Remote Sensing of Atmospheric Methane with IR OPO Lidar System
Abstract
:1. Introduction
2. Measurement Technique
3. IR OPO Lidar System
3.1. IR OPO Lidar System
3.2. Laser Source
3.3. Collimator Mirrors
3.4. Receiving Telescope
3.5. Photodetectors
3.6. Data Acquisition Device
3.7. Calibration of the Lidar System
4. Measurement Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Reghunath, A.T.; Malhotra, P.; Kumar, Y.; Bhushan, B. Design of a tunable mid-IR OPO source for DIAL detection of trace gases. In Proceedings of the Asia-Pacific Remote Sensing Symposium, Goa, India, 13–17 November 2006; Volume 6409, p. 64091B. [Google Scholar] [CrossRef]
- Douglass, K.O.; Maxwell, S.E.; Plusquellic, D.F.; Hodges, J.T.; Van Zee, R.D.; Samarov, D.V.; Whetstone, J.R. Construction of a high power OPO laser system for differential absorption LIDAR. In Lidar Remote Sensing for Environmental Monitoring XII; SPIE International Society for Optics and Photonics: Bellingham, WA, USA, 2011; Volume 8159, p. 81590D. [Google Scholar] [CrossRef]
- Barrientos-Barria, J.; Dherbecourt, J.; Raybaut, M.; Godard, A.; Melkonian, J.M.; Lefebvre, M.H.; Faure, B.; Souhaite, G. 3.3–3.7 μm Nested cavity OPO pumped by an amplified micro-laser for portable DIAL. In Proceedings of the Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference, Munich, Germany, 12–16 May 2013; IEEE: Piscataway, NJ, USA, 2013. [Google Scholar]
- Amoruso, S.; Amodeo, A.; Armenante, M.; Boselli, A.; Mona, L.; Pandolfi, M.; Pappalardo, P.; Velotta, R.; Spinelli, N.; Wang, X. Development of a tunable IR lidar system. Opt. Lasers Eng. 2002, 37, 521–532. [Google Scholar] [CrossRef] [Green Version]
- Ayrapetyan, V.S. Measurement of absorption spectra for atmospheric methane by a lidar system with tunable emission wavelength in the range 1.41–4.24 μm. J. Appl. Spectrosc. 2009, 76, 268–272. [Google Scholar] [CrossRef]
- Amediek, A.; Fix, A.; Wirth, M.; Ehret, G. Development of an OPO system at 1.57 μm for integrated path DIAL measurement of atmospheric carbon dioxide. Appl. Phys. B 2008, 92, 295–302. [Google Scholar] [CrossRef] [Green Version]
- Barrientos-Barria, J.; Alexandre Dobroc, A.; Coudert-Alteirac, H.; Raybaut, M.; Cezard, N.; Dherbecourt, J.-P.; Faure, B.; Souhaité, G.; Melkonian, J.-M.; Godard, A.; et al. 3.3–3.7 μm OPO/OPA optical source for multi-species 200 m range Integrated Path DIfferential Absorption Lidar. In Applications of Lasers for Sensing and Free Space Communications; Optical Society of America: Washington, WA, USA, 2013; p. LTh1B-4. [Google Scholar]
- Mammez, D.; Cadiou, E.; Dherbecourt, J.-P.; Raybaut, M.; Melkonian, J.-M.; Godard, A.; Gorju, G.; Pelon, J.; Lefebvre, M. Multispecies transmitter for DIAL sensing of atmospheric water vapour, methane and carbon dioxide in the 2 μm region. In Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing XI; International Society for Optics and Photonics: Bellingham, WA, USA, 2015; Volume 9645, p. 964507. [Google Scholar] [CrossRef]
- Robinson, I.; Jack, J.W.; Rae, C.F.; Moncrieff, J.B. Development of a laser for differential absorption lidar measurement of atmospheric carbon dioxide. In Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing X; International Society for Optics and Photonics: Bellingham, WA, USA, 2014; Volume 9246, p. 92460U. [Google Scholar] [CrossRef] [Green Version]
- Robinson, I.; Jack, J.W.; Rae, C.F.; Moncrieff, J.B. A robust optical parametric oscillator and receiver telescope for differential absorption lidar of greenhouse gases. In Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing XI; International Society for Optics and Photonics: Bellingham, WA, USA, 2015; Volume 9645, p. 96450U. [Google Scholar] [CrossRef] [Green Version]
- Mitev, V.; Borelli, R.; Fiorani, L.; Grigorov, I.; Nuvoli, M.; Palucci, A.; Pistilli, M.; Puiu, A.; Rebane, O.; Santoro, S. Lidar extinction measurement in the mid infrared. In Proceedings of the 20th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, Novosibirsk, Russian, 2014; International Society for Optics and Photonics: Bellingham, WA, USA, 2014; Volume 9292, p. 92923W. [Google Scholar] [CrossRef]
