The Contribution Rate of Driving Factors and Their Interactions to Temperature in the Yangtze River Delta Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Methods
2.2.1. Trend Analysis Method
2.2.2. Kriging Interpolation Method
2.2.3. Correlation Dimension (CD)
2.2.4. Geogdetector
3. Results
3.1. The Spatiotemporal Pattern of Temperature
3.2. The Spatiotemporal Complexity of Temperature
3.2.1. The Temporal Complexity of Temperature
3.2.2. The Spatial Distribution Complexity of Temperature
3.2.3. The Influences of Driving Factors and Their Interactions on Temperature Slope
4. Discussion
5. Conclusions
- The temperature was increasing during the period of 1980–2012, and it rose by 1.53 °C from 1980 to 2012; in addition, among the dense areas of population and urban, the temperature rose quickly, while the temperature in the sparse areas of population and urban rose slowly.
- In the temporal, the temperature process was more complicated with the increase of temporal scale; in the spatial distribution, whether it is the daily time scale, the seasonal time scale, or the annual time scale, the temperature process was more complicated in the sparse areas of population and urban than the dense areas of population and urban.
- Socioeconomic factors were the main factors affecting climate change in the YRD, and the contribution rate of urban density is the largest among the contribution rates of single factors. In addition, the interactions between various driving factors had an enhanced effect on regional climate change. In addition, the interaction between economic activity and urban density had the largest influence on temperature.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, B.; Zhang, M.; Wei, S.; Wang, S.; Li, S.; Ma, Q.; Li, X.; Pan, S. Changes in extreme events of temperature and precipitation over Xinjiang, northwest China, during 1960–2009. Quatern. Int. 2013, 298, 141–151. [Google Scholar] [CrossRef]
- Horton, D.E.; Johnson, N.C.; Singh, D.; Swain, D.L.; Rajaratnam, B.; Diffenbaugh, N.S. Contribution of changes in atmospheric circulation patterns to extreme temperature trends. Nature 2015, 522, 465–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, P.; Weng, Q. A time series analysis of urbanization induced land use and land cover change and its impact on land surface temperature with Landsat imagery. Remote Sens. Environ. 2016, 175, 205–214. [Google Scholar] [CrossRef]
- de Barros Soares, D.; Lee, H.; Loikith, P.C.; Barkhordarian, A.; Mechoso, C.R. Can significant trends be detected in surface air temperature and precipitation over South America in recent decades? Int. J. Climatol. 2017, 37, 1483–1493. [Google Scholar] [CrossRef] [Green Version]
- Liuzzo, L.; Bono, E.; Sammartano, V.; Frenia, G. Long-term temperature changes in Sicily, Southern Italy. Atmos. Res. 2017, 198, 44–55. [Google Scholar] [CrossRef]
- Zhu, N.; Xu, J.; Li, W.; Li, K.; Zhou, C. A Comprehensive Approach to Assess the Hydrological Drought of Inland River Basin in Northwest China. Atmosphere 2018, 9, 370. [Google Scholar] [CrossRef] [Green Version]
- Ullah, S.; You, Q.; Ali, A.; Ullah, W.; Lan, M.A.; Zhang, Y.; Xie, W.; Xie, X. Observed changes in maximum and minimum temperatures over China- Pakistan economic corridor during 1980–2016. Atmos. Res. 2019, 216, 37–51. [Google Scholar] [CrossRef]
- Sharma, C.S.; Panda, S.N.; Pradhan, R.P.; Singh, A.; Kawamura, A. Precipitation and temperature changes in eastern India by multiple trend detection methods. Atmos. Res. 2016, 180, 211–225. [Google Scholar] [CrossRef]
- Salman, S.A.; Shahid, S.; Ismaila, T.; Ahmed, K.; Wang, X.J. Selection of climate models for projection of spatiotemporal changes in temperature of Iraq with uncertainties. Atmos. Res. 2018, 213, 509–522. [Google Scholar] [CrossRef]
