Effect of High-Temperature Events When Heading into the Maturity Period on Summer Maize (Zea mays L.) Yield in the Huang-Huai-Hai Region, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Data Sources
2.3. Data Analysis
2.3.1. High-Temperature Event Indices
2.3.2. The Impact of High-Temperature Events on Summer Maize Yield
3. Results
3.1. Variation Trends of Temperature, Precipitation, and Yield from Heading to Maturity
3.2. Variation Trends of HTH and HTD during the Heading to Maturity Period
3.3. Impacts of HTH and HTD Changes on Summer Maize Yield from Heading to Maturity
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- IPCC. Summary for Policymakers. In Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V.P., Zhai, H.-O., Pörtner, D., Roberts, J., Skea, P.R., Shukla, A., Pirani, W., Moufouma-Okia, C., Péan, R., Pidcock, S., et al., Eds.; World Meteorological Organization: Geneva, Switzerland, 2018; p. 7. [Google Scholar]
- Pfleiderer, P.; Schleussner, C.; Kornhuber, K.; Coumou, D. Summer weather becomes more persistent in a 2 degrees C world. Nat. Clim. Chang. 2019, 9, 666. [Google Scholar]
- Sun, X.; Long, Z.; Song, G.; Chen, C. High-Temperature Episodes with Spatial-Temporal Variation Impacted Middle-Season Rice Yield in China. Agron. J. 2018, 110, 961–969. [Google Scholar] [CrossRef]
- Djanaguiraman, M.; Perumal, R.; Ciampitti, I.; Gupta, S.; Prasad, P.V.V. Quantifying pearl millet response to high temperature stress: Thresholds, sensitive stages, genetic variability and relative sensitivity of pollen and pistil. Plant Cell Environ. 2017, 41, 993–1007. [Google Scholar] [CrossRef] [Green Version]
- Farooq, M.; Bramley, H.; Palta, J.A.; Siddique, K.H. Heat Stress in Wheat during Reproductive and Grain-Filling Phases. Crit. Rev. Plant Sci. 2011, 30, 491–507. [Google Scholar] [CrossRef]
- Porter, J.R.; Semenov, M.A. Crop responses to climatic variation. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 2021–2035. [Google Scholar] [CrossRef]
- Singh, V.; Nguyen, C.T.; Van Oosterom, E.J.; Chapman, S.C.; Jordan, D.R.; Hammer, G.L. Sorghum genotypes differ in high temperature responses for seed set. Field Crop. Res. 2015, 171, 32–40. [Google Scholar] [CrossRef]
- Begcy, K.; Nosenko, T.; Zhou, L.-Z.; Fragner, L.; Weckwerth, W.; Dresselhaus, T. Male Sterility in Maize after Transient Heat Stress during the Tetrad Stage of Pollen Development. Plant Physiol. 2019, 181, 683–700. [Google Scholar] [CrossRef] [Green Version]
- Djanaguiraman, M.; Narayanan, S.; Erdayani, E.; Prasad, P. Effects of high temperature stress during anthesis and grain filling periods on photosynthesis, lipids and grain yield in wheat. BMC Plant Biol. 2020, 20. [Google Scholar] [CrossRef]
- Zhang, C.; Li, G.; Chen, T.; Feng, B.; Fu, G.; Yan, J.; Islam, M.R.; Jin, Q.; Tao, L.; Fu, G. Heat stress induces spikelet sterility in rice at anthesis through inhibition of pollen tube elongation interfering with auxin homeostasis in pollinated pistils. Rice 2018, 11. [Google Scholar] [CrossRef]
