Fifty Years of PMV Model: Reliability, Implementation and Design of Software for Its Calculation
Abstract
:1. Introduction
1.1. Background
1.2. Open Issues about the Evaluation of PMV/PPD Indices
- Using tables in the ANNEX E of the Standard;
- Using the computer program in BASIC in the Annex A.
1.3. Aim of the Paper
2. Methods
- PMV calculation
- Comparison among obtained results
- Analysis of inconsistent results
- Attribution of possible causes of inconsistencies
3. Results and Discussion
3.1. Uniform Environments (tr = ta)
3.2. Non-Uniform Environments (tr≠ta)
3.3. Clothing Insulation Input Value
3.4. Final Observations
- Is the assessment of thermal comfort conditions easy enough to be carried out merely with a software, without experience and ergonomic skills?
- Are smartphones suitable replacements for commercial equipment and able to measure all the needed physical variables (particularly, the air velocity and the mean radiant temperature)?
- With accurate commercial equipment, are the standards defined completely enough and clearly enough that non experts can assess thermal comfort accurately?
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Acronyms and Symbols
Icl | Basic clothing insulation, m2 K W−1 or clo |
Icl,r | Resultant clothing insulation adjusted for wind and body movements, m2 K W−1 or clo |
M | Metabolic rate, W m−2 or met |
nZEB | Nearly Zero Energy Buildings |
pa | Water vapor partial pressure, Pa |
RH | Relative humidity, % |
PMV | Predicted Mean Vote, 1 |
PMVASHRAE | PMV value calculated by means of the ASHRAE Thermal Comfort Tool, 1 |
PMV7730 | PMV value calculated from tables in the Annex E of ISO 7730 Standard, 1 |
PPD | Predicted Percentage of Dissatisfied, % |
ta | Air temperature, °C |
ta,des | Air temperature measured within desired accuracy prescribed by ISO 7726, °C |
ta,req | Air temperature measured within required accuracy prescribed by ISO 7726, °C |
to | Operative temperature, °C |
tr | Mean radiant temperature, °C |
tr,des | Mean radiant temperature measured within desired accuracy prescribed by ISO 7726, °C |
tr,req | Mean radiant temperature measured within required accuracy prescribed by ISO 7726, °C |
va | Absolute air velocity, m s−1 |
va,des | Absolute air velocity measured within desired accuracy prescribed by ISO 7726, m s−1 |
var | Relative air velocity, m s−1 |
va,req | Absolute air velocity measured within required accuracy prescribed by ISO 7726, m s−1 |
vb | Velocity due to body movement, m s−1 |
References
- Buildings Performance Institute Europe. Europe’s Buildings under the Microscope; Buildings Performance Institute Europe: Brussels, Belgium, 2011. [Google Scholar]
- Ruparathna, R.; Hewage, K.; Sadiq, R. Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings. Renew. Sustain. Energy Rev. 2016, 53, 1032–1045. [Google Scholar] [CrossRef]
- Parliament of the European Union. Council directive of 16 December 2002 on the energy performance of buildings (2002/91/EC). Off. J. Eur. Commun. 2003, 1, 65–71. [Google Scholar]
- Parliament of the European Union. Directive 2018/844/EU of the European Parliament and of the council of 30 may 2018 amending directive 2010/31/EU on the energy performance of buildings and directive 2012/27/EU on energy efficiency. Off. J. Eur. Commun. 2018, 156, 75–91. [Google Scholar]
- US Environmental Protection Agency. Available online: https://www.epa.gov/sites/production/files/2015-08/documents/vision.pdf (accessed on 25 November 2019).