- Kenawy, A.E.; López-Moreno, J.I.; Vicente-Serrano, S. Trend and variability of surface air temperature in northeastern Spain (1920–2006): Linkage to atmospheric circulation. Atmos. Res. 2012, 106, 159–180. [Google Scholar] [CrossRef]
- Iqba, M.A.; Penas, A.; Cano-Ortiz, A.; Kersebaum, K.C.; Herrero, L.; del Rio, L. Analysis of recent changes in maximum and minimum temperatures in Pakistan. Atmos. Res. 2016, 168, 234–249. [Google Scholar] [CrossRef]
- Baliunas, S.; Frick, P.; Sokoloff, D.; Soon, W. Time scales and trends in the Central England Temperature data (1659–1990): A wavelet analysis. Geophys. Res. Lett. 1997, 24, 1351–1354. [Google Scholar] [CrossRef]
- Bolzan, M.J.A.; Vieira, P.C. Wavelet Analysis of the Wind Velocity and Temperature Variability in the Amazon Forest. Braz. J. Phys. 2006, 36, 1217–1222. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, N.E.; Wallace, J.M.; Smoilak, B.V.; Chen, X. On the time-varying trend in global-mean surface temperature. Clim. Dyn. 2011, 37, 759–773. [Google Scholar] [CrossRef] [Green Version]
- Macias, D.; Stips, A.; Garcia-Gorriz, E. Application of the Singular Spectrum Analysis Technique to Study the Recent Hiatus on the Global Surface Temperature Record. PLoS ONE 2014, 9, e107222. [Google Scholar] [CrossRef] [Green Version]
- Dawood, M. Spatio-statistical analysis of temperature fluctuation using Mann-Kendall and Sen’s slope approach. Clim. Dyn. 2017, 48, 783–797. [Google Scholar] [CrossRef]
- Xu, J.; Chen, Y.; Li, W.; Liu, Z.; Wei, C.; Tang, J. Understanding the complexity of temperature dynamics in Xinjiang, China, from multitemporal scale and spatial perspectives. Sci. World J. 2013, 2013, 259248. [Google Scholar] [CrossRef]
- Najafi, M.R.; Zwiers, F.W.; Gillett, N.P. Attribution of Arctic temperature change to greenhouse-gas and aerosol influences. Nat. Clim. Chang. 2015, 5, 246–249. [Google Scholar] [CrossRef]
- Chen, Y.; Chiu, H.; Su, Y.; Wu, Y.C.; Cheng, K.S. Does urbanization increase diurnal land surface temperature variation? Evidence and implications. Landsc. Urban Plan 2017, 157, 247–258. [Google Scholar] [CrossRef]
- Shi, J.; Cui, L.; Ma, Y.; Du, H.; Wen, K. Trends in temperature extremes and their association with circulation patterns in China during 1961–2015. Atmos. Res. 2018, 212, 259–272. [Google Scholar] [CrossRef]
- Liang, L.; Engling, G.; Zhang, X.; Sun, J.; Zhang, Y.; Wu, W.; Liu, C.; Zhang, G.; Liu, X.; Ma, Q. Chemical characteristics of PM2.5 during summer at a background site of the Yangtze River Delta in China. Atmos. Res. 2017, 198, 163–172. [Google Scholar] [CrossRef]
- Zhang, Q.; Gemmer, M.; Chen, J. Climate changes and flood/drought risk in the Yangtze Delta, China, during the past millennium. Quatern. Int. 2008, 176, 62–69. [Google Scholar] [CrossRef]
- Chu, W.; Qiu, S.; Xu, J. Temperature Change of Shanghai and Its Response to Global Warming and Urbanization. Atmosphere 2016, 7, 114. [Google Scholar] [CrossRef] [Green Version]
- Kawashima, S. Effect of vegetation on surface temperature in urban and suburban areas in winter. Energy Build. 1990, 15, 465–469. [Google Scholar] [CrossRef]
- Gall, K.P.; Elvidge, C.D.; Yang, L.; Reed, B.C. Trends in night-time city lights and vegetation indices associated with urbanization within the conterminous USA. Int. J. Remote Sens. 2004, 25, 2003–2007. [Google Scholar] [CrossRef]
- Zhang, N.; Gao, Z.; Wang, X.; Chen, Y. Modeling the impact of urbanization on the local and regional climate in Yangtze River Delta, China. Theor. Appl. Climatol. 2010, 102, 331–342. [Google Scholar] [CrossRef]
- Hess, A.; Iyer, H.; Malm, W. Linear trend analysis: A comparison of methods. Atmos. Environ. 2001, 35, 5211–5222. [Google Scholar] [CrossRef]
