Diversity of Bioaerosols in Selected Rooms of Two Schools and Antibiotic Resistance of Isolated Staphylococcal Strains (Bydgoszcz, Poland): A Case Study
Abstract
:1. Introduction
- -
- The number of microbial groups is higher in smaller rooms and differs depending on the month of sampling;
- -
- Room temperature affects the concentration of microorganisms;
- -
- Opportunistic multidrug-resistant staphylococci are found in the air of the investigated school rooms.
2. Experiments
2.1. Sampling and Sampling Sites
2.2. Microbial Research
2.3. Statistical Analysis
3. Results
3.1. Concentrations of Bacterial Bioaerosol
3.2. Concentrations of Fungal Bioaerosol
3.3. Predominant Genera of Airborne Fungi
3.4. Concentrations of Mannitol-Positive Staphylococci and Their Identification
3.5. Antimicrobial Resistance of Staphylococci
4. Discussion
4.1. Bacterial Bioaresol Concentration
4.2. Concentrations of Fungal Bioaerosol
4.3. Predominant Genera of Airborne Fungi
4.4. Concentrations of Mannitol-Positive Staphylococci and Their Identification
4.5. Antimicrobial Resistance of Staphylococci
5. Conclusions
- A statistically significant relationship between the size of the rooms and the concentration of heterotrophic bacteria was observed. In both schools, higher microbial concentrations were recorded in smaller rooms (the cafeterias). There were no statistically significant differences in the concentration of molds and staphylococci depending on the sampling site. The average concentrations of these groups of microorganisms was similar in the studied rooms.
- In both schools, only mold concentration significantly depended on the sampling month (p < 0.001), which may be connected with relative humidity.
- The air temperature was similar in all the investigated rooms; therefore, this factor did not significantly affect microbial concentration.
- In the air of the investigated school rooms, Cladosporium and Penicillium species were dominant fungi, which may be related to the use of natural ventilation—i.e., opening the windows—allowing the inflow of these molds from the outside.
- The taxonomic analysis indicated that Staphylococcus aureus dominated among mannitol-positive staphylococci in both schools, while S. xylosus, S. haemolyticus and S. saprophyticus were slightly less abundant. The predominance of the opportunistic Staphylococcus aureus in the air of the studied schools confirms the observation that there are carriers of this bacteria among students.
- Antibiogram patterns of the isolated staphylococcal strains showed their high resistance to erythromycin, while levofloxacin and gentamicin were the most effective antibiotics. No spread of multidrug-resistant staphylococcal strains in the air of the studied schools was observed.
Author Contributions
Funding
Conflicts of Interest
References
- Wolny-Koładka, K.; Malinowski, M.; Pieklik, A.; Kurpaska, S. Microbiological air contamination in university premises and the evaluation of drug resistance of staphylococci occurring in the form of a bioaerosol. Indoor Built Environ. 2017, 28, 235–246. [Google Scholar] [CrossRef]
- Meadow, J.F.; Altrichter, A.E.; Kembel, S.W.; Kline, J.; Mhuireach, G.; Moriyama, M.; Northcutt, D.; O’Connor, T.K.; Womack, A.M.; Brown, G.Z.; et al. Indoor airborne bacterial communities are influenced by ventilation, occupancy, and outdoor air source. Indoor Air 2013, 24, 41–48. [Google Scholar] [CrossRef]