- d’Ambrosio Alfano, F.R.; Olesen, B.W.; Palella, B.I.; Riccio, G. Thermal comfort: Design and assessment of energy saving. Energy Build. 2014, 81, 326–336. [Google Scholar] [CrossRef]
- De Santoli, L.; Garcia, D.A.; Groppi, D.; Bellia, L.; Palella, B.I.; Riccio, G.; Cuccurullo, G.; d’Ambrosio Alfano, F.R.; Stabile, L.; Dell’Isola, M.; et al. A general approach for retrofit of existing buildings towards NZEB: The windows retrofit effects on indoor air quality and the use of low temperature district heating. In Proceedings of the 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe, EEEIC/I and CPS Europe 2018, Palermo, Italy, 12–15 June 2018. [Google Scholar] [CrossRef]
- Fanger, P.O. Thermal Comfort; Danish Technical Press: Copenhagen, Denmark, 1970. [Google Scholar]
- ISO. ISO Standard 7730. Ergonomics of the Thermal Environment—Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort; International Organization for Standardization: Geneva, Switzerland, 2005. [Google Scholar]
- ASHRAE. ANSI/ASHRAE Standard 55. Thermal Environmental Conditions for Human Occupancy; American Society of Heating, Refrigerating and Air Conditioning Engineers: Atlanta, GA, USA, 2017. [Google Scholar]
- CEN EN Standard 16798-1. Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics—Module M1-6; European Committee for Standardization: Brussels, Belgium, 2019. [Google Scholar]
- CEN EN Standard 16798-2. Energy Performance of Buildings—Ventilation for Buildings—Part. 2: Interpretation of the Requirements in EN 16798-1—Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics—Module M1-6; European Committee for Standardization: Brussels, Belgium, 2019. [Google Scholar]
- ISO. ISO Standard 15265. Ergonomics of the Thermal Environment—Risk Assessment Strategy for the Prevention of Stress or Discomfort in Thermal Working Conditions; International Organization for Standardization: Geneva, Switzerland, 2004. [Google Scholar]
- d’Ambrosio Alfano, F.R.; Palella, B.I.; Riccio, G. On the transition thermal discomfort to heat stress as a function of the PMV value. Ind. Health 2013, 51, 285–296. [Google Scholar] [CrossRef] [Green Version]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments—Application of the RayMan model. Int. J. Biometeorol. 2007, 51, 323–334. [Google Scholar] [CrossRef]
- de Freitas, C.R.; Grigorieva, E.A. A comprehensive catalogue and classification of human thermal climate indices. Int. J. Biometeorol. 2015, 59, 109–120. [Google Scholar] [CrossRef]
- Hoppe, P. The physiological equivalent temperature—A universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef]
- Bröde, P.; Błazejczyk, K.; Fiala, D.; Havenith, G.; Holmér, I.; Jendritzky, G.; Kuklane, K.; Kampmann, B. The universal thermal climate index UTCI compared to ergonomics standards for assessing the thermal environment. Ind. Health 2013, 51, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Fanger, P.O.; Toftum, J. Extension of the PMV model to non-air-conditioned buildings in warm climates. Energy Build. 2002, 34, 533–536. [Google Scholar] [CrossRef]
- Yao, R.; Li, B.; Liu, J. A theoretical adaptive model of thermal comfort—Adaptive predicted mean vote (aPMV). Build. Environ. 2009, 44, 2089–2096. [Google Scholar] [CrossRef]
- Carlucci, S.; Bai, L.; de Dear, R.; Yang, L. Review of adaptive thermal comfort models in built environmental regulatory documents. Build. Environ. 2018, 137, 73–89. [Google Scholar] [CrossRef]
- ISO. ISO Standard 9920. Ergonomics of the Thermal Environment—Estimation of the Thermal Insulation and Evaporative Resistance of a Clothing Ensemble; International Organization for Standardization: Geneva, Switzerland, 2009. [Google Scholar]
