Levels and Sources of Atmospheric Particle-Bound Mercury in Atmospheric Particulate Matter (PM10) at Several Sites of an Atlantic Coastal European Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Details and Description of the Study Areas
2.2. Atmospheric Particulate Matter Sample Collection
2.3. Cleaning Procedures
2.4. Mercury Quantification by DMA-80 Direct Mercury Analyser
2.5. Statistical Treatment of Data
3. Results and Discussion
3.1. Atmospheric Particle-Bound Mercury Concentration in PM10
3.2. Sources of PHg in PM10
3.2.1. Univariate Analysis
3.2.2. Principal Component Analysis
3.3. Human Health Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pope, C.A., III; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. J. Am. Med. Assoc. 2002, 287, 1132–1141. [Google Scholar] [CrossRef] [Green Version]
- WHO Expert Consultation: Available Evidence for the Future Update of the WHO Global Air Quality Guidelines (AQGs). 2015. Available online: http://www.euro.who.int/__data/assets/pdf_file/0013/301720/Evidence-future-update-AQGs-mtg-report-Bonn-sept-oct-15.pdf?ua=1 (accessed on 15 October 2019).
- Lindberg, S.E.; Stratton, W.J. Atmospheric mercury speciation: Concentrations and behaviour of reactive gaseous mercury in ambient air. Environ. Sci. Technol. 1998, 32, 49–57. [Google Scholar] [CrossRef]
- EU. Ambient Air Pollution by Mercury (Hg). Position Paper. The European Commission Report. 2001. Available online: http://europa.eu.int/comm/environment/air/background.htm#mercury (accessed on 15 October 2019).
- The International Air Quality Advisory Board of the International Joint Commission and the Commission for Environmental Cooperation. Addressing Atmospheric Mercury: Science and Policy. 2003. Available online: https://scholar.uwindsor.ca/ijcarchive/558/ (accessed on 15 October 2019).
- ACAP. Assessment of Mercury Releases from the Russian Federation; The Arctic Council Action Plan (ACAP) to Eliminate Pollution of the Arctic; The Ministry of Natural Resources of the Russian Federation, The Danish Environmental Protection Agency and COWI A/S: Copenhagen, Denmark, 2005. [Google Scholar]
- ACAP. Arctic Mercury Releases Assessment. Reduction of atmospheric Mercury Releases from Arctic States; The Arctic Council Action Plan (ACAP) to eliminate pollution of the Arctic; Danish Environmental Protection Agency and COWI A/S: Copenhagen, Denmark, 2005. [Google Scholar]
- United Nations-Environment Programme. Minamata Convention on Mercury. 2017. Available online: http://www.mercuryconvention.org/Portals/11/documents/Booklets/COP1%20version/Minamata-Convention-booklet-eng-full.pdf (accessed on 15 October 2019).