- Brągoszewska, E.; Mainka, A.; Pastuszka, J.S. Bacterial and Fungal Aerosols in Rural Nursery Schools in Southern Poland. Atmosphere 2016, 7, 142. [Google Scholar] [CrossRef] [Green Version]
- Ramos, C.; Wolterbeek, H.; Almeida, S. Exposure to indoor air pollutants during physical activity in fitness centers. Build. Environ. 2014, 82, 349–360. [Google Scholar] [CrossRef]
- Andualem, Z.; Gizaw, Z.; Bogale, L.; Dagne, H. Indoor bacterial load and its correlation to physical indoor air quality parameters in public primary schools. Multidiscip. Respir. Med. 2019, 14, 2. [Google Scholar] [CrossRef] [Green Version]
- Naruka, K.; Gaur, J. Microbial air contamination in a school. Int. J. Curr. Microbiol. App. Sci. 2013, 2, 404–405. [Google Scholar]
- Canha, N.; Almeida, S.; Freitas, M.C.; Täubel, M.; Hänninen, O. Winter Ventilation Rates at Primary Schools: Comparison between Portugal and Finland. J. Toxicol. Environ. Health Part A 2013, 76, 400–408. [Google Scholar] [CrossRef]
- Patelarou, E.; Tzanakis, N.; Kelly, F.J. Exposure to Indoor Pollutants and Wheeze and Asthma Development during Early Childhood. Int. J. Environ. Res. Public Health 2015, 12, 3993–4017. [Google Scholar] [CrossRef] [Green Version]
- Mainka, A.; Zajusz-Zubek, E. Indoor Air Quality in Urban and Rural Preschools in Upper Silesia, Poland: Particulate Matter and Carbon Dioxide. Int. J. Environ. Res. Public Health 2015, 12, 7697–7711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, P.; Du, R.; Lu, Z.; Ren, W.; Fu, P. Variation of Bacterial and Fungal Community Structures in PM2.5 Collected during the 2014 APEC Summit Periods. Aerosol Air Qual. Res. 2018, 18, 444–455. [Google Scholar] [CrossRef]
- Brągoszewska, E.; Biedroń, I.; Kozielska, B.; Pastuszka, J.S. Microbiological indoor air quality in an office building in Gliwice, Poland: Analysis of the case study. Air Qual. Atmos. Health 2018, 11, 729–740. [Google Scholar] [CrossRef] [Green Version]
- Fsadni, P.; Frank, B.; Fsadni, C.; Montefort, S. The Impact of Microbiological Pollutants on School Indoor Air Quality. J. Geosci. Environ. Prot. 2017, 5, 54–65. [Google Scholar] [CrossRef] [Green Version]
- Brągoszewska, E.; Mainka, A.; Pastuszka, J.S.; Lizończyk, K.; Desta, Y.G. Assessment of Bacterial Aerosol in a Preschool, Primary School and High School in Poland. Atmosphere 2018, 9, 87. [Google Scholar] [CrossRef] [Green Version]
- Demirel, G.; Özden, Ö; Döğeroğlu, T.; Gaga, E.O. Personal exposure of primary school children to BTEX, NO2 and ozone in Eskişehir, Turkey: Relationship with indoor/outdoor concentrations and risk assessment. Sci. Total Environ. 2014, 473, 537–548. [Google Scholar] [CrossRef]
- Yoon, C.; Lee, K.; Park, N. Indoor air quality differences between urban and rural preschools in Korea. Environ. Sci. Pollut. Res. 2010, 18, 333–345. [Google Scholar] [CrossRef]
- Labi, A.-K.; Obeng-Nkrumah, N.; Bjerrum, S.; Aryee, N.A.A.; Ofori-Adjei, Y.A.; Yawson, A.E.; Newman, M.J. Physicians’ knowledge, attitudes, and perceptions concerning antibiotic resistance: A survey in a Ghanaian tertiary care hospital. BMC Health Serv. Res. 2018, 18, 126. [Google Scholar] [CrossRef]
- Blaga, A.B. The importance of indoor air quality study in schools. AMT 2016, 21, 19. [Google Scholar]
- Feller, W. An Introduction to the Probability Theory and Its Application; John Wiley & Sons Inc.: New York, NY, USA, 1950. [Google Scholar]
- European Committee on Antimicrobial Susceptibility Testing—EUCAST. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 8.1 2018. 2018. Available online: http://www.eucast.org (accessed on 15 May 2018).
