Novel Approaches to Air Pollution Exposure and Clinical Outcomes Assessment in Environmental Health Studies
Abstract
:1. Introduction
2. Exposure Assessment
2.1. Remote Sensing
2.2. Low Cost Air Pollution Sensors
2.3. Real Time Location Activity and the Use of Smart Devices
3. Assessment of Clinical Outcomes
3.1. Utilization of Smart Devices
3.2. Human Biomonitoring
Population Biomonitoring
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gakidou, E.; Afshin, A.; Abajobir, A.A.; Abate, K.H.; Abbafati, C.; Abbas, K.M.; Abd-Allah, F.; Abdulle, A.M.; Abera, S.F.; Aboyans, V.; et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1345–1422. [Google Scholar] [CrossRef] [Green Version]
- Zeger, S.L.; Thomas, D.; Dominici, F.; Samet, J.M.; Dockery, D.; Cohen, A. Exposure measurement error in time-series studies of air pollution: Concepts and consequences. Environ. Health Perspect. 2000, 108, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A.; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. J. Am. Med. Assoc. 2002, 287, 1132–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baek, S.O.; Kim, Y.S.; Perry, R. Indoor air quality in homes, offices and restaurants in Korean urban areas—Indoor/outdoor relationships. Atmos. Environ. 1997, 31, 529–544. [Google Scholar] [CrossRef]
- Leung, D.Y.C. Outdoor-indoor air pollution in urban environment: Challenges and opportunity. Front. Environ. Sci. 2015, 2, 69. [Google Scholar] [CrossRef]
- Jerrett, M.; Arain, A.; Kanaroglou, P.; Beckerman, B.; Potoglou, D.; Sahsuvaroglu, T.; Morrison, J.; Giovis, C. A review and evaluation of intraurban air pollution exposure models. J. Expo. Anal. Environ. Epidemiol. 2005, 15, 1–20. [Google Scholar] [CrossRef]
- Hoek, G. Methods for Assessing Long-Term Exposures to Outdoor Air Pollutants. Curr. Environ. Health Rep. 2017, 4, 450–462. [Google Scholar] [CrossRef]
- Pas, E.I.; Koppelman, F.S. An examination of the determinants of day-to-day variability in individuals’ urban travel behavior. Transportation 1987, 14, 3–20. [Google Scholar] [CrossRef]
- Wu, X.; Bennett, D.H.; Lee, K.; Cassady, D.L.; Ritz, B.; Hertz-Picciotto, I. Longitudinal variability of time-location/activity patterns of population at different ages: A longitudinal study in California. Environ. Health 2011, 10, 80. [Google Scholar] [CrossRef] [Green Version]
- Setton, E.; Marshall, J.D.; Brauer, M.; Lundquist, K.R.; Hystad, P.; Keller, P.; Cloutier-Fisher, D. The impact of daily mobility on exposure to traffic-related air pollution and health effect estimates. J. Expo. Sci. Environ. Epidemiol. 2011, 21, 42–48. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.M.; Kwan, M.P. Individual exposure estimates may be erroneous when spatiotemporal variability of air pollution and human mobility are ignored. Health Place 2017, 43, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Majeed, A.; Car, J.; Sheikh, A. Accuracy and completeness of electronic patient records in primary care. Fam. Pract. 2008, 25, 213–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hogan, W.R.; Wagner, M.M. Accuracy of Data in Computer-based Patient Records. J. Am. Med. Inf. Assoc. 1997, 4, 342–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, A.L.; Lynch, K.J. Identifying discrepancies in electronic medical records through pharmacist medication reconciliation. J. Am. Pharm. Assoc. 2012, 52, 59–68. [Google Scholar] [CrossRef]
- Matthews, K.A.; Siegel, J.M.; Kuller, L.H.; Thompsonk, M.; Varat, M. Determinants of decisions to seek medical treatment by patients with acute myocardial infarction symptoms. J. Personal. Soc. Psychol. 1983, 44, 1144–1156. [Google Scholar] [CrossRef]
- Berkanovic, E.; Telesky, C.; Reeder, S. Structural and social psychological factors in the decision to seek medical care for symptoms. Med. Care 1981, 19, 693–709. [Google Scholar] [CrossRef]
- Berkanovic, E.; Telesky, C. Social networks, beliefs, and the decision to seek medical care: An analysis of congruent and incongruent patterns. Med. Care 1982, 20, 1018–1026. [Google Scholar] [CrossRef]
- Haentjens, P.; van Meerhaeghe, A.; Poppe, K.; Velkeniers, B. Subclinical thyroid dysfunction and mortality: An estimate of relative and absolute excess all-cause mortality based on time-to-event data from cohort studies. Eur. J. Endocrinol. 2008, 159, 329–341. [Google Scholar] [CrossRef] [Green Version]