- Pirrone, N.; Cinnirella, S.; Feng, X.; Finkelman, R.B.; Friedli, H.R.; Leaner, J.; Mason, R.; Mukherjee, A.B.; Stracher, G.B.; Streets, D.G.; et al. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos. Chem. Phys. 2010, 10, 5951–5964. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Chen, J.; Yang, L.; Niu, Z.; Tong, L.; Yin, L.; Chen, Y. Characteristics and sources of atmospheric mercury speciation in a coastal city, Xiamen, China. Chemosphere 2015, 119, 530–539. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Feng, X.; Qiu, G.; Shang, L.; Zhang, H. Speciated atmospheric mercury and its potential source in Guiyang, China. Atmos. Environ. 2011, 45, 4205–4212. [Google Scholar] [CrossRef]
- Bargagli, R. Atmospheric chemistry of mercury in Antarctica and the role of cryptogams to assess deposition patterns in coastal ice-free areas. Chemosphere 2016, 163, 202–208. [Google Scholar] [CrossRef]
- Han, D.; Zhang, J.; Hu, Z.; Ma, Y.; Duan, Y.; Han, Y.; Chen, X.; Zhou, Y.; Cheng, J.; Wang, W. Particulate mercury in ambient air in Shanghai, China: Size-specific distribution, gase-particle partitioning, and association with carbonaceous composition. Environ. Pollut. 2018, 238, 543–553. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, S.; Wu, Q.; Liu, K.; Wang, L.; Li, S.; Gao, W.; Zhang, L.; Zheng, H.; Li, Z.; et al. Recent decrease trend of atmospheric mercury concentrations in East China: The influence of anthropogenic emissions. Atmos. Chem. Phys. 2018, 18, 8279–8291. [Google Scholar] [CrossRef] [Green Version]
- Xiu, G.L.; Jin, Q.; Zhang, D.; Shi, S.; Huang, X.; Zhang, W.; Bao, L.; Gao, P.; Chen, B. Characterization of size-fractionated particulate mercury in Shanghai ambient air. Atmos. Environ. 2005, 39, 419–427. [Google Scholar] [CrossRef]
- Lewandowska, A.U.; Bełdowska, M.; Witkowska, A.; Falkowska, L.; Wiśniewska, K. Mercury bonds with carbon (OC and EC) in small aerosols (PM1) in the urbanized coastal zone of the Gulf of Gdansk (Southern Baltic). Ecotoxicol. Environ. Saf. 2018, 157, 350–357. [Google Scholar] [CrossRef]
- Pyta, H.; Rogula-Kozłowska, W.; Mathews, B. Co-occurrence of PM2.5-bound mercury and carbon in rural areas affected by coal combustion. Atmos. Pollut. Res. 2017, 8, 127–135. [Google Scholar] [CrossRef]
- Siudek, P.; Frankowski, M.; Siepak, J. Atmospheric particulate mercury at the urban and forest sites in central Poland. Environ. Sci. Pollut. Res. 2016, 23, 2341–2352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beldowska, M.; Saniewska, D.; Falkowska, L.; Lewandowska, A. Mercury in particulate matter over Polish zone of the southern Baltic Sea. Atmos. Environ. 2012, 46, 397–404. [Google Scholar] [CrossRef]
- Li, J.; Sommar, J.; Wängberg, I.; Lindqvist, O.; Wei, S.-Q. Short-time variation of mercury speciation in the urban of Göteborg during GÖTE-2005. Atmos. Environ. 2008, 42, 8382–8388. [Google Scholar] [CrossRef]
- Zielonka, U.; Hlawiczka, S.; Fudala, J.; Wängberg, I.; Munthe, J. Seasonal mercury concentrations measured in rural air in Southern Poland Contribution from local and regional coal combustion. Atmos. Environ. 2005, 39, 7580–7586. [Google Scholar] [CrossRef]
- Wängberg, I.; Munthe, J.; Pirrone, N.; Iverfeldt, Å.; Bahlman, E.; Costa, P.; Ebinghaus, R.; Feng, X.; Ferrara, R.; Gårdfeldt, K.; et al. Atmospheric mercury distribution in Northern Europe and in the Mediterranean region. Atmos. Environ. 2001, 35, 3019–3025. [Google Scholar] [CrossRef]
