequ-Orange River Basin, which drains
westward into the Atlantic.
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Figure 1. Maloti-Drakensberg Region.

3. Data Sets and Methods

Gridded maximum and minimum monthly temperature time series data for the study area was
downloaded from Climate Explorer (available from https://climexp.knmi.nl) for the period 1960–2016.
The data were obtained from the Climate Research Unit Time-Series (CRU-TS) at a resolution of
0.5◦ × 0.5◦, and included annual average maximum and minimum temperatures used in this paper,
as shown in Figures 2 and 3, respectively. The average annual temperature for a certain year was
calculated by dividing the sum of the average temperatures value of all the annual months by twelve.
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Figure 2. Annual average maximum temperature for the period 1960–2016.
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Figure 3. Annual average minimum temperature for the period 1960–2016.

Suitability of the Mann–Kendall (MK) Trend Test for Long-Term Trends Detection in
Hydro-Meteorological Data

Numerous studies have used the MK test assess trends in climate time series data. The application
of the MK test for assessing time series of climate data does not require the data to be normally
distributed [15]. An example of hydrological applications of the Mann–Kendall trend test is provided
by [16,17] who used the MK test to detect the trends and variability of 18 hydrological variables. Other
researchers used the test to detect the trend in hydroclimatic parameters, for instance: precipitation and
drought [18]; pollutants, temperature and humidity [19]; and drought indices [20]. Another example
where the MK test was applied is the research that was undertaken in northeast India by [21], which
assessed trends in temperature data. Yunling and Yiping [22] used monthly air temperature and
precipitation data series from 19 stations along the Lancang River (China) for the period 1960–2000 to
assess climate change trends.

It is obvious that the MK test’s popularity has increased over the years. This popularity stems
from a number of advantages that it offers, some of which were highlighted by [23], including the
following. Firstly, the test does not require the assumption of normality of data. Secondly, it is based
on the median rather than the mean. The median is less sensitive than the mean to outliers. Thirdly, no
prior transformation of data is required when using the test.

Despite its advantages and popularity, the MK test has not yet been widely used in assessing
trends in temperature. Yet temperature is a key variable that can influence other meteorological
variables. Hence, [24] argued that temperature has an influence on almost all hydrologic variables.
When temperature increases, relative humidity decreases (and vice versa). Temperature also regulates
evapotranspiration, and accordingly chances of precipitation as well.

The following four steps were taken in performing trend analysis:
The first step involved the application of the Lowess regression analysis. The Lowess regression

test was applied on the annual average maximum and minimum data series to identify patterns over
time. Lowess regression is a nonparametric technique. It has advantages over parametric tests because
it can reveal trends and cycles in data that might not be easy to model with parametric tests.

The application of the Mann–Kendall (MK) [4,25] trend test was the second step. The MK trend
test was applied on monthly, seasonal and annual temperature data series. The MAKESENS software
was used to perform the test. The MAKESENS software was developed by [26]. It can compute both
the trend and magnitude of changes in temperature. MAKESENS has been coded to firstly, detect
monotonic increasing or decreasing trends existence, and secondly to determine the change magnitude
using Sen’s slope estimation method [27].
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The Mann–Kendall test statistic equations are given below:

S =
n−1∑
i=1

n∑
j=k+1

sgn(x j − xk) (1)

where xj and xk are the average annual values for years j and k, j > k, respectively, n is the number
of years.

sgn
(
x j − xk

)
=


1 i f

(
x j − xk > 0

)
0 i f (x j − xk = 0)

−1 i f (x j − xk < 0)

(2)

where sgn (xj − xk) is the sign function
The variance of S denoted by VAR(S) is computed as:

VAR(S) =
1
18

n(n− 1)(2n + 5)
q∑

p=1

tp
(
tp − 1

)(
2tp + 5

) (3)

where q denotes number of tied groups and tp represents the data values length in the pth group. The
Z values of S and VAR(S) are calculated as follows:

Z =


S−1√

VAR(S)
i f S > 0

0 i f S = 0
S−1√

VAR(S)
i f S < 0

(4)

Z with positive values reveals increasing trends while negative Z values indicate decreasing
trends. The third step involved the use of Sen’s slope estimator method.

Estimation of the trend magnitude (i.e., annual change) is calculated by using Sen’s method
proposed by [28] and extended by [29].

The Sen’s method uses a linear model to estimate the slope of the trend as follows:

F(t) = Qt + B (5)

where F(t) defined as a continuous monotonic positive or negative increasing function of time, Q is the
slope estimate and B is a constant.