- ISO. ISO Standard 7726. Ergonomics of the Thermal Environment—Instruments for Measuring Physical Quantities; International Organization for Standardization: Geneva, Switzerland, 1998. [Google Scholar]
- ISO. ISO Standard 8996. Ergonomics of the Thermal Environment—Determination of Metabolic Rate; International Organization for Standardization: Geneva, Switzerland, 2004. [Google Scholar]
- Malchaire, J.; d’Ambrosio Alfano, F.R.; Palella, B.I. Evaluation of the metabolic rate based on the recording of the heart rate. Ind. Health 2017, 55, 219–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- d’Ambrosio Alfano, F.R.; Palella, B.I.; Riccio, G. The role of measurement accuracy on the thermal environment assessment by means of PMV index. Build. Environ. 2011, 46, 1361–1369. [Google Scholar] [CrossRef]
- Ricciu, R.; Galatioto, A.; Desogus, G.; Besalduch, L.A. Uncertainty in the evaluation of the Predicted Mean Vote index using Monte Carlo analysis. J. Environ. Manag. 2018, 223, 16–22. [Google Scholar] [CrossRef]
- d’Ambrosio Alfano, F.R.; Dell’Isola, M.; Palella, B.I.; Riccio, G.; Russi, A. On the measurement of the mean radiant temperature and its infuence on the indoor thermal environment assessment. Build. Environ. 2013, 63, 79–88. [Google Scholar] [CrossRef]
- d’Ambrosio Alfano, F.R.; Palella, B.I.; Riccio, G.; Toftum, J. Fifty years of Fanger’s equation: Is there anything to discover yet? Int. J. Ind. Ergon. 2018, 66, 157–160. [Google Scholar] [CrossRef]
- Fanger, P.O. Air humidity, Comfort and Health. In Proceedings of the CISCO-ITBTP Seminar Humidity in building, Saint Remy les Chevreuse, France, November 1982; pp. 192–195. [Google Scholar]
- Alfano, G.; Cannistraro, G.; d’Ambrosio, F.R.; Rizzo, G. Notes on the use of the tables of standard ISO 7730 for the evaluation of the PMV index. Indoor Built Environ. 1996, 5, 355–357. [Google Scholar] [CrossRef]
- Havenith, G.; Nilsson, H. Correction of clothing insulation for movement and wind effects, a meta-analysis. Eur. J. Appl. Physiol. 2004, 92, 636–640. [Google Scholar] [CrossRef]
- d’Ambrosio Alfano, F.R.; Palella, B.I.; Riccio, G.; Malchaire, J. On the effect of thermophysical properties of clothing on the heat strain predicted by PHS model. Ann. Occup. Hygiene 2016, 60, 231–251. [Google Scholar] [CrossRef]
- U.S. Department of Energy’s (DOE) Building Technologies Office (BTO). EnergyPlus 9.2.0. 2019. Available online: https://www.energyplus.net/sites/default/files/docs/site_v8.3.0/EMS_Application_Guide/EMS_Application_Guide/index.html (accessed on 19 November 2019).
- Broday, E.E.; de Paula Xavier, A.A.; de Oliveira, R. Comparative analysis of methods for determining the metabolic rate in order to provide a balance between man and the environment. Int. J. Ind. Ergon. 2014, 44, 570–580. [Google Scholar] [CrossRef]
- Broday, E.E.; de Paula Xavier, A.A.; de Oliveira, R. Comparative analysis of methods for determining the clothing surface temperature (tcl) in order to provide a balance between man and the Environment. Int. J. Ind. Ergon. 2017, 57, 80–87. [Google Scholar] [CrossRef]
- Broday, E.E.; Moreto, J.A.; Xavier, A.A.D.P.; de Oliveira, R. The approximation between thermal sensation votes (TSV) and predicted mean vote (PMV): A comparative analysis. Int. J. Ind. Ergon. 2019, 69, 1–8. [Google Scholar] [CrossRef]
- Center for the Built Environment, University of California Berkeley. CBE Thermal Comfort Tool. Available online: http://comfort.cbe.berkeley.edu/ (accessed on 19 November 2019).