- Arruti, A.; Fernández-Olmo, I.; Irabien, A. Regional evaluation of particulate matter composition in an Atlantic coastal area (Cantabria region, northern Spain): Spatial variations in different urban and rural environments. Atmos. Res. 2011, 101, 280–293. [Google Scholar] [CrossRef]
- Arruti, A.; Fernández-Olmo, I.; Irabien, A. Evaluation of the contribution of local sources to trace metals levels in urban PM2.5 and PM10 in the Cantabria region (Northern Spain). J. Environ. Monit. 2010, 12, 1451–1458. [Google Scholar] [CrossRef]
- Farinha, M.M.; Almeida, S.M.; Freitas, M.C.; Verburg, T.G.; Wolterbeek, H.T. Influence of meteorological conditions on PM2.5 and PM2.5–10 elemental concentrations on Sado estuary area, Portugal. J. Radioanal. Nucl. Chem. 2009, 282, 815–819. [Google Scholar] [CrossRef]
- Freitas, M.C.; Farinha, M.M.; Ventura, M.G.; Almeida, S.M.; Reis, M.A.; Pacheco, M.G. Gravimetric and chemical features of airborne PM10 and PM2.5 in mainland Portugal. Environ. Monit. Assess. 2005, 109, 81–95. [Google Scholar] [CrossRef]
- Almeida, S.M.; Pio, C.A.; Freitas, M.C.; Reis, M.A.; Trancoso, M.A. Source apportionment of fine and coarse particulate matter in a sub-urban area at the Western European Coast. Atmos. Environ. 2005, 39, 3127–3138. [Google Scholar] [CrossRef]
- Morton-Bermea, O.; Garza-Galindo, R.; Hernández-Álvarez, E.; Ordoñez-Godínez, S.L.; Amador-Muñoz, O.; Beramendi-Orosco, L.; Miranda, J.; Rosas-Pérez, I. Mercury in the metropolitan area of Mexico City. Bull. Environ. Contam. Toxicol. 2018, 100, 588–592. [Google Scholar] [CrossRef] [PubMed]
- Qie, G.; Wang, Y.; Wu, C.; Mao, H.; Zhang, P.; Li, T.; Li, Y.; Talbot, R.; Hou, C.; Yue, T. Distribution and sources of particulate mercury and other trace elements in PM2.5 and PM10 atop Mount Tai, China. J. Environ. Manag. 2018, 215, 195–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, L.; Cheng, N.; Xiu, G.; Wang, F.; Chen, Y. Characteristics and source appointment of atmospheric particulate mercury over East China Sea: Implication on the deposition of atmospheric particulate mercury in marine environment. Environ. Pollut. 2017, 224, 26–34. [Google Scholar] [CrossRef]
- Kumari, A.; Kulshrestha, U. Trace ambient levels of particulate mercury and its sources at a rural site near Delhi. J. Atmos. Chem. 2018, 75, 335–355. [Google Scholar] [CrossRef]
- Xu, H.; Sonke, J.E.; Guinot, B.; Fu, X.; Sun, R.; Lanzanova, A.; Candaudap, F.; Shen, Z.; Cao, J. Seasonal and annual variations in atmospheric Hg and Pb isotopes in Xi’an, China. Environ. Sci. Technol. 2017, 51, 3759–3766. [Google Scholar] [CrossRef]
- Fang, G.-C.; Lo, C.-T.; Zhuang, Y.-J.; Cho, M.-H.; Huang, C.-Y.; Xiao, Y.-F.; Tsai, K.-H. Seasonal variations and sources study by way of back trajectories and ANOVA for ambient air pollutants (particulates and metallic elements) within a mixed area at Longjing, central Taiwan: 1-year observation. Environ. Geochem. Health 2017, 39, 99–108. [Google Scholar] [CrossRef]