- Samson, R.A.; Hoekstra, E.S.; Frisvad, J.C. Introduction to Food and Airborne Fungi, 7th ed.; Centraalbureau voor Schimmelcultures: Utrecht, The Netherlands, 2004. [Google Scholar]
- Tolabi, Z.; Alimohammadi, M.; Hassanvand, M.S.; Nabizadeh, R.; Soleimani, H.; Zarei, A. The investigation of type and concentration of bio-aerosols in the air of surgical rooms: A case study in Shariati hospital, Karaj. MethodsX 2019, 6, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Brągoszewska, E.; Pastuszka, J.S. Influence of meteorological factors on the level and characteristics of culturable bacteria in the air in Gliwice, Upper Silesia (Poland). Aerobiology 2018, 34, 241–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brągoszewska, E.; Biedroń, I.; Hryb, W. Microbiological Air Quality and Drug Resistance in Airborne Bacteria Isolated from a Waste Sorting Plant Located in Poland―A Case Study. Microorganism 2020, 8, 202. [Google Scholar] [CrossRef] [Green Version]
- Jiayu, C.; Qiaoqiao, R.; Feilong, C.; Chen, L.; Jiguo, W.; Zhendong, W.; Lingyun, C.; Liu, R.; Guoxia, Z. Microbiology Community Structure in Bioaerosols and the Respiratory Diseases. J. Environ. Sci. Public Health 2019, 3, 347–357. [Google Scholar] [CrossRef]
- Brągoszewska, E.; Bogacka, M.; Pikoń, K. Efficiency and Eco-Costs of Air Purifiers in Terms of Improving Microbiological Indoor Air Quality in Dwellings—A Case Study. Atmosphere 2019, 10, 742. [Google Scholar] [CrossRef] [Green Version]
- Moore, M.N. Do airborne biogenic chemicals interact with the PI3K/Akt/mTOR cell signalling pathway to benefit human health and wellbeing in rural and coastal environments? Environ. Res. 2015, 140, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Cincinelli, A.; Martellini, T. Indoor Air Quality and Health. Int. J. Environ. Res. Public Health 2017, 14, 1286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gizaw, Z.; Gebrehiwot, M.; Yenew, C. High bacterial load of indoor air in hospital wards: The case of University of Gondar teaching hospital, Northwest Ethiopia. Multidiscip. Respir. Med. 2016, 11, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madureira, J.; Aguiar, L.; Pereira, C.C.; Mendes, A.; Querido, M.; Neves, P.; Teixeira, J.P. Indoor exposure to bioaerosol particles: Levels and implications for inhalation dose rates in schoolchildren. Air Qual. Atmos. Health 2018, 11, 955–964. [Google Scholar] [CrossRef]
- Mainka, A.; Brągoszewska, E.; Kozielska, B.; Pastuszka, J.S.; Zajusz-Zubek, E. Indoor air quality in urban nursery schools in Gliwice, Poland: Analysis of the case study. Atmos. Pollut. Res. 2015, 6, 1098–1104. [Google Scholar] [CrossRef]
- Madureira, J.; Paciência, I.; Fernandes, E.D.O. Levels and Indoor–Outdoor Relationships of Size-Specific Particulate Matter in Naturally Ventilated Portuguese Schools. J. Toxicol. Environ. Health Part A 2012, 75, 1423–1436. [Google Scholar] [CrossRef]
- Yang, J.; Nam, I.; Yun, H.; Kim, J.; Oh, H.-J.; Lee, D.; Jeon, S.-M.; Yoo, S.-H.; Sohn, J.-R. Characteristics of indoor air quality at urban elementary schools in Seoul, Korea: Assessment of effect of surrounding environments. Atmos. Pollut. Res. 2015, 6, 1113–1122. [Google Scholar] [CrossRef]