Initially the slopes of all data value pairs are calculated as follows:

Qi =
x j − xk

j− k
, j > k (6)

As the numbers of slopes Qi will be as many as N = n(n − 1)/2, n = number of time series years.
Then the median of these N values of Qi is the Sen’s estimator of slope as:

Q =


Q[N+1

2 ], i f N is odd

1
2

(
Q(N

2 )

)
+ Q(N+2

2 ) i f N is even
(7)

The final step required the application of the sequential t-test for analyzing regime shift (STARS)
algorithm. The STARS algorithm was developed by [30] and is now widely used as a sequential model
for change point detection in time series. Howard, Jarre, Clark and Moloney [31] stated that since
the STARS algorithm relies on sequential analysis, this criterion differentiates it from the statistical
empirical models used for point abruption detection. Based on the previously mentioned criterion,



Atmosphere 2019, 10, 471 6 of 17

Rodionov and Overland [32] have shown that the STARS algorithm prevents weak performance
towards the end of the time series. The STARS algorithm includes the regime shift index (RSI), which
estimates the cumulative sum of normalized anomalies related to the critical level that has been
determined by STARS (for more details see [30]).

The RSI equation is:

RSI =
1

lStdi

m∑
i=tcur

(xi− xcrit) n = tcur, tcur + 1, . . . , tcur + l− 1 (8)

where, tcur represents the current time of the probation period, l is the cut-off length (e.g., number of
years) of the regimes to be tested, xi is the value of the variable being tested, xcrit is the critical mean
value of x, n is the number of years since the start of a new regime and Std denotes the average standard
deviation for all one-year intervals in the time series. If the index becomes negative or positive at any
time during the during the period under test from tcur to tcur + (l – 1) the index becomes negative or
positive, the null hypothesis about the occurrence of a shift in the mean at time tcur is rejected, and the
value xcur is included in the “current” regime. Otherwise, the time tcur is announced as a change point,
c, referred to as a new regime [30].

4. Results and Discussion

For the period of 1960–2016, monthly, seasonal and average annual trends for maximum and
minimum temperatures were analyzed using the MK test and Sen’s slope estimator method. The
change point detection and RSI for maximum and minimum temperatures were defined by the STARS
algorithm. Descriptive statistics of the annual average for maximum and minimum temperatures in the
Maloti-Drakensberg region are summarized in Tables 1 and 2, respectively. Variability of temperature
in the region is indicated by the coefficient of variability (CoV) of 3.3% for maximum temperature and
5.1% for minimum temperature. The small value of CoV for the maximum and minimum temperatures
indicates that the temperature in Maloti-Drakensberg has been relatively stable. Values of variance,
skewness and kurtosis for the data were also estimated. Variance provides information about how
far the variable value (maximum and minimum temperatures in this study) is located from its mean
value. Results from the kurtosis test are shown in Tables 1 and 2, which have negative values of
−0.49 and −0.08 for maximum and minimum temperatures, respectively. Kurtosis is a measure that
defines the shape of the probability function (e.g., oval or flat) compared to the normal distribution
form. The lower negative value indicates that the variable probability function is slightly flatter than
the normal distribution bell shape. The skew values were approximately 0.44 and 0.05, as shown in
Tables 1 and 2, respectively, which illustrate that the variable symmetrical distribution shape is located
proportionally to the left and right of the mean value with a longer tail to the right for maximum
temperature (higher value).

Table 1. Annual average maximum temperature summary statistics.

Statistic Description Temperature Data
Amount of data 57
Maximum value 22.15
Minimum value 19.37

Sum 1169.18
Mean 20.51

Std.error 0.09
Variance 0.45

Stand. Dev
Median

Skewness
Kurtosis

Coeff. Var

0.67
20.46
0.44

–0.49
3.28%
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Table 2. Annual average minimum temperature summary statistics.

Statistic Description Temperature Data
Amount of data 57
Maximum value 7.67
Minimum value 6.08

Sum 388
Mean 6.81

Std.error 0.05
Variance 0.12

Stand. Dev
Median

Skewness
Kurtosis

Coeff. Var

0.35
6.78
0.05

–0.08
5.1%

4.1. The Lowess Regression Curve

The Lowess regression curve [33] was applied to the annual average data series to picture the
patterns over time. Figure 4 shows no significant trend for the first two decades in the maximum
temperature, marginally increased after the first twenty years up to year 1985 followed by a decreasing
trend thereafter up to year 1998. In the new millennium the trend has shown steep increasing up to
the end of time series period span. Figure 5 shows the Lowess regression curves for the minimum
temperature data series. Its curve depicts some similarity with the maximum temperature trend.
Figure 5 shows a significant increasing trend from 1972 to 1986, after which the trend gradually
decreased until 2011 when it started to increase again.
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4.2. MK Test

Both maximum and minimum temperature time series were analyzed for trends using the MK test
on a monthly, seasonal and annual scale. Tables 3 and 4 show the results, indicating how Z values for
maximum and minimum temperatures vary for the 57 years constituting the time series, respectively.