- Moreda-Piñeiro, J.; Turnes-Carou, I.; Alonso-Rodríguez, E.; Moscoso-Pérez, C.; Blanco-Heras, G.; López-Mahía, P.; Muniategui-Lorenzo, S.; Prada-Rodríguez, D. The influence of oceanic air masses on concentration of major ions and trace metals in PM2.5 fraction at a coastal European suburban site. Water Air Soil Pollut. 2015, 226, 2240. [Google Scholar] [CrossRef]
- UNE-EN 12341. Ambient Air-Standard Gravimetric Measurement Method for the Determination of the PM10 or PM2,5 Mass Concentration of Suspended Particulate Matter; European Committee for Standardization: Brussels, Belgium, 2015. [Google Scholar]
- Cheng, I.; Zhang, L.; Blanchard, P.; Dalziel, J.; Tordon, R.; Huang, J.; Holsen, T.M. Comparisons of mercury sources and atmospheric mercury processes between a coastal and inland site. J. Geophys. Res. Atmos. 2013, 118, 2434–2443. [Google Scholar] [CrossRef]
- Hedgecock, I.M.; Pirrone, N. Mercury and photochemistry in the marine boundary layer-modelling studies suggest the in situ production of reactive gas phase mercury. Atmos. Environ. 2001, 35, 3055–3062. [Google Scholar] [CrossRef]
- Sommar, J.; Hallquist, M.; Ljungström, E.; Lindqvist, O. On the gas phase reactions between volatile biogenic mercury species and the nitrate radical. J. Atmos. Chem. 1997, 27, 233–247. [Google Scholar] [CrossRef]
- Santos, P.S.M.; Otero, M.; Santos, E.B.H.; Duarte, A.C. Chemical composition of rainwater at a coastal town on the southwest of Europe: What changes in 20 years? Sci. Total Environ. 2011, 409, 3548–3553. [Google Scholar] [CrossRef] [PubMed]
- US EPA. Risk assessment guidance for superfund. In Part A: Human Health Evaluation Manual; Part F, Supplemental Guidance for Inhalation Risk Assessment; U.S. Environmental Protection Agency: Washington, DC, USA, 2011; Volume I. [Google Scholar]
Site | Average ± SD (pg m−3) | Max (pg m−3) | Min (pg m−3) | Range (pg m−3) | N |
---|---|---|---|---|---|
Whole period | |||||
US | 8.5 ± 7.3 | 30.8 | 1.5 | 29.4 | 44 |
SS | 18.0 ± 19.8 | 75.3 | 1.5 | 73.8 | 38 |
IS | 11.4 ± 7.6 | 33.7 | 2.3 | 31.4 | 41 |
Summer season | |||||
US | 7.3 ± 5.9 | 25.7 | 1.5 | 24.2 | 22 |
SS | 16.4 ± 19.0 | 61.9 | 1.5 | 60.4 | 17 |
IS | 7.5 ± 2.8 | 13.0 | 2.3 | 10.7 | 18 |
Winter season | |||||
US | 9.9 ± 8.4 | 30.8 | 1.5 | 29.3 | 22 |
SS | 19.3 ± 20.4 | 75.3 | 1.5 | 73.8 | 21 |
IS | 14.4 ± 8.6 | 33.7 | 2.8 | 30.9 | 23 |
Site | Groups | Sum of Squares | Degree of Freedom | Mean Square | F-Ratio | p-Value |
---|---|---|---|---|---|---|
US | Between groups | 73.79 | 1 | 73.79 | 1.41 | 0.2420 |
Within groups | 2200.1 | 42 | 52.38 | |||
SS | Between groups | 79.64 | 1 | 79.64 | 0.20 | 0.6547 |
Within groups | 14090.8 | 36 | 391.4 | |||
IS | Between groups | 489.90 | 1 | 489.90 | 10.77 | 0.0022 |
Within groups | 1774.0 | 39 | 45.49 |
US | SS | IS | |||||||
---|---|---|---|---|---|---|---|---|---|