- Schiavon, S.; Hoyt, T.; Piccioli, A. Web application for thermal comfort visualization and calculation according to ASHRAE Standard 55. Build. Simul. 2014, 7, 321–334. [Google Scholar] [CrossRef]
- Lund University Faculty of Engineering. JAVA Applet for ISO 7730 Calculation of Predicted Mean Vote (PMV), and Predicted Percentage Dissatisfied (PPD), PMV 2008 Ver 1.0. Available online: http://www.eat.lth.se/fileadmin/eat/Termisk_miljoe/PMV-PPD.html (accessed on 19 November 2019).
- Lee, M.C.; Mui, K.W.; Wong, L.T.; Chan, W.Y.; Lee, E.W.M.; Cheung, C.T. Student learning performance and indoor environmental quality (IEQ) in air-conditioned university teaching rooms. Build. Environ. 2012, 49, 238–244. [Google Scholar] [CrossRef]
- Mui, K.W.; Wong, L.T.; Cheung, C.T.; Yu, H.C. An application-based indoor environmental quality (IEQ) calculator for residential buildings. Int. J. Arch. Environ. Eng. 2015, 9, 822–825. [Google Scholar]
- d’Ambrosio Alfano, F.R.; Palella, B.I.; Riccio, G. TEE (thermal environment assessment): A friendly tool for thermal environment evaluation. In Proceedings of the 11th International Conferences on Environmental Ergonomics, Ystad, Sweden, 22–26 May 2005; pp. 503–506. [Google Scholar]
- d’Ambrosio Alfano, F.R.; Palella, B.I.; Riccio, G. Notes on the implementation of the IREQ model for the assessment of extreme cold environments. Ergonomics 2013, 56, 707–724. [Google Scholar] [CrossRef]
- American Society of Heating, Refrigerating and Air Conditioning Engineers. ASHRAE Thermal Comfort Tool Version 2; American Society of Heating, Refrigerating and Air Conditioning Engineers: Atlanta, GA, USA, 2013. [Google Scholar]
- ISO. ISO Standard 10551. Ergonomics of the Thermal Environment—Subjective Judgement Scales for Assessing Physical Environments; International Organization for Standardization: Geneva, Switzerland, 2019. [Google Scholar]
- American Society of Heating, Refrigerating and Air Conditioning Engineers. Thermal comfort. In ASHRAE Handbook of Fundamentals; American Society of Heating, Refrigerating and Air Conditioning Engineers: Atlanta, GA, USA, 2017. [Google Scholar]
Type of Building Space | Operative Temperature Range for Heating (°C) | Operative Temperature Range for Cooling (°C) |
---|---|---|
Offices and spaces with similar activity (single offices, open plan offices, conference rooms, auditorium, cafeteria, restaurants, and classrooms). Sedentary activity: M = 1.2 met | 20.0–24.0 | 23.0–26.0 |
Department store Standing-walking activity: M = 1.6 met | 16.0–22.0 | 21.0–25.0 |
Category | Thermal State of the Body as a Whole | ||
---|---|---|---|
ISO 7730 | EN 16798-1 | Percentage of Dissatisfied (PPD), % | Predicted Mean Vote (PMV) |
A | I | <6 | −0.20 < PMV < 0.20 |