- Geiger, A.R. Mid-Infrared Light Hydrocarbon Dial Lidar. U.S. Patent 5,157,257, 20 October 1992. [Google Scholar]
- Kalayeh, H.M. Multi-Sensors and Differential Absorption LIDAR Data Fusion. U.S. Patent 7,411,196, 12 August 2008. [Google Scholar]
- Lippert, J.L.; Stearns, S.V.; Brake, D.E.; Fisher, C.M. Gas Flux Determination Using Airborne DIAL LIDAR and Airborne Wind Measurement. U.S. Patent 8,121,798, 21 February 2012. [Google Scholar]
- Liu, J. Method and Apparatus for Wavelength Locking Free Optical Frequency Comb Based Differential Absorption Lidar. U.S. Patent 8,541,744, 24 September 2013. [Google Scholar]
- DeAntonio, M.; Motto, R. Variable-Wavelength Lidar System. U.S. Patent Application 14/101,143, 12 June 2014. [Google Scholar]
- Foltynowicz, R. High-energy, Broadband, Rapid Tuning Frequency Converter. U.S. Patent 8,837,538, 16 September 2014. [Google Scholar]
- Ayrapetyan, V.S.; Fomin, P.A. Laser detection of explosives based on differential absorption and scattering. Opt. Laser Technol. 2018, 106, 202–208. [Google Scholar] [CrossRef]
- Weidmann, D. Heterodyne Detection System and Method. U.S. Patent 9,366,622, 14 June 2016. [Google Scholar]
- Mitev, V.; Babichenko, S.; Bennes, J.; Borelli, R.; Dolfi-Bouteyre, A.; Fiorani, L.; Hespel, L.; Huet, T.; Palucci, A.; Pistilli, M.; et al. Mid-IR DIAL for high-resolution mapping of explosive precursors. In Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing IX; International Society for Optics and Photonics: Bellingham, WA, USA, 2013; Volume 8894, p. 88940S. [Google Scholar] [CrossRef]
- Cadiou, E.; Mammez, D.; Dherbecourt, J.-B.; Gorju, G.; Pelon, J.; Melkonian, J.-M.; Godard, A.; Raybaut, M. Atmospheric boundary layer CO2 remote sensing with a direct detection LIDAR instrument based on a widely tunable optical parametric source. Opt. Lett. 2017, 42, 4044–4047. [Google Scholar] [CrossRef] [PubMed]
- Shibata, Y.; Nagasawa, C.; Abo, M. Development of 1.6 μm DIAL using an OPG/OPA transmitter for measuring atmospheric CO2 concentration profiles. Appl. Opt. 2017, 56, 1194–1201. [Google Scholar] [CrossRef] [PubMed]
- Veerabuthiran, S.; Razdan, A.K.; Jindal, M.K.; Sharma, R.K.; Sagar, V. Development of 3.0–3.45 nm OPO laser based range resolved and hard-target differential absorption lidar for sensing of atmospheric methane. Opt. Laser Technol. 2015, 73, 1–5. [Google Scholar] [CrossRef]
- Romanovskii, O.A.; Sadovnikov, S.A.; Kharchenko, O.V.; Yakovlev, S.V. Development of Near/Mid IR differential absorption OPO lidar system for sensing of atmospheric gases. Opt. Laser Technol. 2019, 116, 43–47. [Google Scholar] [CrossRef]
- Collis, R.T.H.; Russell, P.B. Lidar Measurement of Particles and Gases by Elastic Backscattering and Differential Absorption. In Laser Monitoring of the Atmosphere; Hinkley, E.D., Ed.; Springer: New York, NY, USA, 1976; pp. 91–180. [Google Scholar]
- Romanovskii, O.A.; Kharchenko, O.V.; Yakovlev, S.V. Methodical Aspects of Lidar Sensing of Trace Gases in Atmosphere by Differential Absorption Method. J. Appl. Spectrosc. 2012, 79, 799–806. [Google Scholar] [CrossRef]
- Matvienko, G.G.; Romanovskii, O.A.; Sadovnikov, S.A.; Sukhanov, A.Y.; Kharchenko, O.V.; Yakovlev, S.V. Study of the possibility of using a parametric-light-generator-based laser system for lidar probing of the composition of the atmosphere. J. Opt. Technol. 2017, 84, 408–414. [Google Scholar] [CrossRef]
- SOLAR LS. Available online: https://solarlaser.com/en (accessed on 10 January 2019).
- Romanovskii, O.A.; Kharchenko, O.V.; Kondratyuk, N.V.; Protasenya, A.L.; Shumskii, V.K.; Sadovnikov, S.A.; Yakovlev, S.V. OPO-laser system for atmospheric sounding in the mid-IR range. In 21st International Symposium Atmospheric and Ocean Optics: Atmospheric Physics; International Society for Optics and Photonics: Bellingham, WA, USA, 2015; Volume 9680, p. 96803V. [Google Scholar] [CrossRef]
- THORLABS. Available online: https://www.thorlabs.com (accessed on 10 January 2019).
- IBSG Co., Ltd. Available online: http://www.ibsg-st-petersburg.com/phd.html (accessed on 10 January 2019).