- Sheik, G.B.; Ismail, A.; Abd, A.; Rheam, A.; Saad, Z.; Shehri, A.; Bin, O.; Al, M. Assessment of Bacteria and Fungi in air from College of Applied Medical Sciences (Male) at AD-Dawadmi, Saudi Arabia. Int. J. Sci. Technol. Res. 2015, 4, 48–53. [Google Scholar]
- Kallawicha, K.; Chao, H.J.; Kotchasatan, N. Bioaerosol levels and the indoor air quality of laboratories in Bangkok metropolis. Aerobiologia 2018, 35, 1–14. [Google Scholar] [CrossRef]
- Dumała, S.M.; Dudzińska, M.R. Microbiological indoor air quality in Polish schools. Annu. Set Environ. Prot. 2013, 15, 231–244. [Google Scholar]
- Al-Mijalli, S.H.S. Bacterial Contamination of Indoor Air in Schools of Riyadh, Saudi Arabia. Air Water Borne Dis. 2017, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Fang, Z.; Guo, W.; Zhang, J.; Lou, X. Influence of Heat Events on the Composition of Airborne Bacterial Communities in Urban Ecosystems. Int. J. Environ. Res. Public Health 2018, 15, 2295. [Google Scholar] [CrossRef] [Green Version]
- Mentese, S.; Rad, A.Y.; Arısoy, M.; Güllü, G. Seasonal and Spatial Variations of Bioaerosols in Indoor Urban Environments, Ankara, Turkey. Indoor Built Environ. 2011, 21, 797–810. [Google Scholar] [CrossRef]
- Womack, A.M.; Bohannan, B.J.M.; Green, J.L. Biodiversity and biogeography of the atmosphere. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 3645–3653. [Google Scholar] [CrossRef] [Green Version]
- Bowers, R.M.; McCubbin, I.B.; Hallar, A.G.; Fierer, N. Seasonal variability in airborne bacterial communities at a high-elevation site. Atmos. Environ. 2012, 50, 41–49. [Google Scholar] [CrossRef]
- Pallabi, P. Review on Common Microbiological Contamination Found in Hospital Air. J. Microbiol. Pathol. 2018, 2, 103. [Google Scholar]
- Kalwasińska, A.; Burkowska, A.; Wilk, I. Microbial air contamination in indoor environment of a university library. Ann. Agric. Environ. Med. 2012, 19, 25–29. [Google Scholar]
- Mentese, S.; Arısoy, M.; Rad, A.Y.; Güllü, G.; Arisoy, M. Bacteria and Fungi Levels in Various Indoor and Outdoor Environments in Ankara, Turkey. Clean Soil Air Water 2009, 37, 487–493. [Google Scholar] [CrossRef]
- Kobza, J.; Pastuszka, J.S.; Brągoszewska, E. Do exposures to aerosols pose a risk to dental professionals? Occup. Med. 2018, 68, 454–458. [Google Scholar] [CrossRef] [Green Version]
- Twaroch, T.E.; Curin, M.; Valenta, R.; Swoboda, I. Mold Allergens in Respiratory Allergy: From Structure to Therapy. Allergy Asthma Immunol. Res. 2015, 7, 205–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crameri, R.; Garbani, M.; Rhyner, C.; Huitema, C. Fungi: The neglected allergenic sources. Allergy 2013, 69, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Pusz, W.; Kita, W.; Weber, R. Microhabitat Influences the Occurrence of Airborne Fungi in Copper Mine in Poland. J. Cave Karst Stud. 2014, 76, 14–19. [Google Scholar] [CrossRef]
- Almaguer, M.; Aira, M.J.; Rodríguez-Rajo, F.J.; Fernández-González, M.; Rojas-Flores, T.I. Thirty-four identifiable airborne fungal spores in Havana, Cuba. Ann. Agric. Environ. Med. 2015, 22, 215–220. [Google Scholar] [CrossRef]
- Khan, M.; Perveen, A.; Qaiser, M. Seasonal and diurnal variation of atmospheric fungal spore concentrations in Hyderabad, Tandojam-Sindh and the effects of climatic conditions. Pak. J. Bot. 2016, 48, 1657–1663. [Google Scholar]