- Aichner, F.T.; Topakian, R.; Alberts, M.J.; Bhatt, D.L.; Haring, H.P.; Hill, M.D.; Montalescot, G.; Goto, S.; Touzé, E.; Mas, J.L.; et al. High cardiovascular event rates in patients with asymptomatic carotid stenosis: The REACH registry. Eur. J. Neurol. 2009, 16, 902–908. [Google Scholar] [CrossRef]
- Roche, F.; Gaspoz, J.M.; Da Costa, A.; Isaaz, K.; Duverney, D.; Pichot, V.; Costes, F.; Lacour, J.R.; Barthélémy, J.C. Frequent and prolonged asymptomatic episodes of paroxysmal atrial fibrillation revealed by automatic long-term event recorders in patients with a negative 24-hour Holter. Pace—Pacing Clin. Electrophysiol. 2002, 25, 1587–1593. [Google Scholar] [CrossRef] [Green Version]
- Page, R.L.; Wilkinson, W.E.; Clair, W.K.; McCarthy, E.A.; Pritchett, E.L.C. Asymptomatic arrhythmias in patients with symptomatic paroxysmal atrial fibrillation and paroxysmal supraventricular tachycardia. Circulation 1994, 89, 224–227. [Google Scholar] [CrossRef] [Green Version]
- Matsui, Y.; Eguchi, K.; Ishikawa, J.; Hoshide, S.; Shimada, K.; Kario, K. Subclinical Arterial Damage in Untreated Masked Hypertensive Subjects Detected by Home Blood Pressure Measurement. Am. J. Hypertens. 2007, 20, 385–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, N.B.; Siddique, J.; Wilkins, J.T.; Shay, C.; Lewis, C.E.; Goff, D.C.; Jacobs, D.R.; Liu, K.; Lloyd-Jones, D. Blood pressure trajectories in early adulthood and subclinical atherosclerosis in middle age. J. Am. Med. Assoc. 2014, 311, 490–497. [Google Scholar] [CrossRef] [PubMed]
- McEvoy, J.W.; Chen, Y.; Rawlings, A.; Hoogeveen, R.C.; Ballantyne, C.M.; Blumenthal, R.S.; Coresh, J.; Selvin, E. Diastolic Blood Pressure, Subclinical Myocardial Damage, and Cardiac Events: Implications for Blood Pressure Control. J. Am. Coll. Cardiol. 2016, 68, 1713–1722. [Google Scholar] [CrossRef] [PubMed]
- Catalano, P.M.; Bernstein, I.M.; Wolfe, R.R.; Srikanta, S.; Tyzbir, E.; Sims, E.A.H. Subclinical abnormalities of glucose metabolism in subjects with previous gestational diabetes. Am. J. Obstet. Gynecol. 1986, 155, 1255–1262. [Google Scholar] [CrossRef]
- Saydah, S.H.; Loria, C.M.; Eberhardt, M.S.; Brancati, F.L. Subclinical states of glucose intolerance and risk of death in the U.S. Diabetes Care 2001, 24, 447–453. [Google Scholar] [CrossRef] [Green Version]
- Balti, E.V.; Echouffo-Tcheugui, J.B.; Yako, Y.Y.; Kengne, A.P. Air pollution and risk of type 2 diabetes mellitus: A systematic review and meta-analysis. Diabetes Res. Clin. Pract. 2014, 106, 161–172. [Google Scholar] [CrossRef]
- Schwartz, J. Air pollution and blood markers of cardiovascular risk. Environ. Health Perspect. 2001, 109, 405–409. [Google Scholar]
- Hassan, L.; Pecht, T.; Goldstein, N.; Haim, Y.; Kloog, I.; Yarza, S.; Sarov, B.; Novack, V. The effects of ambient particulate matter on human adipose tissue. J. Toxicol. Environ. Health Part A Curr. 2019. [Google Scholar] [CrossRef]
- Yang, X.; Feng, L.; Zhang, Y.; Hu, H.; Shi, Y.; Liang, S.; Zhao, T.; Fu, Y.; Duan, J.; Sun, Z. Cytotoxicity induced by fine particulate matter (PM 2.5) via mitochondria-mediated apoptosis pathway in human cardiomyocytes. Ecotoxicol. Environ. Saf. 2018, 161, 198–207. [Google Scholar] [CrossRef]
- Carter, J.D.; Ghio, A.J.; Samet, J.M.; Devlin, R.B. Cytokine production by human airway epithelial cells after exposure to an air pollution particle is metal-dependent. Toxicol. Appl. Pharmcol. 1997, 146, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Hinds, W.C.; Kim, S.; Shen, S.; Sioutas, C. Study of ultrafine particles near a major highway with heavy-duty diesel traffic. Atmos. Environ. 2002, 36, 4323–4335. [Google Scholar] [CrossRef]
- Eeftens, M.; Tsai, M.Y.; Ampe, C.; Anwander, B.; Beelen, R.; Bellander, T.; Cesaroni, G.; Cirach, M.; Cyrys, J.; De Hoogh, K.; et al. Spatial variation of PM2.5, PM10, PM2.5 absorbance and PMcoarse concentrations between and within 20 European study areas and the relationship with NO2—Results of the ESCAPE project. Atmos. Environ. 2012, 62, 303–317. [Google Scholar] [CrossRef]
- Sorek-Hamer, M.; Just, A.C.; Kloog, I. Satellite remote sensing in epidemiological studies. Curr. Opin. Pediatr. 2016, 28, 228–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoek, G.; Brunekreef, B.; Goldbohm, S.; Fischer, P.; van den Brandt, P.A. Association between mortality and indicators of traffic-related air pollution in the Netherlands: A cohort study. Lancet 2002, 360, 1203–1209. [Google Scholar] [CrossRef] [Green Version]
