Effects of Ozone and Clouds on Temporal Variability of Surface UV Radiation and UV Resources over Northern Eurasia Derived from Measurements and Modeling
Abstract
:1. Introduction
2. Methods and the Data Description
2.1. The Description of INM-RSHU Chemical Climate Model
2.2. The Description of ERA-Interim Reanalysis Dataset
2.3. Description of the Combined TOMS/OMI Satellite Dataset
2.4. The UV Resources Simulations
3. Results
3.1. Climatologies of Total Ozone and Cloud Modification Factor over Northern Eurasia
3.2. Changes in Eery Daily Doses due to Ozone and Cloudiness
3.2.1. Eery due to Total Ozone Variations
3.2.2. Eery due to Cloud Variations
3.2.3. Eery Changes due to Joint Influence of Total Ozone and Cloud Variations
3.3. Changes in UV Resources due to the Changes in Ozone and Cloudiness over Northern Eurasia
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Robinson, S.A.; Wilson, S.R. Environmental Effects of Ozone Depletion and Its Interactions with Climate Change: 2010 Assessment; United Nations Environment Programme: Nairobi, Kenya, 2010; p. 328. [Google Scholar]
- Environmental Effects Assessment Panel (EEAP). Environmental Effects and Interactions of Stratospheric Ozone Depletion, UV Radiation, and Climate Change: 2018 Assessment Report; United Nations Environment Programme (UNEP): Kenya, Nairobi, 2019; p. 390. Available online: https://ozone.unep.org/science/assessment/eeap (accessed on 1 October 2019).
- Holick, M.F. Vitamin D: A millenium perspective. J. Cell. Biochem. 2003, 88, 296–307. [Google Scholar] [CrossRef]
- Webb, A.R.; Engelsen, O. Ultraviolet exposure scenarios: Risks of erythema from recommendations on cutaneous vitamin D synthesis. In Sunlight, Vitamin D and Skin Cancer; Reichrath, J., Ed.; Advances in Experimental Medicine and Biology; Springer: New York, NY, USA, 2008; pp. 72–85. [Google Scholar]
- Bornman, J.F.; Paul, N.; Shao, M. Environmental Effects of Ozone Depletion and Its Interactions with Climate Change: 2014 Assessment; United Nations Environment Programme: Kenya, Nairobi, 2014; p. 312. [Google Scholar]
- World Meteorological Organization (WMO). Scientific Assessment of Ozone Depletion: 2010; Global Ozone Research and Monitoring Project—Report No. 52; World Meteorological Organization: Geneva, Switzerland, 2011; p. 516. [Google Scholar]
- World Meteorological Organization (WMO). Scientific Assessment of Ozone Depletion: 2014; Global Ozone Research and Monitoring Project—Report No. 53; Meteorological Organization: Geneva, Switzerland, 2015; p. 416. [Google Scholar]
- World Meteorological Organization (WMO). Scientific Assessment of Ozone Depletion: 2018; Global Ozone Research and Monitoring Project—Report No. 58; Meteorological Organization: Geneva, Switzerland, 2018; p. 588. [Google Scholar]
- Bekki, S.; Bodeker, G.E.; Bais, A.F.; Butchart, N.; Eyring, V.; Fahey, D.W.; Kinnison, D.E.; Langematz, U.; Mayer, B.; Portmann, R.W.; et al. Future ozone and its impact on surface UV. In Scientific Assessment of Ozone Depletion: 2010; Global Ozone Research and Monitoring Project—Report 52; World Meteorological Organization: Geneva, Switzerland, 2011; Chapter 3; p. 516. [Google Scholar]