- Antón, S.F.; De La Cruz, D.R.; Sánchez, J.S.; Reyes, E.S. Analysis of the airborne fungal spores present in the atmosphere of Salamanca (MW Spain): A preliminary survey. Aerobiologia 2019, 35, 447–462. [Google Scholar] [CrossRef]
- Madureira, J.; Paciência, I.; Rufo, J.C.; Pereira, C.; Teixeira, J.P.; Fernandes, E.D.O. Assessment and determinants of airborne bacterial and fungal concentrations in different indoor environments: Homes, child day-care centres, primary schools and elderly care centres. Atmos. Environ. 2015, 109, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Viegas, C.; Alves, C.; Carolino, E.; Rosado, L.; Santos, C.S. Prevalence of Fungi in Indoor Air with Reference to Gymnasiums with Swimming Pools. Indoor Built Environ. 2010, 19, 555–561. [Google Scholar] [CrossRef]
- Verde, S.C.; Almeida, S.; Matos, J.; Guerreiro, D.; Meneses, M.; Faria, T.; Botelho, D.; Santos, M.; Viegas, C. Microbiological assessment of indoor air quality at different hospital sites. Res. Microbiol. 2015, 166, 557–563. [Google Scholar] [CrossRef]
- Cabral, J.P.S. Can we use indoor fungi as bioindicators of indoor air quality? Historical perspectives and open questions. Sci. Total Environ. 2010, 408, 4285–4295. [Google Scholar] [CrossRef]
- Tršan, M.; Seme, K.; Srčič, S. The environmental monitoring in hospital pharmacy cleanroom and microbiota catalogue preparation. Saudi Pharm. J. 2019, 27, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Boada, A.; Pons-Vigués, M.; Real, J.; Grezner, E.; Bolíbar, B.; Llor, C. Previous antibiotic exposure and antibiotic resistance of commensal Staphylococcus aureus in Spanish primary care. Eur. J. Gen. Pract. 2018, 24, 125–130. [Google Scholar] [CrossRef] [Green Version]
- Giwa, H.J.; Ogunjobi, A.A. Prevalence of multiple antibiotic resistant bacteria in selected libraries of University of Ibadan, Nigeria. J. Am. Sci. 2017, 13, 18–25. [Google Scholar] [CrossRef]
- Brągoszewska, E.; Biedroń, I.; Mainka, A. Microbiological Air Quality in a Highschool Gym Located in an Urban Area of Southern Poland—Preliminary Research. Atmosphere 2020, 11, 797. [Google Scholar] [CrossRef]
- Peterson, E.; Kaur, P. Antibiotic Resistance Mechanisms in Bacteria: Relationships Between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens. Front. Microbiol. 2018, 9, 2928. [Google Scholar] [CrossRef]
- WHO—World Health Organization. Antimicrobial Resistance Global Report on Surveillance; World Health Organizations: Geneva, Switzerland, 2014. [Google Scholar]
- Alhomoud, F.; Almahasnah, R.; Alhomoud, F.K. “You could lose when you misuse”—Factors affecting over-the-counter sale of antibiotics in community pharmacies in Saudi Arabia: A qualitative study. BMC Health Serv. Res. 2018, 18, 915. [Google Scholar] [CrossRef]
- Lenart-Boron, A.; Wolny-Koładka, K.; Juraszek, K.; Kasprowicz, A. Phenotypic and molecular assessment of antimicrobial resistance profile of airborne Staphylococcus spp. isolated from flats in Kraków. Aerobiologia 2017, 33, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Nahaei, M.R.; Shahmohammadi, M.R.; Ebrahimi, S.; Milani, M. Detection of Methicillin-Resistant Coagulase-Negative Staphylococci and Surveillance of Antibacterial Resistance in a Multi-Center Study from Iran. Jundishapur J. Microbiol. 2015, 8, e19945. [Google Scholar] [CrossRef] [Green Version]