- Ostro, B.; Lipsett, M.; Reynolds, P.; Goldberg, D.; Hertz, A.; Garcia, C.; Henderson, K.D.; Bernstein, L. Long-term exposure to constituents of fine particulate air pollution and mortality: Results from the California Teachers Study. Environ. Health Perspect. 2010, 118, 363–369. [Google Scholar] [CrossRef] [Green Version]
- Hoek, G.; Pattenden, S.; Willers, S.; Antova, T.; Fabianova, E.; Braun-Fahrländer, C.; Forastiere, F.; Gehring, U.; Luttmann-Gibson, H.; Grize, L.; et al. PM10, and children’s respiratory symptoms and lung function in the PATY study. Eur. Respir. J. 2012, 40, 538–547. [Google Scholar] [CrossRef] [Green Version]
- Künzli, N.; Jerrett, M.; Mack, W.J.; Beckerman, B.; LaBree, L.; Gilliland, F.; Thomas, D.; Peters, J.; Hodis, H.N. Ambient air pollution and atherosclerosis in Los Angeles. Environ. Health Perspect. 2005, 113, 201–206. [Google Scholar] [CrossRef]
- Beelen, R.; Hoek, G.; Van den Brandt, P.A.; Goldbohm, R.A.; Fischer, P.; Schouten, L.J.; Jerrett, M.; Hughes, E.; Armstrong, B.; Brunekreef, B. Long-term effects of traffic-related air pollution on mortality in a Dutch cohort (NLCS-AIR study). Environ. Health Perspect. 2008, 116, 196–202. [Google Scholar] [CrossRef]
- Schneider, P.; Castell, N.; Vogt, M.; Dauge, F.R.; Lahoz, W.A.; Bartonova, A. Mapping urban air quality in near real-time using observations from low-cost sensors and model information. Environ. Int. 2017, 106, 234–247. [Google Scholar] [CrossRef]
- Hoek, G.; Beelen, R.; De Hoogh, K.; Vienneau, D.; Gulliver, J.; Fischer, P.; Briggs, D. A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos. Environ. 2008, 42, 7561–7578. [Google Scholar] [CrossRef]
- De Hoogh, K.; Gulliver, J.; Donkelaar, A.V.; Martin, R.V.; Marshall, J.D.; Bechle, M.J.; Cesaroni, G.; Pradas, M.C.; Dedele, A.; Eeftens, M.; et al. Development of West-European PM2.5 and NO2 land use regression models incorporating satellite-derived and chemical transport modelling data. Environ. Res. 2016, 151, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manders, A.M.M.; Builtjes, P.J.H.; Curier, L.; Denier van der Gon, H.A.C.; Hendriks, C.; Jonkers, S.; Kranenburg, R.; Kuenen, J.J.P.; Segers, A.J.; Timmermans, R.M.A.; et al. Curriculum vitae of the LOTOS-EUROS (v2.0) chemistry transport model. Geosci. Model Dev. 2017, 10, 4145–4173. [Google Scholar] [CrossRef] [Green Version]
- Hertel, O.; Jensen, S.S.; Ketzel, M.; Becker, T.; Peel, R.G.; Ørby, P.V.; Skjøth, C.A.; Ellermann, T.; Raaschou-Nielsen, O.; Sørensen, M.; et al. Utilizing monitoring data and spatial analysis tools for exposure assessment of atmospheric pollutants in Denmark. ACS Symp. Ser. 2013, 1149, 95–122. [Google Scholar]
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Anal. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Zhao, B. Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor. Atmos. Environ. 2011, 45, 275–288. [Google Scholar] [CrossRef]
- Massey, D.; Masih, J.; Kulshrestha, A.; Habil, M.; Taneja, A. Indoor/outdoor relationship of fine particles less than 2.5 μm (PM2.5) in residential homes locations in central Indian region. Build. Environ. 2009, 44, 2037–2045. [Google Scholar] [CrossRef]
- Jones, N.C.; Thornton, C.A.; Mark, D.; Harrison, R.M. Indoor/outdoor relationships of particulate matter in domestic homes with roadside, urban and rural locations. Atmos. Environ. 2000, 34, 2603–2612. [Google Scholar] [CrossRef]
- Lee, S.C.; Li, W.M.; Ao, C.H. Investigation of indoor air quality at residential homes in Hong Kong—Case study. Atmos. Environ. 2002, 36, 225–237. [Google Scholar] [CrossRef]
- Chao, C.Y.H.; Tung, T.C.W.; Burnett, J. Influence of different indoor activities on the indoor particulate levels in residential buildings. Indoor Built Environ. 1998, 7, 110–121. [Google Scholar] [CrossRef]
- Krasnov, H.; Katra, I.; Novack, V.; Vodonos, A.; Friger, M.D. Increased indoor PM concentrations controlled by atmospheric dust events and urban factors. Build. Environ. 2015, 87, 169–176. [Google Scholar] [CrossRef]
- Stafoggia, M.; Schwartz, J.; Badaloni, C.; Bellander, T.; Alessandrini, E.; Cattani, G.; De’ Donato, F.; Gaeta, A.; Leone, G.; Lyapustin, A.; et al. Estimation of daily PM10 concentrations in Italy (2006–2012) using finely resolved satellite data, land use variables and meteorology. Environ. Int. 2017, 99, 234–244. [Google Scholar] [CrossRef] [PubMed]
- De Hoogh, K.; Héritier, H.; Stafoggia, M.; Künzli, N.; Kloog, I. Modelling daily PM2.5 concentrations at high spatio-temporal resolution across Switzerland. Environ. Pollut. 2018, 233, 1147–1154. [Google Scholar] [CrossRef] [PubMed]