- Bais, A.F.; Lubin, D.; Arola, A.; Bernhard, G.; Blumthaler, M.; Chubarova, N.; Erlick, C.; Gies, H.P.; Krotkov, N.; Mayer, B.; et al. Surface ultraviolet radiation: Past, present, and future. In Scientific Assessment of Ozone Depletion: 2006, Global Ozone Research and Monitoring Project—Report No. 50; World Meteorological Organization: Geneva, Switzerland, 2007; Chapter 7; p. 572. [Google Scholar]
- Bais, A.F.; Bernhard, G.; McKenzie, R.L.; Aucamp, P.J.; Young, P.J.; Ilyas, M.; Jöckel, P.; Deushi, M. Ozone-climate interactions and effects on solar ultraviolet radiation. Photochem. Photobiol. Sci. 2019, 18, 602–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodeker, G.; Burrowes, J.; Scott-Weekly, R.; Nichol, S.E.; McKenzie, R.L. A UV atlas for New Zealand. In Proceedings of the Workshop on UV Radiation and its Effects: An Update (2002), Auckland, New Zealand, 26–28 March 2002; pp. 26–28. [Google Scholar]
- Fioletov, V.E.; Kimlin, M.G.; Krotkov, N.; McArthur, L.J.B.; Kerr, J.B.; Wardle, D.I.; Herman, J.R.; Meltzer, R.; Mathews, T.W.; Kaurola, J. UV index climatology over the United States and Canada from ground-based and satellite estimates. J. Geophys. Res. Atmos. 2004, 109. Available online: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2004JD004820 (accessed on 1 September 2019).
- Chubarova, N.; Zhdanova, Y. Ultraviolet resources over Northern Eurasia. J. Photochem. Photobiol. B Biol. 2013, 127, 38–51. [Google Scholar] [CrossRef] [PubMed]
- Lee-Taylor, J.; Madronich, S.; Fischer, C.; Mayer, B. A climatology of UV radiation, 1979–2000, 65S–65N. In UV Radiation in Global Climate Change: Measurements, Modeling and Effects on Ecosystems; Gao, W., Schmoldt, D.L., Slusser, J., Eds.; Springer: Dordrecht, The Netherlands; Tsinghua University Press: Beijing, China, 2009; Chapter 1; pp. 1–20. [Google Scholar]
- Herman, J.R. Global increase in UV irradiance during the past 30 years (1979 to 2008) estimated from satellite data. J. Geophys. Res. Atmos. 2010, 115, D04203. [Google Scholar] [CrossRef] [Green Version]
- Ialongo, I.; Arola, A.; Kujanpää, J.; Tamminen, J. Use of satellite erythemal UV products in analysing the global UV changes. Atmos. Chem. Phys. 2011, 11, 9649–9658. [Google Scholar] [CrossRef] [Green Version]
- Herman, J.R.; Labow, G.; Hsu, N.C.; Larko, D. Changes in cloud and aerosol cover (1980–2006) from reflectivity time series using SeaWiFS, N7-TOMS, EP-TOMS, SBUV-2, and OMI radiance data. J. Geophys. Res. Atmos. 2009, 114. Available online: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2007JD009508 (accessed on 1 September 2019). [CrossRef] [Green Version]
- Herman, J.; DeLand, M.T.; Huang, L.-K.; Labow, G.; Larko, D.; Lloyd, S.A.; Mao, J.; Qin, W.; Weaver, C. A net decrease in the Earth’s cloud, aerosol, and surface 340 nm reflectivity during the past 33 yr (1979–2011). Atmos. Chem. Phys. 2013, 13, 8505–8524. [Google Scholar] [CrossRef] [Green Version]
- Arola, A.; Kazadzis, S.; Lindfors, A.; Krotkov, N.; Kujanpää, J.; Tamminen, J.; Bais, A.; di Sarra, A.; Villaplana, J.M.; Brogniez, C.; et al. A new approach to correct for absorbing aerosols in OMI UV. Geophys. Res. Lett. 2009, 36. Available online: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2009GL041137 (accessed on 1 October 2019).