B | II | <10 | −0.50 < PMV < 0.50 |
C | III | <15 | −0.70 < PMV < 0.70 |
- | IV | <25 | −1.0 < PMV < 1.0 |
ta (°C) | tr (°C) | to (°C) | PMV (-) | Category |
---|---|---|---|---|
Summer | ||||
24 | 28 | 0.1 | I | |
25 | 27 | 0.1 | I | |
26 | 26 | 26 | 0.2 | II |
27 | 25 | 0.3 | II | |
28 | 24 | 0.4 | II | |
25 | 29 | 0.4 | II | |
26 | 28 | 0.5 | II | |
27 | 27 | 27 | 0.6 | III |
28 | 26 | 0.6 | III | |
29 | 25 | 0.8 | IV | |
Winter | ||||
18 | 22 | −0.8 | IV | |
19 | 21 | −0.7 | III | |
20 | 20 | 20 | −0.6 | III |
21 | 19 | −0.6 | III | |
22 | 18 | −0.5 | II | |
19 | 23 | −0.5 | II | |
20 | 22 | −0.4 | II | |
21 | 21 | 21 | −0.4 | II |
22 | 20 | −0.3 | II | |
23 | 19 | −0.3 | II |
Label. | OS | Details | Manufacturer | First Release | Last Update | Last Access |
---|---|---|---|---|---|---|
A | Web app | CBE Thermal Comfort Tool [38] | Center for the Built Environment, University of California, Berkeley (USA) | 2014 [39] | 2017 | 11.2019 |
B | Web app | Java APPLET for ISO 7730 [40] | Lund University, Sweden | 2008 | 2008 | 11.2019 |
C | iOS | IEQ calculator for apartment | Fishball Studio, Department of Building Services Engineering, Polytechnic University, Hong Kong | 2015 | n.a. | 05.2019 |
D | iOS | PMV | Zantedeschi System Integrator | n.a. | 2010 | 05.2019 |
E | iOS | PMV Simulator | Ozaki Seiichi | n.a. | 2013 | 05.2019 |
F | Android | PMV calculator | Fishball Studio | 2011 | 2011 | 05.2019 |
G | Android | IEQ calculator for classrooms [41,42] | Fishball Studio, Department of Building Services Engineering, Polytechnic University, Hong Kong | 2012 | n.a. | 05.2019 |
Software or App | Input Data | Output Data | |||||||
---|---|---|---|---|---|---|---|---|---|
ta | tr | RH | va | M | Icl | PMV | PPD | Thermal Sensation on the ASHRAE Scale | |
TEE | × | × | × | × | × | × 1 | × | × | × |
ASHRAE Thermal Comfort Tool 2.0 | × | × | × | × 2 | × | × 3 | × | × | × |
A | × | × | × | × 2 | × | × 3 | × | × | × |
B | × | × | × | × 4 | × | × | × | × | - |
C | × | - | × | - | × 5 | - | - | - | × |
D 6 | × 7 | - | × | × | × 8 | × 3,8 | × 9 | × | - |
E | × 10 | × 10 | × 10 | × 4 | × 8 | × 3,8 | - | × 11 | - |
F 12 | × | × | × | × | × | × | × | × | - |
G | × | × | × | × | × | - | - | - | × |
Input Data | PMV | ||||||||||||
ta = tr (°C) | RH (%) | va (m/s) | M (met) | Icl,r (clo) | ISO 7730 | TEE | ASH RAE | A | B | C | D | E (1) | G |
23.0 | 60 | 0.10 | 1.2 | 0.5 | −0.69 | −0.66 | −0.45 | −0.45 | −0.69 | −1 | −0.7 | −0.78 | +3 |
26.0 | 0.24 | 0.31 | 0.46 | 0.46 | 0.28 | +1 | 0.2 | 0.22 | |||||
21.0 | 1.6 | −0.65 | −0.58 | −0.18 | −0.18 | −0.61 | (2) | −0.6 | −0.62 | ||||
25.0 | 0.36 | 0.44 | 0.72 | 0.72 | 0.43 | 0.4 | 0.44 | ||||||
20.0 | 40 | 0.10 | 1.2 | 1.0 | −0.47 | −0.53 | −0.39 | −0.39 | −0.55 | -1 | −0.6 | −0.58 | 0 |