- Chudnovsky, A.A.; Koutrakis, P.; Kloog, I.; Melly, S.; Nordio, F.; Lyapustin, A.; Wang, Y.; Schwartz, J. Fine particulate matter predictions using high resolution Aerosol Optical Depth (AOD) retrievals. Atmos. Environ. 2014, 89, 189–198. [Google Scholar] [CrossRef] [Green Version]
- Beckerman, B.S.; Jerrett, M.; Serre, M.; Martin, R.V.; Lee, S.J.; van Donkelaar, A.; Ross, Z.; Su, J.; Burnett, R.T. A hybrid approach to estimating national scale spatiotemporal variability of PM2.5 in the contiguous United States. Environ. Sci. Technol. 2013, 47, 7233–7241. [Google Scholar]
- Lee, M.; Kloog, I.; Chudnovsky, A.; Lyapustin, A.; Wang, Y.; Melly, S.; Coull, B.; Koutrakis, P.; Schwartz, L. Spatiotemporal prediction of fine particulate matter using high-resolution satellite images in the Southeastern US 2003-2011. J. Exp. Sci. Environ. Epidemiol. 2016, 26, 377–384. [Google Scholar] [CrossRef] [Green Version]
- Kloog, I.; Nordio, F.; Coull, B.A.; Schwartz, J. Incorporating local land use regression and satellite aerosol optical depth in a hybrid model of spatiotemporal PM2.5 exposures in the mid-atlantic states. Environ. Sci. Technol. 2012, 46, 11913–11921. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Liu, Y.; Zhao, Q.; Liu, M.; Zhou, Y.; Bi, J. Satellite-derived high resolution PM2.5 concentrations in Yangtze River Delta Region of China using improved linear mixed effects model. Atmos. Environ. 2016, 133, 156–164. [Google Scholar] [CrossRef]
- Just, A.C.; Wright, R.O.; Schwartz, J.; Coull, B.A.; Baccarelli, A.A.; Tellez-Rojo, M.M.; Moody, E.; Wang, Y.; Lyapustin, A.; Kloog, I. Using High-Resolution Satellite Aerosol Optical Depth to Estimate Daily PM2.5 Geographical Distribution in Mexico City. Environ. Sci. Technol. 2015, 49, 8576–8584. [Google Scholar]
- Shtein, A.; Karnieli, A.; Katra, I.; Raz, R.; Levy, I.; Lyapustin, A.; Dorman, M.; Broday, D.M.; Kloog, I. Estimating daily and intra-daily PM10 and PM2.5 in Israel using a spatio-temporal hybrid modeling approach. Atmos. Environ. 2018, 191, 142–152. [Google Scholar] [CrossRef]
- Kloog, I.; Sorek-Hamer, M.; Lyapustin, A.; Coull, B.; Wang, Y.; Just, A.C.; Schwartz, J.; Broday, D.M. Estimating daily PM2.5 and PM10 across the complex geo-climate region of Israel using MAIAC satellite-based AOD data. Atmos. Environ. 2015, 122, 409–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.J.; Koutrakis, P. Daily ambient NO2 concentration predictions using satellite ozone monitoring instrument NO2 data and land use regression. Environ. Sci. Technol. 2014, 48, 2305–2311. [Google Scholar] [PubMed]
- Anand, J.S.; Monks, P.S. Estimating daily surface NO2 concentrations from satellite data—A case study over Hong Kong using land use regression models. Atmos. Chem. Phys. 2017, 17, 8211–8230. [Google Scholar] [CrossRef] [Green Version]
- De Hoogh, K.; Saucy, A.; Shtein, A.; Schwartz, J.; West, E.A.; Strassmann, A.; Puhan, M.; Röösli, M.; Stafoggia, M.; Kloog, I. Predicting Fine-Scale Daily NO2 for 2005–2016 Incorporating OMI Satellite Data Across Switzerland. Environ. Sci. Technol. 2019, 53, 10279–10287. [Google Scholar] [CrossRef] [PubMed]
- Di, Q.; Amini, H.; Shi, L.; Kloog, I.; Silvern, R.; Kelly, J.; Sabath, M.B.; Choirat, C.; Koutrakis, P.; Lyapustin, A.; et al. An ensemble-based model of PM2.5 concentration across the contiguous United States with high spatiotemporal resolution. Environ. Int. 2019, 130, 104909. [Google Scholar] [CrossRef] [PubMed]
- Murray, N.; Chang, H.H.; Holmes, H.; Liu, Y. Combining Satellite Imagery and Numerical Model Simulation to Estimate Ambient Air Pollution: An Ensemble Averaging Approach. arXiv 2018, arXiv:1802.03077. [Google Scholar] [CrossRef]
- Stafoggia, M.; Bellander, T.; Bucci, S.; Davoli, M.; de Hoogh, K.; De’ Donato, F.; Gariazzo, C.; Lyapustin, A.; Michelozzi, P.; Renzi, M.; et al. Estimation of daily PM10 and PM2.5 concentrations in Italy, 2013–2015, using a spatiotemporal land-use random-forest model. Environ. Int. 2019, 124, 170–179. [Google Scholar] [CrossRef]
- Shtein, A.; Kloog, I.; Schwartz, J.; Silibello, C.; Michelozzi, P.; Gariazzo, C.; Viegi, G.; Forastiere, F.; Karnieli, A.; Just, A.C.; et al. Estimating daily PM2.5 and PM10 over Italy using an ensemble model. Environ. Sci. Technol. 2019, 54, 120–128. [Google Scholar] [CrossRef]
- Budde, M.; el Masri, R.; Riedel, T.; Beigl, M. Enabling low-cost particulate matter measurement for participatory sensing scenarios. In Proceedings of the 12th International Conference on Mobile and Ubiquitous Multimedia, Lulea, Sweden, 2–5 December 2013. [Google Scholar]