- Krotkov, N.A.; Bhartia, P.K.; Herman, J.R.; Fioletov, V.; Kerr, J. Satellite estimation of spectral surface UV irradiance in the presence of tropospheric aerosols: 1. Cloud-free case. J. Geophys. Res. Atmos. 1998, 103, 8779–8793. [Google Scholar] [CrossRef] [Green Version]
- Bernhard, G. Trends of solar ultraviolet irradiance at Barrow, Alaska, and the effect of measurement uncertainties on trend detection. Atmos. Chem. Phys. 2011, 11, 13029–13045. [Google Scholar] [CrossRef]
- Cabrera, S.; Ipiña, A.; Damiani, A.; Cordero, R.R.; Piacentini, R.D. UV index values and trends in Santiago, Chile (33.5° S) based on ground and satellite data. J. Photochem. Photobiol. B Biol. 2012, 115, 73–84. [Google Scholar] [CrossRef]
- Outer, P.N.; Slaper, H.; Kaurola, J.; Lindfors, A.; Kazantzidis, A.; Bais, A.F.; Feister, U.; Junk, J.; Janouch, M.; Josefsson, W. Reconstructing of erythemal ultraviolet radiation levels in Europe for the past 4 decades. J. Geophys. Res. Atmos. 2010, 115. Available online: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2009JD012827 (accessed on 15 September 2019).
- Fitzka, M.; Simic, S.; Hadzimustafic, J. Trends in spectral UV radiation from long-term measurements at Hoher Sonnblick, Austria. Theor. Appl. Climatol. 2012, 110, 585–593. [Google Scholar] [CrossRef]
- Lemus-Deschamps, L.; Makin, J.K. Fifty years of changes in UV Index and implications for skin cancer in Australia. Int. J. Biometeorol. 2012, 56, 727–735. [Google Scholar] [CrossRef] [PubMed]
- Zhdanova, E.Y.; Chubarova, N.Y.; Blumthaler, M. Biologically active UV-radiation and UV-resources in Moscow (1999–2013). Geogr. Environ. Sustain. 2014, 7, 71–85. [Google Scholar] [CrossRef] [Green Version]
- Chubarova, N.E.; Pastukhova, A.S.; Galin, V.Y.; Smyshlyaev, S.P. Long-term variability of UV irradiance in the Moscow region according to measurement and modeling data. Izv. Atmos. Ocean. Phys. 2018, 54, 139–146. [Google Scholar] [CrossRef]
- Čížková, K.; Láska, K.; Metelka, L.; Staněk, M. Reconstruction and analysis of erythemal UV radiation time series from Hradec Králové (Czech Republic) over the past 50 years. Atmos. Chem. Phys. 2018, 18, 1805–1818. [Google Scholar] [CrossRef] [Green Version]
- Krzyścin, J.W.; Sobolewski, P.S. Trends in erythemal doses at the Polish Polar Station, Hornsund, Svalbard based on the homogenized measurements (1996–2016) and reconstructed data (1983–1995). Atmos. Chem. Phys. 2018, 18, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Román, R.; Bilbao, J.; de Miguel, A. Erythemal ultraviolet irradiation trends in the Iberian Peninsula from 1950 to 2011. Atmos. Chem. Phys. 2015, 15, 375–391. [Google Scholar] [CrossRef] [Green Version]
- Litynska, Z.; Koepke, P.; De Backer, H.; Groebner, J.; Schmalwieser, A.; Vuilleumier, L. Long term changes and climatology of UV radiation over Europe. In Final Scientific Report COST Action 726: UV Climatology for Europe; European Cooperation in Science and Technology, COST 726 Project; 2010; Available online: http://www.meteoschweiz.admin.ch/web/en/research/completed_projects/cost_726.Par.0011.DownloadFile.tmp/finalreport.pdf (accessed on 1 May 2019).