- Brągoszewska, E.; Biedroń, I. Indoor Air Quality and Potential Health Risk Impacts of Exposure to Antibiotic Resistant Bacteria in an Office Rooms in Southern Poland. Int. J. Environ. Res. Public Health 2018, 15, 2604. [Google Scholar] [CrossRef] [Green Version]
- Palmer, A.; Chait, R.; Kishony, R. Nonoptimal Gene Expression Creates Latent Potential for Antibiotic Resistance. Mol. Biol. Evol. 2018, 35, 2669–2684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aslam, B.; Wang, W.; Arshad, M.I.; Khurshid, M.; Muzammil, S.; Rasool, M.H.; Nisar, M.A.; Alvi, R.F.; Aslam, M.A.; Qamar, M.U.; et al. Antibiotic resistance: A rundown of a global crisis. Infect. Drug Resist. 2018, 11, 1645–1658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horumpende, P.G.; Sonda, T.B.; Van Zwetselaar, M.; Antony, M.L.; Tenu, F.F.; Mwanziva, C.E.; Shao, E.R.; Mshana, S.E.; Mmbaga, B.T.; Chilongola, J.O. Prescription and non-prescription antibiotic dispensing practices in part I and part II pharmacies in Moshi Municipality, Kilimanjaro Region in Tanzania: A simulated clients approach. PLoS ONE 2018, 13, e0207465. [Google Scholar] [CrossRef] [Green Version]
- Małecka-Adamowicz, M.; Kubera, Ł.; Jankowiak, E.; Dembowska, E. Microbial diversity of bioaerosol inside sports facilities and antibiotic resistance of isolated Staphylococcus spp. Aerobiologia 2019, 35, 731–742. [Google Scholar] [CrossRef] [Green Version]
- May, L.; Klein, E.Y.; Rothman, R.E.; Laxminarayan, R. Trends in Antibiotic Resistance in Coagulase-Negative Staphylococci in the United States, 1999 to 2012. Antimicrob. Agents Chemother. 2013, 58, 1404–1409. [Google Scholar] [CrossRef] [Green Version]
- León, M.G.F.-D.; Duarte-Escalante, E.; Calderón-Ezquerro, M.D.C.; Jiménez-Martínez, M.D.C.; Acosta-Altamirano, G.; Moreno-Eutimio, M.A.; Zúñiga, G.; García-González, R.; Ramírez-Pérez, M.; Reyes-Montes, M.D.R. Diversity and characterization of airborne bacteria at two health institutions. Aerobiologia 2015, 32, 187–198. [Google Scholar] [CrossRef]
- Lenart-Boron, A.; Wolny-Koładka, K.; Stec, J.; Kasprowic, A. Phenotypic and Molecular Antibiotic Resistance Determination of Airborne Coagulase Negative Staphylococcus spp. Strains from Healthcare Facilities in Southern Poland. Microb. Drug Resist. 2016, 22, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Mirhoseini, S.H.; Nikaeen, M.; Satoh, K.; Makimura, K. Assessment of Airborne Particles in Indoor Environments: Applicability of Particle Counting for Prediction of Bioaerosol Concentrations. Aerosol Air Qual. Res. 2016, 16, 1903–1910. [Google Scholar] [CrossRef]
- D’Arcy, N.; Canales, M.; Spratt, D.A.; Lai, K.M. Healthy schools: Standardisation of culturing methods for seeking airborne pathogens in bioaerosols emitted from human sources. Aerobiologia 2012, 28, 413–422. [Google Scholar] [CrossRef]
School Characteristics | School A | School B | ||||
School location | 53°07′37.3″ N 18°00′23.6″ E | 53°06′38.1″ N 18°02′53.3″ E | ||||
Year of construction | 1878 | 1955 | ||||