- Krasnov, H.; Kloog, I.; Friger, M.; Katra, I. The spatio-temporal distribution of particulate matter during natural dust episodes at an urban scale. PLoS ONE 2016, 11, e0160800. [Google Scholar] [CrossRef]
- Li, L.; Zheng, Y.; Zhang, L. Demonstration abstract: PiMi air box—A cost-effective sensor for participatory indoor quality monitoring. In Proceedings of the 13th International Symposium on Information Processing in Sensor Networks, Berlin, Germany, 15–17 April 2014; pp. 327–328. [Google Scholar]
- Hera, M.R.; Rahman, A.; Afrin, A.; Uddin, M.Y.S.; Venkatasubramanian, N. AQBox: An air quality measuring box from COTS gas sensors. In Proceedings of the 2017 International Conference on Networking, Systems and Security, Dhaka, Bangladesh, 5–8 January 2017; pp. 191–194. [Google Scholar]
- Budde, M.; Busse, M.; Beigl, M. Investigating the use of commodity dust sensors for the embedded measurement of particulate matter. In Proceedings of the 9th International Conference on Networked Sensing Systems, INSS 2012, Antwerp, Belgium, 11–14 June 2012. [Google Scholar]
- Chung, W.Y.; Oh, S.J. Remote monitoring system with wireless sensors module for room environment. Sens. Actuators B Chem. 2006, 113, 64–70. [Google Scholar] [CrossRef]
- Warneke, B.A.; Pister, K.S.J. An Ultra-Low Energy Microcontroller for Smart Dust Wireless Sensor Networks. In Proceedings of the Digest of Technical Papers—IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 15 February 2004; p. 47. [Google Scholar]
- Mokhloss, V.S.; Khadem, I. Dust Monitoring Systems. In Proceedings of the Sixth International Conference on Systems and Networks Communications, Barcelona, Spain, 23–28 October 2011. [Google Scholar]
- Nath, V.; Nath, A. Environment Monitoring Using Commercial Off-the-Shelf (COTS) Technologies. In Proceedings of the IFIP World Information Technology Forum, San José, Costa Rica, 12–14 September 2016; pp. 37–44. [Google Scholar]
- Chen, L.J.; Ho, Y.H.; Lee, H.C.; Wu, H.C.; Liu, H.M.; Hsieh, H.H.; Huang, Y.T.; Lung, S.C.C. An Open Framework for Participatory PM2.5 Monitoring in Smart Cities. IEEE Access 2017, 5, 14441–14454. [Google Scholar] [CrossRef]
- Gugliermetti, L.; Garcia, D.A. A cheap and third-age-friendly home device for monitoring indoor air quality. Int. J. Environ. Sci. Technol. 2018, 15, 185–198. [Google Scholar] [CrossRef]
- Tse, R.T.; Xiao, Y. A portable Wireless Sensor Network system for real-time environmental monitoring. In Proceedings of the17th International Symposium on a World of Wireless, Mobile and Multimedia Networks, WoWMoM 2016, Coimbra, Portugal, 21–24 June 2016. [Google Scholar]
- Westerdahl, D.; Fruin, S.; Sax, T.; Fine, P.M.; Sioutas, C. Mobile platform measurements of ultrafine particles and associated pollutant concentrations on freeways and residential streets in Los Angeles. Atmos. Environ. 2005, 39, 3597–3610. [Google Scholar] [CrossRef]
- Wang, M.; Zhu, T.; Zheng, J.; Zhang, R.Y.; Zhang, S.Q.; Xie, X.X.; Han, Y.Q.; Li, Y. Use of a mobile laboratory to evaluate changes in on-road air pollutants during the Beijing 2008 summer olympics. Atmos. Chem. Phys. 2009, 9, 8247–8263. [Google Scholar] [CrossRef] [Green Version]
- Padró-Martínez, L.T.; Patton, A.P.; Trull, J.B.; Zamore, W.; Brugge, D.; Durant, J.L. Mobile monitoring of particle number concentration and other traffic-related air pollutants in a near-highway neighborhood over the course of a year. Atmos. Environ. 2012, 61, 253–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levy, I.; Mihele, C.; Lu, G.; Narayan, J.; Hilker, N.; Brook, J.R. Elucidating multipollutant exposure across a complex metropolitan area by systematic deployment of a mobile laboratory. Atmos. Chem. Phys. 2014, 14, 7173–7193. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Lau, K.K.L.; Ng, E. Developing Street-Level PM 2.5 and PM 10 Land Use Regression Models in High-Density Hong Kong with Urban Morphological Factors. Environ. Sci. Technol. 2016, 50, 8178–8187. [Google Scholar] [CrossRef] [PubMed]
- Hankey, S.; Marshall, J.D. Land Use Regression Models of On-Road Particulate Air Pollution (Particle Number, Black Carbon, PM2.5, Particle Size) Using Mobile Monitoring. Environ. Sci. Technol. 2015, 49, 9194–9202. [Google Scholar] [CrossRef] [PubMed]