- Wu, C.; Cui, K.; Tang, S.; Li, G.; Wang, S.; Fahad, S.; Nie, L.; Huang, J.; Peng, S.; Ding, Y. Intensified pollination and fertilization ameliorate heat injury in rice (Oryza sativa L.) during the flowering stage. Field Crop. Res. 2020, 252. [Google Scholar] [CrossRef]
- Barkley, A.P.; Tack, J.; Nalley, L.L.; Bergtold, J.; Bowden, R.; Fritz, A. Weather, Disease, and Wheat Breeding Effects on Kansas Wheat Varietal Yields, 1985 to 2011. Agron. J. 2014, 106, 227–235. [Google Scholar] [CrossRef] [Green Version]
- Tanumihardjo, S.A.; McCulley, L.; Roh, R.; Lopez-Ridaura, S.; Palacios-Rojas, N.; Gunaratna, N.S. Maize agro-food systems to ensure food and nutrition security in reference to the Sustainable Development Goals. Glob. Food Secur. 2020, 25. [Google Scholar] [CrossRef]
- ISO. Guide 35:2017 Reference Materials—Guidance for Characterization and Assessment of Homogeneity and Stability; International Organization for Standardization: Geneva, Switzerland, 2017; p. 105. [Google Scholar]
- Cairns, J.E.; Crossa, J.; Zaidi, P.H.; Grudloyma, P.; Sanchez, C.; Araus, J.L.; Thaitad, S.; Makumbi, D.; Magorokosho, C.; Bänziger, M.; et al. Identification of Drought, Heat, and Combined Drought and Heat Tolerant Donors in Maize. Crop. Sci. 2013, 53, 1335–1346. [Google Scholar] [CrossRef] [Green Version]
- Ordóñez, R.A.; Savin, R.; Cossani, C.M.; Slafer, G.A. Yield response to heat stress as affected by nitrogen availability in maize. Field Crop. Res. 2015, 183, 184–203. [Google Scholar] [CrossRef]
- Prasad, P.V.V.; Bheemanahalli, R.; Jagadish, S.V.K. Field crops and the fear of heat stress—Opportunities, challenges and future directions. Field Crop. Res. 2017, 200, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Lobell, D.B.; Burke, M.B. On the use of statistical models to predict crop yield responses to climate change. Agric. For. Meteorol. 2010, 150, 1443–1452. [Google Scholar] [CrossRef]
- Lizaso, J.I.; Ruiz-Ramos, M.; Rodríguez, L.; Gabaldon-Leal, C.; Oliveira, J.; Lorite, I.; Sánchez, D.; García, E. Impact of high temperatures in maize: Phenology and yield components. Field Crop. Res. 2018, 216, 129–140. [Google Scholar] [CrossRef] [Green Version]
- Siebers, M.H.; Slattery, R.A.; Yendrek, C.R.; Locke, A.M.; Drag, D.; Ainsworth, E.A.; Bernacchi, C.J.; Ort, D.R. Simulated heat waves during maize reproductive stages alter reproductive growth but have no lasting effect when applied during vegetative stages. Agric. Ecosyst. Environ. 2017, 240, 162–170. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Tao, H.; Zhang, P.; Hou, X.; Sheng, D.; Tian, B.; Wang, P.; Huang, S. Reduction in seed set upon exposure to high night temperature during flowering in maize. Physiol. Plant. 2020, 169, 73–82. [Google Scholar] [CrossRef]
- Wang, Y.; Tao, H.; Tian, B.; Sheng, D.; Xu, C.; Zhou, H.; Huang, S.; Wang, P. Flowering dynamics, pollen, and pistil contribution to grain yield in response to high temperature during maize flowering. Environ. Exp. Bot. 2019, 158, 80–88. [Google Scholar] [CrossRef]
