Simulation Analysis on the Optimal Imaging Detection Wavelength of SO2 Concentration in Ship Exhaust
Abstract
:1. Introduction
2. Methodology
2.1. Simulation Scheme
2.1.1. Simulation Analysis Model
2.1.2. Simulation Parameter Selection
2.2. Experimental Design
2.2.1. Experimental Diesel Engine
2.2.2. Marine Fuel
2.2.3. Working Condition of the Diesel Engine
3. Results and Discussion
3.1. Bench Experiment Results
3.2. Single-Wavelength Simulation Analysis Results
3.3. Dual-Wavelength Simulation Analysis Results
3.4. Calculation Results of the Sulfur Content
3.5. Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhou, F.; Gu, J.; Chen, W.; Ni, X. Measurement of SO2 and NO2 in ship plumes using rotary unmanned aerial system. Atmosphere 2019, 10, 657. [Google Scholar] [CrossRef] [Green Version]
- IMO. Sulphur Oxides (SOx) and Particulate Matter (PM)—Regulation 14. Available online: http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Pages/Sulphur-oxides-(SOx)-%E2%80%93-Regulation-14.aspx (accessed on 26 October 2019).
- Sinha, P.; Hobbs, P.V.; Yokelson, R.J.; Christian, T.J.; Kirchstetter, T.W.; Bruintjes, R. Emissions of trace gases and particles from two ships in the southern Atlantic Ocean. Atmos. Environ. 2003, 37, 2139–2148. [Google Scholar] [CrossRef]
- Chen, G.; Huey, L.G.; Trainer, M.; Nicks, D.; Corbett, J.; Ryerson, T.; Ryerson, T.; Parrish, D.; Neuman, J.A.; Nowak, J.M.; et al. An investigation of the chemistry of ship emission plumes during ITCT 2002. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Mellqvist, J.; Berg, N.; Ohlsson, D. Remote surveillance of the sulfur content and NOx emissions of ships. In Proceedings of the 2nd International Conference on Harbor, Air Quality and Climate Changes (HAQCC), Rotterdam, The Netherlands, 29–30 May 2008. [Google Scholar]
- Alfoeldy, B.; Loeoev, J.B.; Lagler, F.; Mellqvist, J.; Berg, N.; Beecken, J.; Weststrate, H.; Duyzer, J.; Bencs, L.; Horemans, B.; et al. Measurements of air pollution emission factors for marine transportation in SECA. Atmos. Meas. Tech. 2013, 6, 1777–1791. [Google Scholar] [CrossRef] [Green Version]
- Beecken, J.; Mellqvist, J.; Salo, K.; Ekholm, J.; Jalkanen, J.-P. Airborne emission measurements of SO2, NOx and particles from individual ships using sniffer technique. Atmos. Meas. Tech. 2013, 7, 1957–1968. [Google Scholar] [CrossRef]
- Loov, J.M.B.; Alfoldy, B.; Gast, L.F.L.; Hjorth, J.; Lagler, F.; Mellqvist, J.; Beecken, J.; Berg, N.; Duyzer, J.; Westrate, H.; et al. Field test of available methods to measure remotely SOx and NOx emissions from ships. Atmos. Meas. Tech. 2014, 7, 2597–2613. [Google Scholar] [CrossRef] [Green Version]
- Volten, H.; Brinksma, E.J.; Berkhout, A.J.C.; Hains, J.; Bergwerff, J.B.; Van der Hoff, G.R.; Apituley, A.; Dirksen, R.J.; Calabretta-Jongen, S.; Swart, D.P.J. NO2 lidar profile measurements for satellite interpretation and validation. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Platt, U.; Perner, D.; Pätz, H.W. Simultaneous measurement of atmospheric CH2O, O3, and NO2 by differential optical absorption. J. Geophys. Res. 1979, 84, 6329–6335. [Google Scholar] [CrossRef]
- Merico, E.; Donateo, A.; Gambaro, A.; Cesari, D.; Gregoris, E.; Barbaro, E.; Dinoi, A.; Giovanelli, G.; Masieri, S.; Contini, D. Influence of in-port ships emissions to gaseous atmospheric pollutants and to particulate matter of different sizes in a Mediterranean harbor in Italy. Atmos. Environ. 2016, 139, 1–10. [Google Scholar] [CrossRef]
- Prata, A.J. Measuring SO2 ship emissions with an ultraviolet imaging camera. Atmos. Meas. Tech. 2014, 7, 1213–1229. [Google Scholar] [CrossRef] [Green Version]
- Campion, R.; Martinez-Cruz, M.; Lecocq, T.; Caudron, C.; Pacheco, J.; Pinardi, G.; Hermans, C.; Carn, S.; Bernard, A. Space-and ground-based measurements of sulphur dioxide emissions from Turrialba Volcano (Costa Rica). Bull. Volcanol. 2012, 74, 1757–1770. [Google Scholar] [CrossRef]
- Kern, C.; Kick, F.; Luebeck, P.; Vogel, L.; Woehrbach, M.; Platt, U. Theoretical description of functionality, applications, and limitations of SO2 cameras for the remote sensing of volcanic plumes. Atmos. Meas. Tech. 2010, 3, 733–749. [Google Scholar] [CrossRef] [Green Version]
- Kantzas, E.P.; McGonigle, A.J.S.; Tamburello, G.; Aiuppa, A.; Bryant, R.G. Protocols for UV camera volcanic SO2 measurements. J. Volcanol. Geother. Res. 2010, 194, 55–60. [Google Scholar] [CrossRef] [Green Version]