- Thai, A.; McKendry, I.; Brauer, M. Particulate matter exposure ong designated bicycle routes in Vancouver, British Columbia. Sci. Total Environ. 2008, 405, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Dons, E.; Int Panis, L.; Van Poppel, M.; Theunis, J.; Willems, H.; Torfs, R.; Wets, G. Impact of time-activity patterns on personal exposure to black carbon. Atmos. Environ. 2011, 45, 3594–3602. [Google Scholar] [CrossRef]
- Song, C.; Qu, Z.; Blumm, N.; Barabási, A.L. Limits of predictability in human mobility. Science 2010, 327, 1018–1021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canfield, M.A.; Ramadhani, T.A.; Langlois, P.H.; Waller, D.K. Residential mobility patterns and exposure misclassification in epidemiologic studies of birth defects. J. Expo. Sci. Environ. Epidemiol. 2006, 16, 538–543. [Google Scholar] [CrossRef] [PubMed]
- Brokamp, C.; Lemasters, G.K.; Ryan, P.H. Residential mobility impacts exposure assessment and community socioeconomic characteristics in longitudinal epidemiology studies. J. Expo. Sci. Environ. Epidemiol. 2016, 26, 428–434. [Google Scholar] [CrossRef] [Green Version]
- Ragettli, M.S.; Phuleria, H.C.; Tsai, M.Y.; Schindler, C.; de Nazelle, A.; Ducret-Stich, R.E.; Ineichen, A.; Perez, L.; Braun-Fahrländer, C.; Probst-Hensch, N.; et al. The relevance of commuter and work/school exposure in an epidemiological study on traffic-related air pollution. J. Expo. Sci. Environ. Epidemiol. 2015, 25, 474–481. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Xiang, Z.; Fesenmaier, D.R. Smartphone Use in Everyday Life and Travel. J. Travel Res. 2016, 55, 52–63. [Google Scholar] [CrossRef]
- Ericsson. 5G Subscriptions to Reach Half a Billion in 2022: Ericsson Mobility Report. Press Release. 2016. Available online: https://www.ericsson.com/en/press-releases/2016/11/5g-subscriptions-to-reach-half-a-billion-in-2022-ericsson-mobility-report (accessed on 8 July 2019).
- Larkin, A.; Hystad, P. Towards Personal Exposures: How Technology Is Changing Air Pollution and Health Research. Curr. Environ. Health Rep. 2017, 4, 463–471. [Google Scholar] [CrossRef]
- Dewulf, B.; Neutens, T.; Lefebvre, W.; Seynaeve, G.; Vanpoucke, C.; Beckx, C.; Van de Weghe, N. Dynamic assessment of exposure to air pollution using mobile phone data. Int. J. Health Geogr. 2016, 15, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Nyhan, M.; Grauwin, S.; Britter, R.; Misstear, B.; McNabola, A.; Laden, F.; Barrett, S.R.; Ratti, C. “Exposure Track”. The Impact of Mobile-Device-Based Mobility Patterns on Quantifying Population Exposure to Air Pollution. Environ. Sci. Technol. 2016, 50, 9671–9681. [Google Scholar] [CrossRef] [Green Version]
- Nyhan, M.M.; Kloog, I.; Britter, R.; Ratti, C.; Koutrakis, P. Quantifying population exposure to air pollution using individual mobility patterns inferred from mobile phone data. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 238–247. [Google Scholar] [CrossRef]
- Steinle, S.; Reis, S.; Sabel, C.E. Quantifying human exposure to air pollution-Moving from static monitoring to spatio-temporally resolved personal exposure assessment. Sci. Total Environ. 2013, 443, 184–193. [Google Scholar] [CrossRef] [Green Version]
- Dias, D.; Tchepel, O. Modelling of human exposure to air pollution in the urban environment: A GPS-based approach. Environ. Sci. Pollut. Res. 2014, 21, 3558–3571. [Google Scholar] [CrossRef]
- Buonanno, G.; Stabile, L.; Morawska, L. Personal exposure to ultrafine particles: The influence of time-activity patterns. Sci. Total Environ. 2014, 468–469, 903–907. [Google Scholar] [CrossRef] [Green Version]
- Morabia, A.; Amstislavski, P.N.; Mirer, F.E.; Amstislavski, T.M.; Eisl, H.; Wolff, M.S.; Markowitz, S.B. Air Pollution and Activity During Transportation by Car, Subawy, and Walking. Am. J. Prev. Med. 2009, 37, 72–77. [Google Scholar] [CrossRef]
- Apparicio, P.; Apparicio, D.; Mathieu, M.-È. Turtle Sport: An Open-Source Software for Communicating with GPS Sport Watches. J. Open Res. Softw. 2018, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Apparicio, P.; Gelb, J.; Carrier, M.; Mathieu, M.È.; Kingham, S. Exposure to noise and air pollution by mode of transportation during rush hours in Montreal. J. Transp. Geogr. 2018, 70, 182–192. [Google Scholar] [CrossRef]
- Hasenfratz, D.; Saukh, O.; Sturzenegger, S.; Thiele, L. Participatory Air Pollution Monitoring Using Smartphones. Mob. Sens. 2012, 1, 1–5. [Google Scholar]
- Mendez, D.; Pérez, A.J.; Labrador, M.A.; Marron, J.J. P-Sense: A participatory sensing system for air pollution monitoring and control. In Proceedings of the 2011 IEEE International Conference on Pervasive Computing and Communications Workshops, PERCOM Workshops, Seattle, WA, USA, 21–25 March 2011; pp. 344–347. [Google Scholar]