- De Storme, N.; Geelen, D. The impact of environmental stress on male reproductive development in plants: Biological processes and molecular mechanisms. Plant Cell Environ. 2014, 37, 1–18. [Google Scholar] [CrossRef]
- Dupuis, I.; Dumas, C. Influence of temperature stress on invitro fertilization and heat-shock protein-synthesis in maize (zea-mays l) reproductive tissues. Plant Physiol. 1990, 94, 665–670. [Google Scholar]
- Li, S.; Zhao, J.; Dong, S.; Zhao, M.; Li, C.; Cui, Y.; Liu, Y.; Gao, J.; Xue, J.; Wang, L.; et al. Advances and Prospects of Maize Cultivation in China. Sci. Agric. Sin. 2017, 50, 1941–1959. [Google Scholar]
- Wang, B.; Liu, D.L.; Asseng, S.; Macadam, I.; Yu, Q. Impact of climate change on wheat flowering time in eastern Australia. Agric. For. Meteorol. 2015, 209, 11–21. [Google Scholar]
- Zhang, Z.; Yang, X.; Liu, Z.; Bai, F.; Sun, S.; Nie, J.; Gao, J.; Ming, B.; Xie, R.; Li, S. Spatio-temporal characteristics of agro-climatic indices and extreme weather events during the growing season for summer maize (Zea mays L.) in Huanghuaihai region, China. Int. J. Biometeorol. 2020, 64, 827–839. [Google Scholar] [CrossRef]
- Sánchez, B.; Rasmussen, A.; Porter, J.R. Temperatures and the growth and development of maize and rice: A review. Glob. Chang. Biol. 2014, 20, 408–417. [Google Scholar] [CrossRef]
- Alam, A.; Seetharam, K.; Zaidi, P.H.; Dinesh, A.; Vinayan, M.T.; Nath, U.K. Dissecting heat stress tolerance in tropical maize (Zea mays L.). Field Crop. Res. 2017, 204, 110–119. [Google Scholar] [CrossRef]
- Lobell, D.B.; Bänziger, M.; Magorokosho, C.; Vivek, B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Clim. Chang. 2011, 1, 42–45. [Google Scholar] [CrossRef]
- Bristow, K.; Abrecht, D. Daily temperature extremes as an indicator of high temperature stress. Soil Res. 1991, 29, 377–385. [Google Scholar] [CrossRef]
- Shi, P.; Tang, L.; Wang, L.; Sun, T.; Liu, L.; Cao, W.; Zhu, Y. Post-Heading Heat Stress in Rice of South China during 1981–2010. PLoS ONE 2015, 10, e0130642. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.; Buyanovsky, G. Climate Effects on Corn Yield in Missouri. J. Appl. Meteorol. 2003, 42, 1626–1635. [Google Scholar] [CrossRef]
- Schlenker, W.; Lobell, D.B. Robust negative impacts of climate change on African agriculture. Environ. Res. Lett. 2010, 5. [Google Scholar] [CrossRef]
- Lobell, D.B.; Schlenker, W.; Costa-Roberts, J. Climate Trends and Global Crop Production Since 1980. Science 2011, 333, 616–620. [Google Scholar]
- Gourdji, S.M.; Sibley, A.M.; Lobell, D.B. Global crop exposure to critical high temperatures in the reproductive period: Historical trends and future projections. Environ. Res. Lett. 2013, 8. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Carter, E.K.; Melkonian, J.; Riha, S.J.; Shaw, S.B. Separating heat stress from moisture stress: Analyzing yield response to high temperature in irrigated maize. Environ. Res. Lett. 2016, 11, 094012. [Google Scholar] [CrossRef]