- Chubarova, N.Y. UV variability in Moscow according to long-term UV measurements and reconstruction model. Atmos. Chem. Phys. 2008, 8, 3025–3031. [Google Scholar] [CrossRef] [Green Version]
- Fountoulakis, I.; Bais, A.F.; Fragkos, K.; Meleti, C.; Tourpali, K.; Zempila, M.M. Short- and long-term variability of spectral solar UV irradiance at Thessaloniki, Greece: Effects of changes in aerosols, total ozone and clouds. Atmos. Chem. Phys. 2016, 16, 2493–2505. [Google Scholar] [CrossRef] [Green Version]
- Bais, A.F.; Tourpali, K.; Kazantzidis, A.; Akiyoshi, H.; Bekki, S.; Braesicke, P.; Chipperfield, M.P.; Dameris, M.; Eyring, V.; Garny, H.; et al. Projections of UV radiation changes in the 21st century: Impact of ozone recovery and cloud effects. Atmos. Chem. Phys. 2011, 11, 7533–7545. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, S.; Takemura, T.; Sudo, K.; Yokohata, T.; Kawase, H. Anthropogenic changes in the surface all-sky UV-B radiation through 1850–2005 simulated by an Earth system model. Atmos. Chem. Phys. 2012, 12, 5249–5257. [Google Scholar] [CrossRef] [Green Version]
- Lamy, K.; Portafaix, T.; Josse, B.; Brogniez, C.; Godin-Beekmann, S.; Bencherif, H.; Revell, L.; Akiyoshi, H.; Bekki, S.; Hegglin, M.I.; et al. Clear-sky ultraviolet radiation modelling using output from the chemistry climate model initiative. Atmos. Chem. Phys. 2019, 19, 10087–10110. [Google Scholar] [CrossRef] [Green Version]
- Egorova, T.; Rozanov, E.; Gröbner, J.; Hauser, M.; Schmutz, W. Montreal protocol benefits simulated with CCM SOCOL. Atmos. Chem. Phys. 2013, 13, 3811–3823. [Google Scholar] [CrossRef] [Green Version]
- Pastukhova, A.S.; Chubarova, N.E.; Zhdanova, Y.Y.; Galin, V.Y.; Smyshlyaev, S.P. Numerical simulation of variations in ozone content, erythemal ultraviolet radiation, and ultraviolet resources over Northern Eurasia in the 21st century. Izv. Atmos. Ocean. Phys. 2019, 55, 242–250. [Google Scholar] [CrossRef]
- McKenzie, R.L.; Liley, J.B.; Björn, L.O. UV radiation: Balancing risks and benefits. Photochem. Photobiol. 2009, 85, 88–98. [Google Scholar] [CrossRef]
- Kinne, S. The Macv2 aerosol climatology. Tellus B Chem. Phys. Meteorol. 2019, 71, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Galin, V.Y.; Smyshlyaev, S.P.; Volodin, E.M. Combined chemistry-climate model of the atmosphere. Izv. Atmos. Ocean. Phys. 2007, 43, 399–412. [Google Scholar] [CrossRef]
- Volodin, E.M.; Mortikov, E.V.; Kostrykin, S.V.; Galin, V.Y.; Lykossov, V.N.; Gritsun, A.S.; Diansky, N.A.; Gusev, A.V.; Iakovlev, N.G. Simulation of the present-day climate with the climate model INMCM5. Clim. Dyn. 2017, 49, 3715–3734. [Google Scholar] [CrossRef]
- Chubarova, N.Y.; Nezval, Y.I. Ozone, aerosol and cloudiness impacts on biologically effective radiation and UV radiation less 380nm. In Proceedings of the IRS’96 Current Problems in Atmospheric Radiation; Smith, S., Ed.; A Deepak Publishing: Hampton, VA, USA, 1997; pp. 886–889. [Google Scholar]
- Booth, C.R.; Madronich, S. Radiation amplification factors: Improved formulation accounts for large increases in ultraviolet radiation associated with antarctic ozone depletion. In Ultraviolet Radiation in Antarctica: Measurements and Biological Effects; American Geophysical Union (AGU): Washington, DC, USA, 2013; pp. 39–42. ISBN 978-1-118-66794-1. [Google Scholar]