- Oliver, M.A.; Webster, R. Kriging: A method of interpolation for geographical information systems. Int. J. Geogr. Inf. Syst. 1990, 4, 313–332. [Google Scholar] [CrossRef]
- Grassberger, P.; Procaccia, I. Measuring the strangeness of strange attractors. Phys. D 1983, 9, 189–208. [Google Scholar] [CrossRef]
- Sivakumar, B. Nonlinear determinism in river flow: Prediction as a possible indicator. Earth Surf. Proc. Land. 2006, 32, 969–979. [Google Scholar] [CrossRef]
- Ling, H.; Xu, H.; Fu, J.; Zhang, Q.; Xu, X. Analysis of temporal-spatial variation characteristics of extreme air temperature in Xinjiang, China. Quatern. Int. 2012, 282, 14–26. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.H.; Christakos, G.; Liao, Y.; Zhang, T.; Gu, X.; Zheng, X. Geographical Detectors-Based Health Risk Assessment and its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Yang, D.; Wang, X.; Xu, J.; Xu, C.; Lu, D.; Ye, C.; Wang, Z.; Bai, L. Quantifying the influence of natural and socioeconomic factors and their interactive impact on PM 2.5 pollution in China. Environ. Pollut. 2018, 241, 475–483. [Google Scholar] [CrossRef]
- Wang, J.; Hu, Y. Environmental health risk detection with GeogDetector. Environ. Model. Softw. 2012, 33, 114–115. [Google Scholar] [CrossRef]
- Qi, L.; Wang, Y. Changes in the observed trends in extreme temperatures over China around 1990. J. Clim. 2012, 25, 5208–5222. [Google Scholar] [CrossRef]
- Grassberger, P.; Procaccia, I. Characterization of Strange Attractors. Phys. Rev. Lett. 1983, 50, 346. [Google Scholar] [CrossRef]
- Yang, B.; Braeuning, A.; Johnson, R.K.; Shi, Y.F. General characteristics of temperature variation in China during the last two millennia. Geophys. Res. Lett. 2002, 29, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Xie, Z.; Zeng, Y.; Shi, Y.; Wu, J. Impact of urban expansion on regional temperature change in the Yangtze River Delta. J. Geogr. Sci. 2007, 17, 387–398. [Google Scholar] [CrossRef]
- Yan, H.; Zhang, J.; Hou, Y.; He, Y. Estimation of air temperature from MODIS data in east China. Int. J. Remote Sens. 2009, 30, 6261–6275. [Google Scholar] [CrossRef]
- Rial, J.; Coauthors, A. Nonlinearities, feedbacks and critical thresholds within the Earth’s climate system. Clim. Chang. 2004, 65, 11–38. [Google Scholar] [CrossRef] [Green Version]
- Olsson, J.; Niemczynowicz, J.; Berndtssonet, R. Fractal Analysis of High-Resolution Rainfall Time Series. J. Geophys. Res. Atmos. 1993, 98, 23265–23274. [Google Scholar] [CrossRef]
- Bodri, L. Fractal analysis of climatic data: Mean annual temperature records in Hungary. Theor. Appl. Climatol. 1994, 49, 53–57. [Google Scholar] [CrossRef]
- Radziejewski, M.; Kundzewicz, Z.W. Fractal analysis of flow of the river Warta. J. Hydrol. 1997, 200, 80–294. [Google Scholar] [CrossRef]
- Oñate Rubalcaba, J.J. Fractal analysis of climatic data: Annual precipitation records in Spain. Theor. Appl. Climatol. 1997, 56, 83–87. [Google Scholar] [CrossRef]
- Rangarajan, G.; Sant, D.A. Fractal dimensional analysis of Indian climatic dynamics. Chaos Solitons Fract. 2004, 19, 285–291. [Google Scholar] [CrossRef]
- Webster, P.J.; Yang, S. Monsoon and ENSO: Selectively interactive systems. Q. J. R. Meteorol. Soc. 1992, 118, 877–926. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, R.; Shen, C.; Da, L. Temporal and spatial characteristics of the urban heat island during rapid urbanization in Shanghai, China. Environ. Monit. Assess. 2020, 169, 101–112. [Google Scholar] [CrossRef]
- Wu, C.; Murray, A.T. Estimating impervious surface distribution by spectral mixture analysis. Remote Sens. Environ. 2003, 84, 493–505. [Google Scholar] [CrossRef]
- Yuan, F.; Bauer, M.E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens. Environ. 2007, 106, 375–386. [Google Scholar] [CrossRef]