24.0 | 0.45 | 0.38 | 0.47 | 0.47 | 0.36 | +1 | 0.3 | 0.31 | +3 | ||||
16.0 | 1.6 | −0.63 | −0.65 | −0.38 | −0.37 | −0.67 | (2) | −0.7 | −0.69 | 0 | |||
22.0 | 0.42 | 0.39 | 0.58 | 0.58 | 0.38 | 0.4 | 0.38 | +3 | |||||
Input Data | Thermal Environment Category | ||||||||||||
23.0 | 60 | 0.10 | 1.2 | 0.5 | III | III | II | II | III | - | IV | IV | - |
26.0 | II | II | II | II | II | - | B | B | |||||
21.0 | 1.6 | III | III | I | I | III | (2) | III | III | ||||
25.0 | II | II | IV | IV | II | II | II | ||||||
20.0 | 40 | 0.10 | 1.2 | 1.0 | II | III | II | II | III | - | III | III | I |
24.0 | II | II | II | II | II | - | II | II | - | ||||
16.0 | 1.6 | III | III | II | II | III | (2) | IV | III | I | |||
22.0 | II | II | III | III | II | II | II | - |
Input Data | PMV | ||||||||||||
to (°C) | ta (°C) | tr (°C) | RH (%) | va (m/s) | M (met) | Icl,r (clo) | ISO 7730 | TEE | ASH RAE | A | B | E (1) | G |
23.0 | 22.0 | 24.0 | 60 | 0.10 | 1.2 | 0.5 | −0.69 | −0.71 | −0.49 | −0.49 | −0.74 | −0.85 | +3 |
22.5 | 23.5 | −0.69 | −0.71 | −0.46 | −0.46 | −0.71 | −0.75 | ||||||
26.0 | 25.0 | 27.0 | 0.24 | 0.26 | 0.44 | 0.44 | 0.24 | 0.22 | |||||
25.5 | 26.5 | 0.24 | 0.28 | 0.45 | 0.45 | 0.26 | 0.22 | ||||||
21.0 | 20.0 | 22.0 | 60 | 0.10 | 1.6 | 0.5 | −0.65 | −0.66 | −0.23 | −0.23 | −0.68 | −0.69 | |
20.5 | 21.5 | −0.65 | −0.62 | −0.20 | −0.20 | −0.64 | −0.54 | ||||||
25.0 | 24.0 | 26.0 | 0.35 | 0.37 | 0.70 | 0.70 | 0.36 | 0.31 | |||||
24.5 | 25.5 | 0.35 | 0.41 | 0.71 | 0.71 | 0.39 | 0.54 | ||||||
20.0 | 19.0 | 21.0 | 40 | 0.10 | 1.2 | 1.0 | −0.47 | −0.56 | −0.40 | −0.40 | −0.58 | −0.65 | 0 |
19.5 | 20.5 | −0.47 | −0.54 | −0.39 | −0.39 | −0.56 | −0.49 | 0 | |||||
24.0 | 23.0 | 25.0 | 0.45 | 0.34 | 0.46 | 0.46 | 0.33 | 0.31 | +3 | ||||
23.5 | 24.5 | 0.45 | 0.36 | 0.46 | 0.46 | 0.34 | 0.44 | +3 | |||||
16.0 | 15.0 | 17.0 | 40 | 0.10 | 1.6 | 1.0 | −0.63 | −0.71 | −0.41 | −0.41 | −0.41 | −0.72 | 0 |
15.5 | 16.5 | −0.63 | −0.68 | −0.39 | −0.39 | −0.39 | −0.62 | 0 | |||||
22.0 | 21.0 | 23.0 | 0.42 | 0.34 | 0.57 | 0.57 | 0.57 | 0.31 | +3 | ||||
21.5 | 22.5 | 0.42 | 0.37 | 0.57 | 0.57 | 0.57 | 0.44 | +3 | |||||
Input Data | Thermal Environment Category | ||||||||||||
23.0 | 22.0 | 24.0 | 60 | 0.10 | 1.2 | 0.5 | III | IV | II | II | IV | IV | - |
22.5 | 23.5 | III | IV | II | II | IV | IV | ||||||
26.0 | 25.0 | 27.0 | II | II | II | II | II | B | |||||
25.5 | 26.5 | II | II | II | II | II | B | ||||||
21.0 | 20.0 | 22.0 | 60 | 0.10 | 1.6 | 0.5 | III | III | II | II | III | III | |
20.5 | 21.5 | III | III | II | II | III | III | ||||||
25.0 | 24.0 | 26.0 | II | II | IV | IV | II | II | |||||
24.5 | 25.5 | II | II | IV | IV | II | II | ||||||