Floor covering | Vinyl PCV, tiles | Vinyl PCV, tiles | ||||
Number of children | 760 | 600 | ||||
Age of children | 14–19 | 14–19 | ||||
Sampling Site Characteristics | School A | School B | ||||
Classroom | Library | Cafeteria | Classroom | Library | Cafeteria | |
Sampling site location | Ground floor | First floor | Ground floor | Ground floor | Basement | Ground floor |
Ventilation system | Natural | Natural | Natural, gravity | Natural | Natural | Natural, gravity |
Surface area, m2 | 45 | 83 | 14 | 48 | 72 | 20 |
Indoor temperature, °C (average) | 23 | 22 | 23 | 22 | 22 | 22 |
Sampling Sites | Month of Sampling | M ± SD | ||||||
---|---|---|---|---|---|---|---|---|
September | October | November | December | January | February | |||
I—classroom | 1607 | 1357 | 1266 | 546 | 219 | 93 | 848 ± 643 | |
School A | II—library | 430 | 480 | 1050 | 333 | 520 | 133 | 491 ± 307 |
III—cafeteria | 2120 | 3047 | 3593 | 1397 | 527 | 620 | 1884 ± 1265 | |
M ± SD | 1386 ± 866 | 1628 ± 1305 | 1970 ± 1410 | 759 ± 563 | 422 ± 176 | 282 ± 293 | ||
IV—classroom | 347 | 1613 | 2776 | 2762 | 899 | 1949 | 1724 ± 982 | |
School B | V—library | 387 | 2143 | 190 | 393 | 160 | 150 | 571 ± 778 |
VI—cafeteria | 373 | 880 | 3077 | 4080 | 6070 | 2353 | 1906 ± 1499 | |
M ± SD | 625 ± 189 | 1545 ± 634 | 2014 ± 1587 | 2412 ± 1868 | 576 ± 378 | 1484 ± 1173 |
Microorganisms | F | p | Differences | F | p | Differences | |
---|---|---|---|---|---|---|---|
Sampling Sites | Month of Sampling | ||||||
School A | Heterotrophic bacteria | 4.47 | 0.030 | II:III * | 1.74 | 0.2 | ns |
Fungi | 0.02 | 0.984 | ns | 23.43 | <0.001 | S:D **; S:J **; S:F *;O:D ***; O:J ***; O:F ***; N:D **, N:J **; N:F ** | |
Staphylococci | 1.31 | 0.299 | ns | 1.57 | 0.242 | ns | |
School B | Heterotrophic bacteria | 4.59 | 0.028 | V:IV *; VI:IV * | 1.22 | 0.358 | ns |
Fungi | 0.12 | 0.889 | ns | 13.66 | <0.001 | S:D *; S:J **; S:F **; O:D *; O:J **; O:F **; N:J * | |
Staphylococci | 1.57 | 0.241 | ns | 1.59 | 0.236 | ns |
Sampling Sites | Month of Sampling | M ± SD | ||||||
---|---|---|---|---|---|---|---|---|
September | October | November | December | January | February | |||
I—classroom | 283 | 297 | 230 | 30 | 13 | 113 | 161 ± 126 | |
School A | II—library | 220 | 460 | 290 | 40 | 3 | 37 | 175 ± 181 |
III—cafeteria | 263 | 283 | 270 | 80 | 27 | 107 | 172 ± 113 | |
M ± SD | 255 ± 32 | 347 ± 98 | 263 ± 31 | 50 ± 26 | 14 ± 12 | 86 ± 42 | ||
IV—classroom | 487 | 457 | 380 | 297 | 37 | 97 | 293 ± 188 | |
School B | V—library | 840 | 690 | 310 | 57 | 37 | 117 | 342 ± 345 |
VI—cafeteria | 547 | 660 | 483 | 310 | 56 | 137 | 366 ± 239 | |
M ± SD | 625 ± 189 | 602 ± 127 | 391 ± 87 | 221 ± 142 | 43 ± 11 | 117 ± 20 |
Sampling Sites | Month of Sampling | M ± SD | ||||||
---|---|---|---|---|---|---|---|---|
September | October | November | December | January | February | |||
I—classroom | 10 | 13 | 10 | 3 | 0 | 6 | 7 ± 5 | |
School A | II—library | 6 | 10 | 3 | 6 | 3 | 10 | 6 ± 3 |
III—cafeteria | 3 | 16 | 13 | 6 | 13 | 10 | 10 ± 5 | |
M ± SD | 6 ± 3 | 13 ± 3 | 9 ± 5 | 5 ± 2 | 5 ± 7 | 9 ± 2 | ||
IV—classroom | 3 | 10 | 0 | 10 | 13 | 3 | 7 ± 5 | |
School B | V—library | 13 | 16 | 3 | 13 | 6 | 6 | 10 ± 5 |
VI—cafeteria | 0 | 16 | 13 | 13 | 13 | 13 | 11 ± 6 | |