- Brienza, S.; Galli, A.; Anastasi, G.; Bruschi, P. A low-cost sensing system for cooperative air quality monitoring in urban areas. Sensors 2015, 15, 12242–12259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendez, D.; Diaz, S.; Kraemer, R. Wireless technologies for pollution monitoring in large cities and rural areas. In Proceedings of the 24th Telecommunications Forum, TELFOR 2016, Belgrade, Serbia, 22–23 Novomber 2016. [Google Scholar]
- Hu, K.; Sivaraman, V.; Luxan, B.G.; Rahman, A. Design and Evaluation of a Metropolitan Air Pollution Sensing System. IEEE Sens. J. 2016, 16, 1448–1459. [Google Scholar] [CrossRef]
- De Nazelle, A.; Seto, E.; Donaire-Gonzalez, D.; Mendez, M.; Matamala, J.; Nieuwenhuijsen, M.J.; Jerrett, M. Improving estimates of air pollution exposure through ubiquitous sensing technologies. Environ. Pollut. 2013, 176, 92–99. [Google Scholar] [CrossRef] [Green Version]
- Krenn, P.J.; Titze, S.; Oja, P.; Jones, A.; Ogilvie, D. Use of global positioning systems to study physical activity and the environment: A systematic review. Am. J. Prev. Med. 2011, 41, 508–515. [Google Scholar] [CrossRef] [Green Version]
- Kerr, J.; Duncan, S.; Schipperjin, J. Using global positioning systems in health research: A practical approach to data collection and processing. Am. J. Prev. Med. 2011, 41, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.; Narayanan, S. Imputing Missing Data In Large-Scale Multivariate Biomedical Wearable Recordings Using Bidirectional Recurrent Neural Networks With Temporal Activation Regularization. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2019, Berlin, Germany, 23–27 July 2019; pp. 2529–2534. [Google Scholar]
- Mendez, D.; Labrador, M.; Ramachandran, K. Data interpolation for participatory sensing systems. Pervasive Mob. Comput. 2013, 9, 132–148. [Google Scholar] [CrossRef]
- Hao, Y.; Cheng, F.; Pham, M.; Rein, H.; Patel, D.; Fang, Y.; Feng, Y.; Yan, J.; Song, X.; Yan, H.; et al. A noninvasive, economical, instant-result method to diagnose and monitor type 2 diabetes using pulse wave: Case-Control study. J. Med. Internet Res. 2019, 7, e11959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Årsand, E.; Tatara, N.; Østengen, G.; Hartvigsen, G. Mobile phone-based self-management tools for type 2 diabetes: The few touch application. J. Diabetes Sci. Technol. 2010, 4, 328–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenwood, D.A.; Blozis, S.A.; Young, H.M.; Nesbitt, T.S.; Quinn, C.C. Overcoming clinical inertia: A randomized clinical trial of a telehealth remote monitoring intervention using paired glucose testing in adults with type 2 diabetes. J. Med. Internet Res. 2015, 17, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, H.; Karunanithi, M.; Kanagasingam, Y.; Vignarajan, J.; Moodley, Y. A pilot study of a mobile-phone-based home monitoring system to assist in remote interventions in cases of acute exacerbation of COPD. J. Telemed. Telecare 2014, 20, 128–134. [Google Scholar] [CrossRef]
- Bengtsson, U.; Kjellgren, K.; Hallberg, I.; Lindwall, M.; Taft, C. Improved Blood Pressure Control Using an Interactive Mobile Phone Support System. J. Clin. Hypertens. 2016, 18, 101–108. [Google Scholar] [CrossRef]
- Boriani, G.; Glotzer, T.V.; Ziegler, P.D.; De Melis, M.; Mangoni di S Stefano, L.; Sepsi, M.; Landolina, M.; Lunati, M.; Lewalter, T.; Camm, A.J. Detection of new atrial fibrillation in patients with cardiac implanted electronic devices and factors associated with transition to higher device-detected atrial fibrillation burden. Hear. Rhythm 2018, 15, 376–383. [Google Scholar] [CrossRef]
- Gorenek, B.; Bax, J.; Boriani, G.; Chen, S.A.; Dagres, N.; Glotzer, T.V.; Healey, J.S.; Israel, C.W.; Kudaiberdieva, G.; Levin, L.Å.; et al. Device-detected subclinical atrial tachyarrhythmias: Definition, implications and management—An European Heart Rhythm Association (EHRA) consensus document, endorsed by Heart Rhythm Society (HRS), Asia Pacific Heart Rhythm Society (APHRS) and Sociedad L. Europace 2017, 19, 1556–1578. [Google Scholar] [CrossRef]
- Wong, J.A.; Conen, D.; Van Gelder, I.C.; McIntyre, W.F.; Crijns, H.J.; Wang, J.; Gold, M.R.; Hohnloser, S.H.; Lau, C.P.; Capucci, A.; et al. Progression of Device-Detected Subclinical Atrial Fibrillation and the Risk of Heart Failure. J. Am. Coll. Cardiol. 2018, 71, 2603–2611. [Google Scholar] [CrossRef]