- Campion, R.; Delgado-Granados, H.; Legrand, D.; Taquet, N.; Boulesteix, T.; Pedraza-Espitia, S.; Lecocq, T. Breathing and coughing: The extraordinarily high degassing of Popocatépetl volcano investigated with an SO2 camera. Front. Earth Sci. 2018, 6, 163. [Google Scholar] [CrossRef]
- Buffaloe, G.M.; Lack, D.A.; Williams, E.J.; Coffman, D.; Hayden, K.L.; Lerner, B.M.; Li, S.M.; Nuaaman, I.; Massoli, P.; Onasch, T.B.; et al. Black carbon emissions from in-use ships: A California regional assessment. Atmos. Chem. Phys. 2014, 14, 1881–1896. [Google Scholar] [CrossRef] [Green Version]
- Reilly, D.M.; Moriarty, D.T.; Maynard, J.A. Unique properties of solar blind ultraviolet communication systems for unattended ground sensor networks. In Proceedings of the SPIE—The International Society for Optical Engineering, Beijing, China, 8 November 2004; pp. 244–254. [Google Scholar]
- Johan, R.; Conde, V.; Beecken, J.; Ekholm, J. Certification of An Aircraft and Airborne Surveillance of Fuel Sulfur Content in Ships at the SECA Border; Department of Earth and Space Sciences, Chalmers University of Technology: Göteborg, Sweden, 2017. [Google Scholar]
- Luebcke, P.; Bobrowski, N.; Illing, S.; Kern, C.; Nieves, J.M.A.; Vogel, L.; Zielcke, J.; Granados, H.D.; Platt, U. On the absolute calibration of SO2 cameras. Atmos. Measur. Tech. 2013, 6, 6183–6420. [Google Scholar] [CrossRef] [Green Version]
- Gordon, I.E.; Rothman, L.S.; Hill, C.; Kochanov, R.V.; Tan, Y.; Bernath, P.F.; Birk, M.; Boudon, V.; Campargue, A.; Chance, K.V.; et al. The HITRAN 2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Trans. 2017, 203, 3–69. [Google Scholar] [CrossRef]
- Cooper, D.; Gustafsson, T. Methodology for Calculating Emissions from Ships: 1. Update of Emission Factors; Swedish Methodology for Environmental Data: Uppsala, Sweden, 2004. [Google Scholar]
- Smith, T.; Jalkanen, J.P.; Anderson, B.A.; Corbett, J.J.; Pandey. Third IMO GHG Study 2014: Executive Summary and Final Report; International Maritime Organization (IMO): London, UK, 2014. [Google Scholar]
- Winnes, H.; Fridell, E. Emissions of NOx and particles from manoeuvring ships. Transp. Res. Part D Trans. Environ. 2010, 15, 204–211. [Google Scholar] [CrossRef]
- Winnes, H.; Fridell, E. Particle emissions from ships: Dependence on fuel type. J. Air Waste Manag. Assoc. 2009, 59, 1391–1398. [Google Scholar] [CrossRef]
- Cooper, D.A. HCB, PCB, PCDD and PCDF emissions from ships. Atmos. Environ. 2005, 39, 4901–4912. [Google Scholar] [CrossRef]
- Kern, C.; Deutschmann, T.; Vogel, L.; Wöhrbach, M.; Wagner, T.; Platt, U. Radiative transfer corrections for accurate spectroscopic measurements of volcanic gas emissions. Bull. Volcanol. 2013, 72, 233–247. [Google Scholar] [CrossRef]
Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
Power Percentage (%) | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 40 | 50 | 60 | 80 | 90 | 100 |
RMSE (molecules/cm3) | MAE (molecules/cm3) | MAPE (%) | |
---|---|---|---|
297 nm and 298 nm | 0.62 | 0.49 | 0.85 |
310 nm and 330 nm | 85.39 | 75.93 | 123.83 |
True Sulfur Content | Sulfur Content (287 nm) | Error at 287 nm (%) | Sulfur Content (297 and 298 nm) | Error at 297 and 298 nm (%) |
---|---|---|---|---|
2.00 | 3.14 | 57.00 | 2.30 | 15.00 |
1.50 | 2.36 | 57.33 | 1.69 | 12.67 |
0.80 | 1.31 | 63.75 | 0.83 | 3.75 |
0.50 | 1.25 | 150.00 | 0.45 | 10.00 |
0.30 | 0.92 | 206.67 | 0.31 | 3.33 |
0.10 | 0.41 | 310.00 | 0.10 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Zheng, W.; Cao, K.; Li, Y.; Xie, M. Simulation Analysis on the Optimal Imaging Detection Wavelength of SO2 Concentration in Ship Exhaust. Atmosphere 2020, 11, 1119. https://doi.org/10.3390/atmos11101119
Zhang Z, Zheng W, Cao K, Li Y, Xie M. Simulation Analysis on the Optimal Imaging Detection Wavelength of SO2 Concentration in Ship Exhaust. Atmosphere. 2020; 11(10):1119. https://doi.org/10.3390/atmos11101119
Chicago/Turabian StyleZhang, Zhenduo, Wenbo Zheng, Kai Cao, Ying Li, and Ming Xie. 2020. "Simulation Analysis on the Optimal Imaging Detection Wavelength of SO2 Concentration in Ship Exhaust" Atmosphere 11, no. 10: 1119. https://doi.org/10.3390/atmos11101119
APA StyleZhang, Z., Zheng, W., Cao, K., Li, Y., & Xie, M. (2020). Simulation Analysis on the Optimal Imaging Detection Wavelength of SO2 Concentration in Ship Exhaust. Atmosphere, 11(10), 1119. https://doi.org/10.3390/atmos11101119