- Bahuguna, R.N.; Solis, C.A.; Shi, W.; Jagadish, K.S.V. Post-flowering night respiration and altered sink activity account for high night temperature-induced grain yield and quality loss in rice (Oryza sativa L.). Physiol. Plant. 2017, 159, 59–73. [Google Scholar] [CrossRef]
- Ju, H.; Van Der Velde, M.C.; Lin, E.; Xiong, W.; Li, Y. The impacts of climate change on agricultural production systems in China. Clim. Chang. 2013, 120, 313–324. [Google Scholar] [CrossRef]
- Rahimi-Moghaddam, S.; Kambouzia, J.; Deihimfard, R. Adaptation strategies to lessen negative impact of climate change on grain maize under hot climatic conditions: A model-based assessment. Agric. For. Meteorol. 2018, 253, 1–14. [Google Scholar] [CrossRef]
- Tian, B.; Zhu, J.; Nie, Y.; Xu, C.; Meng, Q.; Wang, P. Mitigating heat and chilling stress by adjusting the sowing date of maize in the North China Plain. J. Agron. Crop. Sci. 2019, 205, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Wang, J.; Wang, B.; Liu, D.L.; Yu, Q.; He, D.; Wang, N.; Pan, X. Optimizing sowing window and cultivar choice can boost China’s maize yield under 1.5 °C and 2 °C global warming. Environ. Res. Lett. 2020, 15. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, X. Distribution of high-yield and high-yield-stability zones for maize yield potential in the main growing regions in China. Agric. For. Meteorol. 2018, 248, 511–517. [Google Scholar] [CrossRef]
- Yadav, S.K.; Tiwari, Y.K.; Kumar, D.P.; Shanker, A.K.; Lakshmi, N.J.; Vanaja, M.; Maheswari, M. Genotypic Variation in Physiological Traits Under High Temperature Stress in Maize. Agric. Res. 2015, 5, 119–126. [Google Scholar] [CrossRef]
- Setimela, P.; Magorokosho, C.; Lunduka, R.; Gasura, E.; Makumbi, D.; Tarekegne, A.; Cairns, J.E.; Ndhlela, T.; Erenstein, O.; Mwangi, W. On-Farm Yield Gains with Stress-Tolerant Maize in Eastern and Southern Africa. Agron. J. 2017, 109, 406–417. [Google Scholar] [CrossRef] [Green Version]
- Setimela, P.; Gasura, E.; Thierfelder, C.; Zaman-Allah, M.; Cairns, J.E.; Boddupalli, P.M. When the going gets tough: Performance of stress tolerant maize during the 2015/16 (El Nino) and 2016/17 (La Nina) season in southern Africa. Agric. Ecosyst. Environ. 2018, 268, 79–89. [Google Scholar]
- Zhao, J.; Yang, X.; Sun, S. Constraints on maize yield and yield stability in the main cropping regions in China. Eur. J. Agron. 2018, 99, 106–115. [Google Scholar] [CrossRef]
- Ma, D.; Li, S.; Zhai, L.; Yu, X.; Xie, R.; Gao, J. Response of maize barrenness to density and nitrogen increases in Chinese cultivars released from the 1950s to 2010s. Field Crop. Res. 2020, 250. [Google Scholar] [CrossRef]
Region | T (°C) | SSD (h) | Prec (mm) | Sowing | Heading | Maturity | VGP (d) | RGP (d) | WGP (d) |
---|---|---|---|---|---|---|---|---|---|
S3H | 14.29 | 2129 | 771.4 | 6/11 | 8/4 | 9/18 | 54 | 45 | 99 |
N3H | 10.44 | 2480 | 491.6 | 6/16 | 8/9 | 9/26 | 54 | 48 | 102 |
Region | Month | Tmin | Tavg | Tmax | SSD | Prec | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean (°C) | Trend (°C a−1) | Mean (°C) | Trend (°C a−1) | Mean (°C) | Trend (°C a−1) | Mean (h) | Trend (h a−1) | Mean (mm) | Trend (mm a−1) | ||