Summer + Winter | Summer | Winter | Summer + Winter | Summer | Winter | Summer + Winter | Summer | Winter | |
PM10 mass | 0.1357 (0.4806) | −0.0.353 (0.893) | 0.1818 (0.5465) | 0.2773 (0.1059) | −0.0441 (0.8599) | 0.4510 (0.0630) | 0.10003 (0.5706) | 0.1490 (0.5372) | −0.3679 (0.1687) |
NH4+ | −0.0126 (0.9478) | −0.0588 (0.8199) | 0.1399 (0.6427) | 0.2199 (0.1998) | 0.2725 (0.2765) | 0.1125 (0.6428) | 0.3390 (0.0551) | −0.0258 (0.9153) | 0.4808 (0.0720) |
K+ | −0.1232 (0.5222) | −0.0353 (0.8913) | −0.3986 (0.1862) | 0.4380 (0.0653) | −0.1533 (0.5398) | 0.4778 (0.0488) | 0.0889 (0.6150) | 0.3106 (0.2003) | −0.0107 (0.9680) |
Na+ | −0.3678 (0.0560) | −0.3441 (0.1826) | −0.5224 (0.0690) | −0.3930 (0.0219) | −0.5196 (0.0377) | −0.2528 (0.2972) | −0.2390 (0.1764) | −0.4299 (0.0818) | −0.3143 (0.2396) |
Ca2+ | 0.2063 (0.2836) | 0.3029 (0.2407) | −0.0909 (0.7630) | 0.2832 (0.0987) | 0.0613 (0.8064) | 0.5955 (0.0141) | −0.0692 (0.6955) | −0.0712 (0.7691) | 0.0536 (0.8411) |
Mg2+ | −0.3607 (0.0609) | −0.3441 (0.1826) | −0.5315 (0.0780) | −0.2625 (0.1259) | −0.5000 (0.8064) | −0.0093 (0.9694) | −0.1270 (0.4725) | 0.2590 (0.2855) | −0.2714 (0.3098) |
Cl− | −0.2507 (0.1927) | −0.2206 (0.3929) | −0.3427 (0.2558) | −0.5532 (0.0376) | −0.4843 (0.0554) | 0.0114 (0.9627) | −0.1848 (0.2958) | 0.3228 (0.1126) | −0.4071 (0.1277) |
SO42− | 0.0980 (0.6107) | 0.0941 (0.7155) | 0.2168 (0.4721) | 0.4476 (0.0091) | 0.6201 (0.0131) | 0.3416 (0.1590) | 0.2721 (0.1238) | 0.1641 (0.4987) | 0.5179 (0.0527) |
NO3− | 0.5889 (0.0022) | 0.6147 (0.0173) | 0.5874 (0.0514) | 0.1745 (0.3038) | 0.2940 (0.2470) | 0.1455 (0.5485) | 0.1374 (0.4371) | 0.1187 (0.6246) | 0.3000 (0.2617) |
Al | 0.0082 (0.9659) | −0.1987 (0.4416) | 0.3123 (0.3003) | 0.1843 (0.2825) | 0.0650 (0.7949) | 0.5041 (0.0495) | 0.3457 (0.0505) | −0.0506 (0.8348) | 0.6214 (0.0201) |
As | −0.0438 (0.8199) | −0.3761 (0.1452) | 0.4273 (0.1664) | 0.4715 (0.0600) | 0.4012 (0.1085) | 0.6144 (0.0113) | 0.2669 (0.0930) | 0.1166 (0.6306) | 0.3330 (0.2127) |
Bi | −0.0827 (0.6674) | −0.4418 (0.0870) | 0.3726 (0.2166) | 0.3305 (0.0539) | 0.3640 (0.1454) | 0.2884 (0.2344) | 0.3538 (0.0454) | 0.1770 (0.4665) | 0.5332 (0.0460) |
Cd | 0.0398 (0.8360) | −0.1624 (0.5295) | 0.3410 (0.2581) | −0.0131 (0.8552) | −0.2730 (0.2731) | 0.1034 (0.6700) | 0.4032 (0.0226) | 0.1613 (0.5059) | 0.4861 (0.0689) |
Cr | 0.6688 (0.0005) | 0.4742 (0.0562) | 0.7018 (0.0190) | 0.3467 (0.0432) | 0.4945 (0.0479) | 0.3038 (0.2104) | −0.0351 (0.8425) | −0.1043 (0.6670) | −0.0717 (0.7885) |
Cu | 0.3637 (0.0590) | 0.3824 (0.1386) | 0.2168 (0.4721) | 0.0014 (0.9935) | 0.1693 (0.4982) | −0.2189 (0.3668) | 0.1765 (0.3181) | −0.0609 (0.8018) | 0.3143 (0.2396) |
Fe | 0.4155 (0.0308) | 0.3735 (0.1480) | 0.3930 (0.1924) | 0.3155 (0.0658) | 0.3004 (0.2295) | 0.5346 (0.0532) | 0.4373 (0.0514) | 0.1168 (0.6301) | 0.5964 (0.0380) |
Mn | 0.1796 (0.3506) | 0.0154 (0.9526) | 0.3556 (0.2383) | −0.0302 (0.8602) | 0.1357 (0.5873) | −0.1082 (0.6555) | 0.2653 (0.1334) | −0.04303 (0.8681) | 0.2906 (0.2768) |