- Chubarova, N.; Zhdanova, Y.; Nezval, Y. A new parameterization of the UV irradiance altitude dependence for clear-sky conditions and its application in the on-line UV tool over Northern Eurasia. Atmos. Chem. Phys. 2016, 16, 11867–11881. [Google Scholar] [CrossRef] [Green Version]
- Madronich, S.; Flocke, S. The role of solar radiation in atmospheric chemistry. In Handbook of Environmental Chemistry Reactions and Processes; Boule, P., Hutzinger, O., Eds.; Springer: Berlin/Heidelberg, Germany, 1998; Volume 2, pp. 1–26. [Google Scholar]
- Rublev, A.; Trembach, V. 3D Monte-Carlo models and radiative transfer online tools. Intercomparison of three-dimensional radiation codes. In Proceedings of the Three-Dimensional Radiation Codes: Abstracts of the First and Intercomparison Second International Workshops; Cahalan, R.F., Davies, R., Eds.; University of Arizona Press: Tucson, AZ, USA, 2000; pp. 14–18. ISBN 0-9709609-0-5. [Google Scholar]
- WMO (World Meteorological Organization). Scientific Assessment of Ozone Depletion: 2006; Global Ozone Research and Monitoring Project—Report No. 50; WMO: Geneva, Switzerland, 2007; p. 572. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate change 2001: The scientific basis. In Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2001; p. 881. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate change 2013: The physical science basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Dewolfe, W.A.; Wilson, A.; Lindholm, D.M.; Pankratz, C.K.; Snow, M.A.; Woods, T.N. Solar irradiance data products at the LASP interactive solar irradiance datacenter (LISIRD). AGU Fall Meet. Abstr. 2010, 21, GC21B-0881. [Google Scholar]
- Thomason, L.; Peter, T. (Eds.) SPARC: SPARC Assessment of Stratospheric Aerosol Properties (ASAP). SPARC Report No. 4, WCRP-124, WMO/TD—No. 1295. 2006. Available online: www.sparc-climate.org/publications/sparc-reports/ (accessed on 1 October 2019).
- Rayner, N.A.; Parker, D.E.; Horton, E.B.; Folland, C.K.; Alexander, L.V.; Rowell, D.P.; Kent, E.C.; Kaplan, A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 2003, 108. Available online: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2002JD002670 (accessed on 1 October 2019). [CrossRef]
- Stenke, A.; Schraner, M.; Rozanov, E.; Egorova, T.; Luo, B.; Peter, T. The SOCOL version 3.0 chemistry–climate model: Description, evaluation, and implications from an advanced transport algorithm. Geosci. Model Dev. 2013, 6, 1407–1427. [Google Scholar] [CrossRef] [Green Version]
- Dragani, R. On the Quality of the ERA-Interim Ozone Reanalyses. Part I: Comparisons with In Situ Measurements; ERA Report Series, No. 2; ECMWF: Reading, UK, 2010; Available online: https://www.ecmwf.int/node/9111 (accessed on 11 October 2019).
- Dragani, R. On the Quality of the ERA-Interim Ozone Reanalyses. In Part II: Comparisons with Satellite Data; ERA Report Series, No. 3; ECMWF: Reading, UK, 2010; Available online: https://www.ecmwf.int/node/9112 (accessed on 11 October 2019).