20.0 | 19.0 | 21.0 | 40 | 0.10 | 1.2 | 1.0 | II | III | III | III | III | III | I |
19.5 | 20.5 | II | III | II | II | III | II | I | |||||
24.0 | 23.0 | 25.0 | II | II | II | II | II | II | - | ||||
23.5 | 24.5 | II | II | II | II | II | II | - | |||||
16.0 | 15.0 | 17.0 | 40 | 0.10 | 1.6 | 1.0 | III | IV | II | II | IV | III | I |
15.5 | 16.5 | III | III | II | II | III | III | I | |||||
22.0 | 21.0 | 23.0 | II | II | III | III | II | II | - | ||||
21.5 | 22.5 | II | II | III | III | II | II | - |
Input Data | PMV | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ta = tr (°C) | RH (%) | va (m/s) | M (met) | Icl,r (clo) | ISO 7730 | TEE | ASH RAE | A | B | C | D | E (1) | G |
23.0 | 60 | 0.10 | 1.2 | 0.5 | −0.69 | −0.66 | −0.45 | −0.45 | −0.69 | −1 | −0.7 | −0.78 | +3 |
26.0 | 0.24 | 0.31 | 0.46 | 0.46 | 0.28 | +1 | 0.2 | 0.22 | |||||
21.0 | 1.6 | −0.65 | −0.58 | −0.18 | −0.18 | −0.61 | (2) | −0.6 | −0.62 | ||||
25.0 | 0.36 | 0.44 | 0.72 | 0.72 | 0.43 | 0.4 | 0.44 | ||||||
20.0 | 40 | 0.10 | 1.2 | 1.0 | −0.47 | −0.53 | −0.39 | −0.39 | −0.55 | −1 | −0.6 | −0.58 | 0 |
24.0 | 0.45 | 0.38 | 0.47 | 0.47 | 0.36 | +1 | 0.3 | 0.31 | +3 | ||||
16.0 | 1.6 | −0.63 | −0.65 | −0.38 | −0.37 | −0.67 | (2) | −0.7 | −0.69 | 0 | |||
22.0 | 0.42 | 0.39 | 0.58 | 0.58 | 0.38 | 0.4 | 0.38 | +3 |
Software or App | Precautions |
---|---|
ASHRAE Thermal Comfort Tool |
|
A | As above |
B | No precautions |
C | Not reliable |
D | Reliable only in uniform environments (ta = tr = to) |
E | Clothing insulation input value is the basic clothing insulation value (ASHRAE 55) or the resultant clothing or the resultant clothing insulation (ISO 7730) |
F | Unable to be tested |
G | Not reliable |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
d’Ambrosio Alfano, F.R.; Olesen, B.W.; Palella, B.I.; Pepe, D.; Riccio, G. Fifty Years of PMV Model: Reliability, Implementation and Design of Software for Its Calculation. Atmosphere 2020, 11, 49. https://doi.org/10.3390/atmos11010049
d’Ambrosio Alfano FR, Olesen BW, Palella BI, Pepe D, Riccio G. Fifty Years of PMV Model: Reliability, Implementation and Design of Software for Its Calculation. Atmosphere. 2020; 11(1):49. https://doi.org/10.3390/atmos11010049
Chicago/Turabian Styled’Ambrosio Alfano, Francesca Romana, Bjarne Wilkens Olesen, Boris Igor Palella, Daniela Pepe, and Giuseppe Riccio. 2020. "Fifty Years of PMV Model: Reliability, Implementation and Design of Software for Its Calculation" Atmosphere 11, no. 1: 49. https://doi.org/10.3390/atmos11010049
APA Styled’Ambrosio Alfano, F. R., Olesen, B. W., Palella, B. I., Pepe, D., & Riccio, G. (2020). Fifty Years of PMV Model: Reliability, Implementation and Design of Software for Its Calculation. Atmosphere, 11(1), 49. https://doi.org/10.3390/atmos11010049