- National Instruments VISA. Available online: https://www.ni.com/visa (accessed on 10 January 2019).
- Romanovskii, O.A.; Sadovnikov, S.A.; Kharchenko, O.V.; Yakovlev, S.V. Broadband IR lidar for gas analysis of the atmosphere. J. Appl. Spectrosc. 2018, 85, 457–461. [Google Scholar] [CrossRef]
- Gordon, I.E.; Rothman, L.S.; Hill, C.; Kochanov, R.V.; Tan, Y.; Bernath, P.F.; Birk, M.; Boudon, V.; Campargue, A.; Chance, K.V.; et al. The HITRAN2016 Molecular Spectroscopic Database. J. Quant. Spectrosc. Radiat. Transf. 2017, 203, 3–69. [Google Scholar] [CrossRef]
- Davydov, D.K.; Belan, B.D.; Antokhin, P.N.; Antokhina, O.Y.; Antonovich, V.V.; Arshinova, V.G.; Arshinov, M.Y.; Akhlestin, A.Y.; Belan, S.B.; Dudorova, N.V.; et al. Monitoring of Atmospheric Parameters: 25 Years of the Tropospheric Ozone Research Station of the Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences. Atmos. Ocean. Opt. 2019, 32, 180–192. [Google Scholar] [CrossRef]
- TOR (Tropospheric Ozone Research) Station. Available online: http://lop.iao.ru/EN/ (accessed on 1 February 2019).
Parameter | Value |
---|---|
Pulse energy, mJ | 6 |
Pulse frequency, Hz | 10 |
Pulse length, ns | 10–13 |
Spectral linewidth, cm−1 | 1 |
Wavelength tuning control | with 3 step motors |
Radiation divergence, µrad | 200 |
Parameter | Values | |
---|---|---|
Model | MPD00M9-P01 | MPD269-P01 |
Surface material | Aluminum | |
Reflectivity | >96% (λ = 2–20 μm) | |
Diameter | 12.7 mm (1/2″) | 50.8 mm (2″) |
Focal length | 15.0 mm (0.59″) | 152.4 mm (6″) |
Off-axis angle | 90° | 90° |
Wavefront distortion | <λ/4 at 633 nm | <λ/4 at 633 nm |
Parameter | Values |
---|---|
Optical scheme | Cassegrain |
Primary mirror diameter, mm | 300 |
Effective focal length, mm | 1457 |
Field of view, ° | 0.0117 |
Relative aperture | 1:4.85 |
Aberration circle diameter, μm | 70 |
Parameter | Values |
---|---|
Model | PD36-03 |
Material | InAs/InAsSbP |
Spectral range, μm | 1.5–3.8 |
Peak sensitivity wavelength, μm | 2.6–3.4 |
Detectivity, cm·Hz1/2·W−1 | (3–6) × 109 |
Current monochromatic sensititvity, A/W | 1.0–1.2 |
Rise time, ns | 20–120 |
Active area diameter, mm | 0.3 |
Parameter | Values | |
---|---|---|
Model | Rigol 1104Z-S | Acute TS2202E |
Number of analog inputs | 4 | 2 |
Transmission band, MHz | 100 | 200 |
Resolution, bit | 12 | 8 |
Sampling frequency over all channels, Gsample/s | 1 | 1 |
Wavelength, μm | KCH4:N2, cm−1 | KCH4:N2, cm−1 |
---|---|---|
(Air) | (Experiment) | (Calculation) |
3.3460 | 0.011 | 0.011 |
3.3579 | 0.008 | 0.005 |
3.3668 | 0.017 | 0.021 |
3.3895 | 0.009 | 0.012 |
3.4018 | 0.015 | 0.017 |
3.4157 | 0.019 | 0.020 |
3.4177 | 0.005 | 0.002 |
3.4536 | 0.007 | 0.004 |
3.4790 | 0.000 | 0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yakovlev, S.; Sadovnikov, S.; Kharchenko, O.; Kravtsova, N. Remote Sensing of Atmospheric Methane with IR OPO Lidar System. Atmosphere 2020, 11, 70. https://doi.org/10.3390/atmos11010070
Yakovlev S, Sadovnikov S, Kharchenko O, Kravtsova N. Remote Sensing of Atmospheric Methane with IR OPO Lidar System. Atmosphere. 2020; 11(1):70. https://doi.org/10.3390/atmos11010070
Chicago/Turabian StyleYakovlev, Semyon, Sergey Sadovnikov, Olga Kharchenko, and Natalya Kravtsova. 2020. "Remote Sensing of Atmospheric Methane with IR OPO Lidar System" Atmosphere 11, no. 1: 70. https://doi.org/10.3390/atmos11010070
APA StyleYakovlev, S., Sadovnikov, S., Kharchenko, O., & Kravtsova, N. (2020). Remote Sensing of Atmospheric Methane with IR OPO Lidar System. Atmosphere, 11(1), 70. https://doi.org/10.3390/atmos11010070