- Dragani, R. On the quality of the ERA-Interim ozone reanalyses: Comparisons with satellite data. Q. J. R. Meteorol. Soc. 2011, 137, 1312–1326. [Google Scholar] [CrossRef]
- Davis, S.M.; Hegglin, M.I.; Fujiwara, M.; Dragani, R.; Harada, Y.; Kobayashi, C.; Long, C.; Manney, G.L.; Nash, E.R.; Potter, G.L.; et al. Assessment of upper tropospheric and stratospheric water vapor and ozone in reanalyses as part of S-RIP. Atmos. Chem. Phys. 2017, 17, 12743–12778. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Liang, S.; Wang, G.; Yao, Y.; Jiang, B.; Cheng, J. Evaluation of the reanalysis surface incident shortwave radiation products from NCEP, ECMWF, GSFC, and JMA using satellite and surface observations. Remote Sens. 2016, 8, 225. [Google Scholar] [CrossRef] [Green Version]
- Träger-Chatterjee, C.; Müller, R.W.; Trentmann, J.; Bendix, J. Evaluation of ERA-40 and ERA-interim re-analysis incoming surface shortwave radiation datasets with mesoscale remote sensing data. Meteorol. Z. 2010, 19, 631–640. [Google Scholar] [CrossRef]
- Szczypta, C.; Calvet, J.-C.; Albergel, C.; Balsamo, G.; Boussetta, S.; Carrer, D.; Lafont, S.; Meurey, C. Verification of the new ECMWF ERA-interim reanalysis over France. Hydrol. Earth Syst. Sci. 2011, 15, 647–666. [Google Scholar] [CrossRef] [Green Version]
- TOMS Science Team (Unrealeased), TOMS Nimbus-7 Total Ozone Aerosol Index UV-Reflectivity UV-B Erythemal Irradiances Daily L3 Global 1 deg × 1.25 deg V008; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2017. Available online: https://disc.gsfc.nasa.gov/datacollection/TOMSN7L3_008.html (accessed on 17 January 2017).
- TOMS Science Team (Unrealeased), TOMS Earth-Probe Total Ozone (O3) Aerosol Index UV-Reflectivity UV-B Erythemal Irradiance Daily L3 Global 1 deg × 1.25 deg V008; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2017. Available online: https://disc.gsfc.nasa.gov/datacollection/TOMSEPL3_008.html (accessed on 17 January 2017).
- Jari, H.; Antii, A.; Johanna, T. OMI/Aura Surface UVB Irradiance and Erythemal Dose Daily L3 Global Gridded 1.0 degree × 1.0 degree V3; NASA Goddard Space Flight Center: Greenbelt, MD, USA; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2013. Available online: http://www.10.5067/Aura/OMI/DATA3009 (accessed on 16 January 2017).
- Krotkov, N.A.; Herman, J.R.; Bhartia, P.K.; Seftor, C.J.; Arola, A.; Kaurola, J.; Kalliskota, S.; Taalas, P.; Geogdzhayev, I.V. Version 2 total ozone mapping spectrometer ultraviolet algorithm: Problems and enhancements. Opt. Eng. 2002, 41, 3028–3040. [Google Scholar]
- Arola, A.; Kazadzis, S.; Krotkov, N.; Bais, A.; Gröbner, J.; Herman, J.R. Assessment of TOMS UV bias due to absorbing aerosols. J. Geophys. Res. Atmos. 2005, 110. Available online: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2005JD005913 (accessed on 15 November 2019). [CrossRef] [Green Version]
- Bodeker, G.E.; Shiona, H.; Eskes, H. Indicators of Antarctic ozone depletion. Atmos. Chem. Phys. 2005, 5, 2603–2615. [Google Scholar] [CrossRef] [Green Version]
- Zhdanova, Y.; Chubarova, N.; Nezval, Y. A method of estimating cloud transmission in the UV spectral range using data from different satellite measurements and reanalysis. In AIP Conference Proceedings; AIP: College Park, MD, USA, 2013; Volume 1531, pp. 911–914. [Google Scholar]
- Fitzpatrick, T.B. The Validity and practicality of sun-reactive skin types I through VI. Arch. Dermatol. 1988, 124, 869–871. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization; World Meteorological Organization; United Nations Environment Programme, International Commission on Non-Ionizing Radiation Protection. Global Solar UV Index: A Practical Guide: A JOINT RECOMMENDATION of World Health Organization; WHO: Geneva, Switzerland, 2002; p. 28. [Google Scholar]
- Rationalizing Nomenclature for UV Doses and Effects on Humans; Joint Publication of CIE and WMO. CIE 209:2014, WMO/GAW Report No. 211. 2014, p. 14. Available online: https://library.wmo.int/doc_num.php?explnum_id=7176 (accessed on 1 October 2019).