Atmosphere 2019, 10, 471 9 of 17

Table 3. Annual average maximum temperature trend analysis.

Mann–Kendall Trend Sen’s Slope Estimate

Time Series Start
Year

End
Year N Test Z Significance Q Qmin99 Qmax99 Qmin95 Qmax95 B Bmin99 Bmax99 Bmin95 Bmax95

January 1960 2016 57 2.58 + 0.018 −0.010 0.044 −0.003 0.038 24.93 25.45 24.35 25.31 24.52

February 1960 2016 57 2.66 ** 0.031 0.001 0.061 0.009 0.054 23.50 24.43 22.70 24.36 22.82

March 1960 2016 57 0.92 ** 0.035 0.003 0.063 0.010 0.055 21.97 22.89 21.11 22.61 21.38

April 1960 2016 57 1.58 ** 0.038 0.008 0.067 0.016 0.060 18.68 19.52 17.85 19.33 17.96

May 1960 2016 57 3.21 *** 0.048 0.027 0.067 0.033 0.061 15.81 16.32 15.38 16.19 15.57

June 1960 2016 57 2.02 *** 0.031 0.012 0.052 0.018 0.048 13.92 14.50 13.34 14.40 13.44

July 1960 2016 57 0.90 * 0.017 −0.003 0.041 0.003 0.035 14.64 15.24 14.16 15.04 14.33

August 1960 2016 57 1.08 * 0.023 0.000 0.048 0.006 0.042 16.56 17.20 15.91 17.06 15.96

September 1960 2016 57 −0.32 + 0.019 −0.006 0.045 0.000 0.038 19.94 20.56 19.20 20.48 19.39

October 1960 2016 57 1.15 *** 0.030 0.008 0.058 0.013 0.052 20.73 21.30 19.7178 21.093 19.9275

November 1960 2016 57 −0.12 ** 0.022 0.000 0.042 0.005 0.037 22.156 22.6259 21.581 22.626 21.6809

December 1960 2016 57 1.99 0.008 −0.016 0.032 −0.011 0.025 24.189 24.7835 23.6275 24.597 23.724

ANNUAL 1960 2016 57 3.34 *** 0.026 0.015 0.038 0.018 0.035 19.881 20.1143 19.4974 20.032 19.5687

OND 1960 2016 57 1.63 ** 0.019 0.004 0.035 0.008 0.031 22.46 22.8045 21.9308 22.728 22.0821

*** if trend at α = 0.001 level of significance; ** if trend at α = 0.01 level of significance; * if trend at α = 0.05 level of significance; + if trend at α = 0.1 level of significance; If the cell is blank,
the significance level is greater than 0.1.
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Table 4. Annual average minimum temperature trend analysis.

Mann–Kendall Trend Sen’s Slope Estimate

Time Series Start
Year

End
Year N Test Z Significance Q Qmin99 Qmax99 Qmin95 Qmax95 B Bmin99 Bmax99 Bmin95 Bmax95

January 1960 2016 57 2.58 ** 0.014 0.000 0.028 0.004 0.025 12.10 12.55 11.83 12.44 11.87

February 1960 2016 57 2.66 ** 0.018 0.001 0.033 0.005 0.030 11.66 12.08 11.31 11.99 11.37

March 1960 2016 57 0.92 0.007 −0.011 0.024 −0.006 0.021 10.45 11.12 9.88 10.95 10.00

April 1960 2016 57 1.58 0.015 −0.010 0.033 −0.003 0.028 6.56 7.26 6.04 7.02 6.09

May 1960 2016 57 3.21 ** 0.021 0.004 0.039 0.010 0.035 2.69 3.14 2.12 3.06 2.23

June 1960 2016 57 2.02 * 0.014 −0.005 0.032 0.000 0.027 −0.29 0.22 −0.83 0.15 −0.65

July 1960 2016 57 0.90 0.008 −0.013 0.027 −0.008 0.023 −0.15 0.35 −0.59 0.24 −0.50