S3H | 6 | 19.95 ± 0.74 | 0.0432 ** | 24.61 ± 0.77 | 0.0303 ** | 29.90 ± 0.95 | 0.0225 | 198.0 ± 23.02 | −0.8965 ** | 99.83 ± 43.07 | −0.1966 |
7 | 23.28 ± 0.89 | 0.0378 ** | 26.84 ± 0.91 | 0.0300 * | 31.15 ± 1.04 | 0.0255 | 182.9 ± 28.23 | −0.8367 | 189.4 ± 48.51 | 0.6470 | |
8 | 22.45 ± 0.86 | 0.0383 ** | 25.93 ± 0.84 | 0.0250 | 30.27 ± 0.95 | 0.0160 | 190.4 ± 33.66 | −1.221 * | 145.9 ± 45.75 | 0.7821 | |
9 | 17.42 ± 0.95 | 0.0508 ** | 21.54 ± 0.85 | 0.0298 * | 26.62 ± 1.06 | 0.0124 | 177.7 ± 31.58 | −1.184 * | 75.11 ± 39.96 | 0.5134 | |
N3H | 6 | 16.57 ± 0.70 | 0.0361 ** | 22.72 ± 0.75 | 0.0221 * | 29.20 ± 0.95 | 0.0195 | 235.6 ± 23.89 | −1.283 ** | 67.70 ± 16.83 | 0.0450 |
7 | 19.53 ± 0.84 | 0.0405 ** | 24.50 ± 0.82 | 0.0293 * | 30.15 ± 0.99 | 0.0275 | 217.5 ± 24.27 | −1.309 ** | 128.9 ± 39.96 | 0.2204 | |
8 | 18.16 ± 0.71 | 0.0342 ** | 22.93 ± 0.75 | 0.0311 ** | 28.65 ± 1.01 | 0.0321* | 214.9 ± 24.88 | −0.7685 * | 105.7 ± 31.39 | −0.7270 | |
9 | 12.47 ± 1.10 | 0.0589 ** | 17.80 ± 0.92 | 0.0332 * | 24.29 ± 1.10 | 0.0159 | 202.7 ± 27.33 | −1.580 ** | 61.25 ± 21.37 | 0.6554 * |
Region | Tmin | Tavg | Tmax | Prec | Yield | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Trend | Mean | Trend | Mean | Trend | Mean | Trend | Mean | Trend | CV | |
(°C) | (°C 10a−1) | (°C) | (°C 10a−1) | (°C) | (°C 10a−1) | (mm) | (mm 10a−1) | (kg ha−1) | (kg ha−1 a−1) | (%) | |
S3H | 20.37 ± 0.70 | 0.360 ** | 24.12 ± 0.68 | 0.236 * | 28.79 ± 0.86 | 0.153 | 184.4 ± 54.66 | 4.410 | 4951 | 62.02 ** | 16.77 |
N3H | 16.10 ± 0.72 | 0.441 ** | 21.14 ± 0.66 | 0.319 ** | 27.20 ± 0.83 | 0.273 * | 161.1 ± 35.97 | −0.146 | 4519 | 66.37 ** | 14.92 |
3H | 18.33 ± 0.69 | 0.400 ** | 22.70 ± 0.64 | 0.277 * | 28.03 ± 0.79 | 0.211 | 173.3 ± 40.97 | 1.161 | 4780 | 64.26 ** | 15.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, S.; Liu, J.; Li, T.; Wang, X.; Peng, A.; Chen, C. Effect of High-Temperature Events When Heading into the Maturity Period on Summer Maize (Zea mays L.) Yield in the Huang-Huai-Hai Region, China. Atmosphere 2020, 11, 1291. https://doi.org/10.3390/atmos11121291
Wei S, Liu J, Li T, Wang X, Peng A, Chen C. Effect of High-Temperature Events When Heading into the Maturity Period on Summer Maize (Zea mays L.) Yield in the Huang-Huai-Hai Region, China. Atmosphere. 2020; 11(12):1291. https://doi.org/10.3390/atmos11121291
Chicago/Turabian StyleWei, Shengbao, Jing Liu, Tiantian Li, Xiaoying Wang, Anchun Peng, and Changqing Chen. 2020. "Effect of High-Temperature Events When Heading into the Maturity Period on Summer Maize (Zea mays L.) Yield in the Huang-Huai-Hai Region, China" Atmosphere 11, no. 12: 1291. https://doi.org/10.3390/atmos11121291
APA StyleWei, S., Liu, J., Li, T., Wang, X., Peng, A., & Chen, C. (2020). Effect of High-Temperature Events When Heading into the Maturity Period on Summer Maize (Zea mays L.) Yield in the Huang-Huai-Hai Region, China. Atmosphere, 11(12), 1291. https://doi.org/10.3390/atmos11121291