- Holick, M.F.; Jenkins, M. The UV Advantage: New Medical Breakthroughs Reveal Powerful Health Benefits from Sun Exposure and Tanning; Ibook: New York, NY, USA, 2003. [Google Scholar]
- Petropavlovskikh, I.; Godin-Beekmann, S.; Hubert, D.; Damadeo, R.; Hassler, B.; Sofieva, V.; Commission, I.O. GAW Report, 241. SPARC/IO3C/GAW Report on Long-Term Ozone Trends and Uncertainties in the Stratosphere; World Meteorological Organization (WMO): Geneva, Switzerland, 2018. [Google Scholar]
- Petropavlovskikh, I.; Evans, R.; McConville, G.; Manney, G.L.; Rieder, H.E. The influence of the North Atlantic Oscillation and El Niño—Southern oscillation on mean and extreme values of column ozone over the United States. Atmos. Chem. Phys. 2015, 15, 1585–1598. [Google Scholar] [CrossRef] [Green Version]
- Vigouroux, C.; Blumenstock, T.; Coffey, M.; Errera, Q.; García, O.; Jones, N.B.; Hannigan, J.W.; Hase, F.; Liley, B.; Mahieu, E.; et al. Trends of ozone total columns and vertical distribution from FTIR observations at eight NDACC stations around the globe. Atmos. Chem. Phys. 2015, 15, 2915–2933. [Google Scholar] [CrossRef] [Green Version]
- Nezval, E.I.; Chubarova, N.E. Long-term variability of UV radiation in the spectral range of 300–380 nm in Moscow. Russ. Meteorol. Hydrol. 2017, 42, 693–699. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Fasullo, J.T. Global warming due to increasing absorbed solar radiation. Geophys. Res. Lett. 2009, 36. Available online: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2009GL037527 (accessed on 1 October 2019). [CrossRef] [Green Version]
- Eyring, V.; Shepherd, T.G.; Waugh, D.W. (Eds.) SPARC CCMVal Report on the Evaluation of Chemistry-Climate Models. SPARC Report No. 5, WCRP-30, WMO/TD-No. 400. 2010. Available online: http://www.atmosp.physics.utoronto.ca/SPARC/ccmval_final/index.php (accessed on 1 October 2019).
- Liu, Y.; Key, J.R.; Liu, Z.; Wang, X.; Vavrus, S.J. A cloudier Arctic expected with diminishing sea ice. Geophys. Res. Lett. 2012, 39. Available online: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2012GL051251 (accessed on 1 October 2019).
January | April | July | October | Year | |
---|---|---|---|---|---|
Total Ozone Column, X, DU | |||||
Mean ± confidence interval at p = 95% | |||||
INM-RSHU CCM | 390 ± 4 | 384 ± 4 | 306 ± 2 | 320 ± 2 | 350 ± 3 |
ERA-Interim | 365 ± 1 | 387 ± 1 | 326 ± 0.3 | 302 ± 1 | 346 ± 1 |
TOMS/OMI | 370 ± 1 | 386 ± 1 | 326 ± 0.4 | 302 ± 1 | 346 ± 1 |
Median | |||||
INM-RSHU CCM | 385 | 385 | 304 | 320 | 352 |
ERA-Interim | 350 | 381 | 327 | 293 | 336 |
TOMS/OMI | 354 | 380 | 327 | 293 | 336 |
Standard Deviation | |||||
INM-RSHU CCM | 32 | 28 | 17 | 17 | 21 |
ERA-Interim | 40 | 25 | 9 | 18 | 20 |
TOMS/OMI | 38 | 26 | 11 | 19 | 20 |
Case Number (Number of Pixels) | |||||
INM-RSHU CCM | 234 | 234 | 234 | 234 | 234 |
ERA-Interim | 3990 | 3990 | 3990 | 3990 | 3990 |
TOMS/OMI | 3192 | 3192 | 3192 | 3192 | 3192 |
Cloud Modification Factor, CMFuv | |||||