August 1960 2016 57 1.08 0.009 −0.013 0.027 −0.007 0.023 1.94 2.50 1.24 2.36 1.40

September 1960 2016 57 −0.32 −0.003 −0.023 0.017 −0.018 0.011 5.53 6.09 4.91 5.93 5.16

October 1960 2016 57 1.15 0.009 −0.011 0.030 −0.006 0.024 7.59 8.13 6.89293 7.9534 7.05845

November 1960 2016 57 −0.12 −0.001 −0.017 0.015 −0.014 0.011 9.4359 9.86805 9.01978 9.7777 9.10037

December 1960 2016 57 1.99 * 0.010 −0.003 0.024 0.000 0.021 10.833 11.232 10.4194 11.125 10.4911

ANNUAL 1960 2016 57 3.34 *** 0.009 0.002 0.016 0.003 0.014 6.5524 6.7152 6.3862 6.6624 6.40689

OND 1960 2016 57 1.63 0.008 −0.004 0.021 −0.001 0.017 9.192 9.5759 8.79038 9.5068 8.85775

*** if trend at α = 0.001 level of significance; ** if trend at α = 0.01 level of significance; * if trend at α = 0.05 level of significance; + if trend at α = 0.1 level of significance; If the cell is blank,
the significance level is greater than 0.1.
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4.3. Trend Analysis

Figures 6 and 7 show the graphic variations of the trends for the annual average and OND
maximum temperature while Figures 8 and 9 depict the variability of annual average and OND
minimum temperatures for the same period, respectively. As shown in Table 3, the results show a
positive statistically significant trend for maximum temperature at all temporal scales. The exception
is December, whose trend is not statistically significant. Similarly, the annual trend of maximum
temperature is statistically significant (p = 0.001) at all time scales. The same applies for winter
maximum temperatures, as shown in Table 3. This suggests that maximum temperatures have
increased over the years. However, trends in minimum temperatures for the period between 1960
and 2016 are only statistically significant during the December, January and February months of
the summer season and for May and June, during the winter season. This suggests that changes in
minimum temperature have been mostly affected during the sub-seasons when temperature is either
at its highest or lowest in the year. Nevertheless, annual trends of maximum temperature, just like
minimum temperature, are statistically significant (p = 0.001). Sen’s slope of annual mean maximum
and annual mean minimum temperature was 0.026 ◦C/annum and 0.009 ◦C/annum, respectively.
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Figure 6. Mann–Kendall and linear regression slopes of annual average maximum temperature for
Maloti-Drakensberg for the period of 1960–2016.
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Figure 7. Mann–Kendall and linear regression slopes of season, October–December (OND), annual
average maximum temperature for Maloti-Drakensberg for the period of 1960–2016.
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Figure 8. Mann–Kendall and linear regression slopes of annual average minimum temperature for
Maloti-Drakensberg for the period of 1960–2016.
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Figure 9. Mann–Kendall and linear regression slopes of season OND annual average minimum
temperature for Maloti-Drakensberg for the period of 1960–2016.

With regard to the start of the agricultural growing season, October–December (OND), results
from the Sen’s slope analysis of temperature for the period of 1960–2016 are presented in Tables 3
and 4, for maximum and minimum temperatures, respectively. A positive trend was noticed in the
growing seasons for both maximum and minimum temperatures. The positive Sen’s slope indicates a
rising trend in temperature, year-by-year (Figures 7 and 9). The maximum seasonal temperature for
OND was statistically significant at p = 0.01 (Sen’s slope = 0.019; as change per year). For minimum
seasonal temperature for OND, the Sen’s slope results exhibited that the temperature had an increased
trend (Sen’s slope = 0.008; as change per year, significant level greater than 1%). Significantly, the lesser
calculated p-value of the temperature has statistical significance at 1%.