- Brun, S.E.; Band, L.E. Simulating runoff behavior in an urbanizing watershed. Comput. Environ. Urban Syst. 2000, 24, 5–22. [Google Scholar] [CrossRef]
- Xu, H. Analysis of Impervious Surface and its Impact on Urban Heat Environment using the Normalized Difference Impervious Surface Index (NDISI). Photogramm. Eng. Remote Sens. 2010, 76, 557–565. [Google Scholar] [CrossRef]
- Xiao, R.B.; Ouyang, Z.Y.; Zhang, H.; Li, W.; Schienke, E.W.; Wang, X. Spatial pattern of impervious surfaces and their impacts on land surface temperature in Beijing, China. J. Environ. Sci. 2007, 19, 250–256. [Google Scholar] [CrossRef]
- Weng, Q.; Lu, D. A sub-pixel analysis of urbanization effect on land surface temperature and its interplay with impervious surface and vegetation coverage in Indianapolis, United States. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 68–83. [Google Scholar] [CrossRef]
- Zhang, Y.; Odeh, I.O.A.; Han, C. Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis. Int. J. Appl. Earth Obs. 2009, 11, 256–264. [Google Scholar] [CrossRef]
- Nie, Q.; Xu, J. Understanding the effects of the impervious surfaces pattern on land surface temperature in an urban area. Front. Earth Sci. 2015, 9, 276–285. [Google Scholar] [CrossRef]
- Doll, C.N.H.; Muller, J.; Morleyet, J.G. Mapping regional economic activity from night-time light satellite imagery. Ecol. Econ. 2006, 57, 75–92. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Anderson, S.; Sutton, P.C.; Ghosh, T. The Night Light Development Index (NLDI): A spatially explicit measure of human development from satellite data. Soc. Geogr. 2012, 7, 23–35. [Google Scholar] [CrossRef]
Station | Temporal Scale | ||
---|---|---|---|
Daily | Seasonal | Annual | |
Xuzhou | 1.79 | 2.18 | 2.80 |
Fuyang | 1.82 | 2.25 | 2.99 |
Nanjing | 1.78 | 2.12 | 2.23 |
Nantong | 1.62 | 2.02 | 2.11 |
Hefei | 1.84 | 2.13 | 2.39 |
Baoshan | 1.78 | 1.78 | 2.40 |
Huangshan | 1.62 | 1.77 | 2.30 |
Hangzhou | 1.69 | 1.86 | 2.05 |
Cixi | 1.66 | 1.66 | 1.94 |
Jinhua | 1.86 | 1.96 | 2.00 |
MCD | 1.73 | 2.08 | 2.32 |
GDP | AT | NL | UD | NDVI | |
---|---|---|---|---|---|
q statistic | 0.234 | 0.047 | 0.218 | 0.323 | 0.118 |
p-value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Socio-Economic Factors | Natural Factors | |||||
---|---|---|---|---|---|---|
GDP | UD | NL | AT | NDVI | ||
Socio-economic factors | GDP | - | - | - | - | - |
UD | Y | - | - | - | - | |
NL | N | Y | - | - | - | |
Natural factors | AT | N | Y | Y | - | - |
NDVI | N | N | N | Y | - |
Socio-Economic Factors GDP | Natural Factors | |||||
---|---|---|---|---|---|---|
GDP | UD | NL | AT | NDVI | ||
Socio-Economic Factors GDP Natural Factors | GDP | 0.234 | - | - | - | - |
UD | 0.464 # | 0.323 | - | - | - | |
NL | 0.391 # | 0.420 # | 0.218 | - | - | |
AT | 0.290 * | 0.365 # | 0.235 # | 0.047 | - | |
NDVI | 0.314 # | 0.393 # | 0.262 # | 0.146 # | 0.118 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, C.; Zhu, N.; Xu, J.; Yang, D. The Contribution Rate of Driving Factors and Their Interactions to Temperature in the Yangtze River Delta Region. Atmosphere 2020, 11, 32. https://doi.org/10.3390/atmos11010032
Zhou C, Zhu N, Xu J, Yang D. The Contribution Rate of Driving Factors and Their Interactions to Temperature in the Yangtze River Delta Region. Atmosphere. 2020; 11(1):32. https://doi.org/10.3390/atmos11010032
Chicago/Turabian StyleZhou, Cheng, Nina Zhu, Jianhua Xu, and Dongyang Yang. 2020. "The Contribution Rate of Driving Factors and Their Interactions to Temperature in the Yangtze River Delta Region" Atmosphere 11, no. 1: 32. https://doi.org/10.3390/atmos11010032
APA StyleZhou, C., Zhu, N., Xu, J., & Yang, D. (2020). The Contribution Rate of Driving Factors and Their Interactions to Temperature in the Yangtze River Delta Region. Atmosphere, 11(1), 32. https://doi.org/10.3390/atmos11010032