Mean | |||||
INM-RSHU CCM | 0.83 ± 0.01 | 0.80 ± 0.01 | 0.79 ± 0.01 | 0.80 ± 0.01 | 0.80 ± 0.01 |
ERA-Interim | 0.77 ± 0.003 | 0.82 ± 0.002 | 0.79 ± 0.003 | 0.78 ± 0.003 | 0.78 ± 0.002 |
TOMS (1979–2002) | 0.64 ± 0.003 | 0.73 ± 0.003 | 0.73 ± 0.003 | 0.69 ± 0.003 | 0.69 ± 0.002 |
Median | |||||
INM-RSHU CCM | 0.82 | 0.80 | 0.78 | 0.79 | 0.81 |
ERA-Interim | 0.75 | 0.82 | 0.78 | 0.77 | 0.77 |
TOMS (1979–2002) | 0.64 | 0.73 | 0.73 | 0.67 | 0.68 |
Standard Deviation | |||||
INM-RSHU CCM | 0.07 | 0.06 | 0.11 | 0.05 | 0.07 |
ERA-Interim | 0.10 | 0.06 | 0.08 | 0.09 | 0.07 |
TOMS (1979–2002) | 0.10 | 0.08 | 0.10 | 0.09 | 0.07 |
Case Number (Number of Pixels) | |||||
INM-RSHU CCM | 234 | 234 | 234 | 234 | 234 |
ERA-Interim | 4158 | 4158 | 4158 | 4158 | 4158 |
TOMS (1979–2002) | 4158 | 4158 | 4158 | 4158 | 4158 |
Names | Factors | All Factors Together | |||
---|---|---|---|---|---|
Anthropogenic Effect | Solar Activity | Stratospheric Aerosol | SST/SIC | ||
Description | ODS changes were accounted over the 1979–2015 period according to [6]. All other parameters were set for 1979. | The changes in extraterrestrial solar fluxes were accounted over the 1979–2015 period according to [53]. All other parameters were set for 1979. | The changes in stratospheric aerosol were accounted over the 1979–2015 period according to [54]. All other parameters were set for 1979. | The changes in SST/SIC were accounted over the 1979–2015 period according to [55]. All other parameters were set for 1979. | The changes of all factors were accounted over the 1979–2015 period. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chubarova, N.E.; Pastukhova, A.S.; Zhdanova, E.Y.; Volpert, E.V.; Smyshlyaev, S.P.; Galin, V.Y. Effects of Ozone and Clouds on Temporal Variability of Surface UV Radiation and UV Resources over Northern Eurasia Derived from Measurements and Modeling. Atmosphere 2020, 11, 59. https://doi.org/10.3390/atmos11010059
Chubarova NE, Pastukhova AS, Zhdanova EY, Volpert EV, Smyshlyaev SP, Galin VY. Effects of Ozone and Clouds on Temporal Variability of Surface UV Radiation and UV Resources over Northern Eurasia Derived from Measurements and Modeling. Atmosphere. 2020; 11(1):59. https://doi.org/10.3390/atmos11010059
Chicago/Turabian StyleChubarova, Natalia E., Anna S. Pastukhova, Ekaterina Y. Zhdanova, Elena V. Volpert, Sergey P. Smyshlyaev, and Vener Y. Galin. 2020. "Effects of Ozone and Clouds on Temporal Variability of Surface UV Radiation and UV Resources over Northern Eurasia Derived from Measurements and Modeling" Atmosphere 11, no. 1: 59. https://doi.org/10.3390/atmos11010059
APA StyleChubarova, N. E., Pastukhova, A. S., Zhdanova, E. Y., Volpert, E. V., Smyshlyaev, S. P., & Galin, V. Y. (2020). Effects of Ozone and Clouds on Temporal Variability of Surface UV Radiation and UV Resources over Northern Eurasia Derived from Measurements and Modeling. Atmosphere, 11(1), 59. https://doi.org/10.3390/atmos11010059