4.4. Change Point Detection

A regime shift index (RSI) component of the STARS algorithm [30] was used to assure the
occurrence and statistical significance of abrupt changes in the temperature data sets. The RSI value
is unitless which highlights the magnitude of the shift(s), while its sign serves as indicator for the
direction of change (see [30] for more information). The findings from the STARS algorithm on the
average annual data revealed that both temperature variables (maximum and minimum temperatures)
had an abrupt change. These results not only emphasize the rapid warming in the Maloti-Drakensberg
region, but also provide evidence of an abrupt temperature shift (three shifts) around 1983, 2003 and
2015 (Figure 10). In case of minimum temperature, it can be noticed that the annual average minimum
temperature had two shifts, the first one in 1982 and the second in 2016 (Figure 11).
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Figure 10. Red line in the upper diagram is the stepwise trend showing regime shifts in the mean of
the annual average maximum temperature detected by the sequential t-test for analyzing regime shift
(STARS) method; black solid bars in the lower diagram are the RSI magnitude.
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Figure 11. Red line in the upper diagram is the stepwise trend showing regime shifts in the mean of
the annual average minimum temperature detected by the STARS method; black solid bars in the lower
diagram are the RSI magnitude.
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The changes highlighted in the results of this study have important implications for both the state
of the environment and livelihoods in the Maloti-Drakensberg region. Firstly, increasing temperature
will lead to increased evapotranspiration and lead to water shortages in the region. Variations in
meteorological variables, especially temperature, will affect evapotranspiration, relative humidity
and hydrologic variables [24,34]. Thus, temperature has an effect on other meteorological variables.
Consequently, increased evapotranspiration could be reducing water yield from wetlands, rivers and
water reservoirs, limiting water supply in Qwaqwa, one of South Africa’s most densely populated rural
areas. Secondly, increased evapotranspiration has an effect on phenology [35] and reduces pasture
in an environment where the majority of rural people rely on livestock holding for livelihood due to
the scarcity of land for crop farming. Temperature increases may also lead to habitat changes and
cause loss of species in the region or changes in species composition, for instance through bio-invasion.
Thirdly, loss of vegetation cover due to excessive evapotranspiration promotes soil erosion and siltation
of water bodies. This has serious implications for the water supply in downstream communities, with
dire consequences for industry, tourism and agriculture, which are the backbone of South Africa’s
economy. Secondary effects resulting from increased temperature in the Maloti-Drakenberg region
include the increased costs of industrial and agricultural products as water scarcity increases, making
these products, including food, more expensive. Another important secondary effect is loss of jobs in
industry, tourism and agriculture, thus worsening levels of unemployment and poverty, which are
already high. Fourthly, an increase in temperature has direct implications for habitats and ecosystems,
especially in mountain areas whose environments are sensitive to disturbances. While temperature
changes can lead to the proliferation of some species, they can be detrimental to others, thus affecting
species composition and diversity, as well as food and value chains systems within the region. Such
changes can also affect rural livelihoods, which are normally directly dependent on resources from the
natural environment for food, herbal medicines and many other products.

5. Conclusions

This study used the Mann–Kendall test to examine trends in temperature changes between 1960
and 2016. Annual average minimum–maximum temperatures for the Maloti-Drakensberg Region
were analyzed for variability and trends for this 57-year period. The analyses were done at three
levels, namely annual, monthly and the January−March JFM sub-season (growing season) levels.
The results indicate that climate change has occurred in the region. The Z values derived from the
Mann–Kendall test indicate a positive trend, suggesting an increase in temperature during the study
period. The results show a positive statistically significant trend (p = 0.001) for maximum temperatures
at all temporal scales. However, trends in minimum temperatures for the entire study period were
only statistically significant (p = 0.01) for the JFM summer sub-season and for the winter months of
May and June. This suggests that changes in minimum temperature have largely occurred during
the sub-seasons when temperature is either at its highest or lowest in the year. Sen’s slope values
for annual mean maximum and annual mean minimum temperature were 0.026 ◦C/annum and
0.009 ◦C/annum, respectively. A positive trend was noticed during the October–December (OND)
sub-season for both maximum and minimum temperatures, which was statistically significant at p =

0.01. However, this was not the case for minimum seasonal temperature for this sub-season (p > 0.1).
The results from the STARS algorithm (change point detection method) revealed an abrupt change for
both the maximum and minimum temperatures. These results do not only imply rapid warming in the
Maloti-Drakensberg region, but also provide evidence of abrupt temperature shifts (three shifts) around
1983, 2003 and 2015. In the case of annual average minimum temperatures, two shifts were noticed,
the first one in 1982 and the second in 2016. The results reported above have important implications
for the hydrological cycle as well as for tourism, agriculture and other key sectors of the economy in
the Maloti-Drakensberg region. In this region, farmers have to find alternative adaptation practices,
including suitable times for sowing, irrigation and harvesting their crops. Since biological systems are
sensitive to a warming climate, upslope shifts in montane species composition are expected to take
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place. We conclude that environmental monitoring should be undertaken in order to provide policy
makers and local communities with information about the warming climate to enable them to plan and
develop adaptation measures that will help the region to cope with envisaged environmental changes.
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