M ± SD | 5 ± 7 | 14 ± 3 | 5 ± 7 | 12 ± 2 | 11 ± 4 | 7 ± 5 |
Phylum | Class | Order | Family | Genus/Species | Percentage | |
---|---|---|---|---|---|---|
School A | School B | |||||
Firmicutes | Bacilli | Bacillales | Staphylococcaceae | Staphylococcus haemolyticus | 17% | 8% |
Staphylococcus aureus | 26% | 43% | ||||
Staphylococcus cohnii spp. cohnii | 8% | 0% | ||||
Staphylococcus chromogenes | 8% | 0% | ||||
Staphylococcus lentus | 8% | 0% | ||||
Staphylococcus saprophyticus | 8% | 25% | ||||
Staphylococcus xylosus | 25% | 16% | ||||
Staphylococcus capities | 0% | 8% |
No. | Species | Antibiotic Resistance | |||||||
---|---|---|---|---|---|---|---|---|---|
P1 | E15 | RD5 | CN10 | FOX30 | TE30 | C30 | LEV5 | ||
1. | S. saprophyticus | R | - | - | - | - | - | - | |
2. | S. saprophyticus | R | - | - | - | - | - | - | |
3. | S. saprophyticus | R | - | - | - | - | R | - | |
4. | S. saprophyticus | R | - | - | - | - | - | - | |
5. | S. xylosus | R | - | - | - | - | - | - | |
6. | S. xylosus | - | - | - | - | - | - | - | |
7. | S. xylosus | R | - | - | - | - | - | - | |
8. | S. xylosus | R | - | - | - | - | - | - | |
9. | S.xylosus | R | - | - | - | - | - | - | |
10. | S. haemolyticus | - | - | - | R | - | - | - | |
11. | S. haemolyticus | - | - | - | R | - | - | - | |
12. | S. haemolyticus | R | - | - | R | - | - | - | |
13. | S. aureus | R | - | - | - | - | R | - | - |
14. | S. aureus | R | - | - | - | - | R | - | - |
15. | S. aureus | R | - | - | - | - | R | - | - |
16. | S. aureus | R | R | - | - | - | - | - | - |
17. | S. aureus | R | R | - | - | - | - | - | - |
18. | S. aureus | R | - | - | - | R | R | - | - |
19. | S. aureus | R | - | - | - | - | - | - | - |
20. | S. aureus | R | - | - | - | - | R | - | - |
21. | S.cohnii spp. cohnii | R | - | - | R | - | R | - | |
22. | S. chromogenes | R | - | - | - | - | - | - | |
23. | S. lentus | R | R | - | R | - | - | - | |
24. | S. capitis | R | - | - | - | - | - | - | |
Percent of resistance | 100% | 62.5% | 4.2% | 0% | 25.0% | 20.8% | 8.3% | 0% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Małecka-Adamowicz, M.; Koim-Puchowska, B.; Dembowska, E.A. Diversity of Bioaerosols in Selected Rooms of Two Schools and Antibiotic Resistance of Isolated Staphylococcal Strains (Bydgoszcz, Poland): A Case Study. Atmosphere 2020, 11, 1105. https://doi.org/10.3390/atmos11101105
Małecka-Adamowicz M, Koim-Puchowska B, Dembowska EA. Diversity of Bioaerosols in Selected Rooms of Two Schools and Antibiotic Resistance of Isolated Staphylococcal Strains (Bydgoszcz, Poland): A Case Study. Atmosphere. 2020; 11(10):1105. https://doi.org/10.3390/atmos11101105
Chicago/Turabian StyleMałecka-Adamowicz, Marta, Beata Koim-Puchowska, and Ewa A. Dembowska. 2020. "Diversity of Bioaerosols in Selected Rooms of Two Schools and Antibiotic Resistance of Isolated Staphylococcal Strains (Bydgoszcz, Poland): A Case Study" Atmosphere 11, no. 10: 1105. https://doi.org/10.3390/atmos11101105
APA StyleMałecka-Adamowicz, M., Koim-Puchowska, B., & Dembowska, E. A. (2020). Diversity of Bioaerosols in Selected Rooms of Two Schools and Antibiotic Resistance of Isolated Staphylococcal Strains (Bydgoszcz, Poland): A Case Study. Atmosphere, 11(10), 1105. https://doi.org/10.3390/atmos11101105