Ni | −0.1692 (0.3792) | −0.5133 (0.0468) | 0.2168 (0.4721) | 0.2757 (0.1079) | 0.2876 (0.2499) | 0.2851 (0.2398) | 0.3061 (0.0834) | 0.0918 (0.7049) | 0.3682 (0.1683) |
Pb | 0.6037 (0.0017) | 0.5647 (0.0519) | 0.7413 (0.0140) | 0.2448 (0.1534) | 0.2451 (0.3264) | 0.2528 (0.2972) | 0.4106 (0.0514) | −0.0031 (0.9898) | 0.1107 (0.6787) |
Sb | 0.3979 (0.0387) | 0.2647 (0.3053) | 0.4266 (0.1571) | 0.3232 (0.0549) | 0.2770 (0.2679) | 0.3540 (0.1444) | 0.4405 (0.0127) | 0.2322 (0.3384) | 0.6500 (0.0150) |
Si | 0.0077 (0.9683) | −0.1853 (0.4730) | 0.3047 (0.3122) | 0.1840 (0.2834) | 0.0650 (0.7949) | 0.5060 (0.0441) | 0.3522 (0.0463) | −0.0527 (0.8278) | 0.3214 (0.0201) |
Sr | 0.0071 (0.9705) | 0.1941 (0.4522) | −0.2448 (0.4169) | −0.2459 (0.1516) | −0.1642 (0.5113) | −0.2797 (0.2489) | −0.0638 (0.7180) | 0.0588 (0.8084) | −0.2071 (0.4383) |
V | −0.1218 (0.5268) | −0.5029 (0.0514) | 0.2417 (0.4228) | 0.1377 (0.4220) | 0.3438 (0.1691) | 0.0598 (0.8083) | 0.2407 (0.1783) | 0.1487 (0.5398) | 0.4036 (0.1310) |
Zn | 0.3091 (0.1083) | 0.3853 (0.1356) | 0.3706 (0.2190) | 0.0821 (0.6321) | −0.3936 (0.1154) | 03.3480 (0.1514) | 0.1257 (0.4772) | 0.1063 (0.6612) | 0.2357 (0.3778) |
eBC | 0.4948 (0.0101) | 0.5353 (0.0118) | 0.4497 (0.0462) | 0.3224 (0.0610) | 0.3456 (0.1669) | 0.2611 (0.2817) | 0.3105 (0.0790) | 0.2074 (0.3924) | 0.4679 (0.0800) |
UVPM | 0.4226 (0.0281) | 0.4216 (0.0186) | 0.4308 (0.0524) | 0.3076 (0.0729) | 0.4578 (0.0669) | 0.2340 (0.3341) | 0.3603 (0.0415) | 0.2157 (0.3787) | 0.5357 (0.0450) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreda-Piñeiro, J.; Rodríguez-Cabo, A.; Fernández-Amado, M.; Piñeiro-Iglesias, M.; Muniategui-Lorenzo, S.; López-Mahía, P. Levels and Sources of Atmospheric Particle-Bound Mercury in Atmospheric Particulate Matter (PM10) at Several Sites of an Atlantic Coastal European Region. Atmosphere 2020, 11, 33. https://doi.org/10.3390/atmos11010033
Moreda-Piñeiro J, Rodríguez-Cabo A, Fernández-Amado M, Piñeiro-Iglesias M, Muniategui-Lorenzo S, López-Mahía P. Levels and Sources of Atmospheric Particle-Bound Mercury in Atmospheric Particulate Matter (PM10) at Several Sites of an Atlantic Coastal European Region. Atmosphere. 2020; 11(1):33. https://doi.org/10.3390/atmos11010033
Chicago/Turabian StyleMoreda-Piñeiro, Jorge, Adrián Rodríguez-Cabo, María Fernández-Amado, María Piñeiro-Iglesias, Soledad Muniategui-Lorenzo, and Purificación López-Mahía. 2020. "Levels and Sources of Atmospheric Particle-Bound Mercury in Atmospheric Particulate Matter (PM10) at Several Sites of an Atlantic Coastal European Region" Atmosphere 11, no. 1: 33. https://doi.org/10.3390/atmos11010033
APA StyleMoreda-Piñeiro, J., Rodríguez-Cabo, A., Fernández-Amado, M., Piñeiro-Iglesias, M., Muniategui-Lorenzo, S., & López-Mahía, P. (2020). Levels and Sources of Atmospheric Particle-Bound Mercury in Atmospheric Particulate Matter (PM10) at Several Sites of an Atlantic Coastal European Region. Atmosphere, 11(1), 33. https://doi.org/10.3390/atmos11010033