- Koshy, A.N.; Sajeev, J.K.; Nerlekar, N.; Brown, A.J.; Rajakariar, K.; Zureik, M.; Wong, M.C.; Roberts, L.; Street, M.; Cooke, J.; et al. Smart watches for heart rate assessment in atrial arrhythmias. Int. J. Cardiol. 2018, 266, 124–127. [Google Scholar] [CrossRef] [PubMed]
- Hochstadt, A.; Chorin, E.; Viskin, S.; Schwartz, A.L.; Lubman, N.; Rosso, R. Continuous heart rate monitoring for automatic detection of atrial fibrillation with novel bio-sensing technology. J. Electrocardiol. 2019, 52, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Turakhia, M.P.; Desai, M.; Hedlin, H.; Rajmane, A.; Talati, N.; Ferris, T.; Desai, S.; Nag, D.; Patel, M.; Kowey, P.; et al. Rationale and design of a large-scale, app-based study to identify cardiac arrhythmias using a smartwatch: The Apple Heart Study. Am. Heart J. 2019, 207, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Mortazavi, B.; Nemati, E.; VanderWall, K.; Flores-Rodriguez, H.G.; Cai, J.Y.; Lucier, J.; Naeim, A.; Sarrafzadeh, M. Can smartwatches replace smartphones for posture tracking? Sensors 2015, 15, 26783–26800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bang, M.; Solnevik, K.; Eriksson, H. The Nurse Watch: Design and Evaluation of a Smart Watch Application with Vital Sign Monitoring and Checklist Reminders. In Proceedings of the AMIA Annual Symposium Proceedings 2015, San Francisco, CA, USA, 14–18 November 2015; Volume 2015, pp. 314–319. [Google Scholar]
- Rawassizadeh, R.; Tomitsch, M.; Nourizadeh, M.; Momeni, E.; Peery, A.; Ulanova, L.; Pazzani, M. Energy-efficient integration of continuous context sensing and prediction into smartwatches. Sensors 2015, 15, 22616–22645. [Google Scholar] [CrossRef] [Green Version]
- Banaee, H.; Ahmed, M.U.; Loutfi, A. Data mining for wearable sensors in health monitoring systems: A review of recent trends and challenges. Sensors 2013, 13, 17472–17500. [Google Scholar] [CrossRef] [Green Version]
- De Arriba-Pérez, F.; Caeiro-Rodríguez, M.; Santos-Gago, J.M. Collection and processing of data from wrist wearable devices in heterogeneous and multiple-user scenarios. Sensors 2016, 16, 1538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, J.; Ovalle, A.; Woodbridge, D.M.K. Medhere: A Smartwatch-based Medication Adherence Monitoring System using Machine Learning and Distributed Computing. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 17–21 July 2018; pp. 4945–4948. [Google Scholar]
- Reeder, B.; David, A. Health at hand: A systematic review of smart watch uses for health and wellness. J. Biomed. Inf. 2016, 63, 269–276. [Google Scholar] [CrossRef]
- Apiletti, D.; Baralis, E.; Bruno, G.; Cerquitelli, T. Real-time analysis of physiological data to support medical applications. IEEE Trans. Inf. Technol. Biomed. 2009, 13, 313–321. [Google Scholar] [CrossRef]
- Haescher, M.; Matthies, D.J.; Krause, S.; Bieber, G. Presenting a Data Imputation Concept to Support the Continuous Assessment of Human Vital Data and Activities. In Proceedings of the 12th ACM International Conference on PErvasive Technologies Related to Assistive Environments 2019, Island of Rhodes, Greece, 5–7 June 2019; pp. 587–592. [Google Scholar]
- Schulte, P.F. Molecular Epidemiology: Principles and Practice; Academic Press: New York, NY, USA, 1993. [Google Scholar]
- Crinnion, W.J. The CDC fourth national report on human exposure to environmental chemicals: What it tells us about our toxic burden and how it assists environmental medicine physicians. Altern. Medi. Rev. 2010, 15, 101–108. [Google Scholar]
- Angerer, J.; Gündel, J. Biomonitoring and occupational medicine. Possibilities and limitations. Annali dell’Istituto Superiore di Sanita 1996, 32, 199–206. [Google Scholar] [PubMed]
- Rüdiger, H.W. Biomonitoring in Occupational Medicine. In Toxicology; Elsevier: Amsterdam, The Netherlands, 1999; pp. 1027–1040. [Google Scholar]
- Bartolucci, G.B.; de Rosa, E.; Gori, G.P.; Corona, P.C.; Perbellini, L.; Brugnone, F. Biomonitoring of occupational exposure to styrene. Appl. Ind. Hyg. 1986, 1, 125–131. [Google Scholar] [CrossRef]
- Haines, D.A.; Saravanabhavan, G.; Werry, K.; Khoury, C. An overview of human biomonitoring of environmental chemicals in the Canadian Health Measures Survey: 2007–2019. Int. J. Hyg. Environ. Health 2017, 220, 13–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centers for Disease Control and Prevention. Fourth National Report on Human Exposure to Environmental Chemicals; updated tables; Department of Health and Human Services: Atlanta, GA, USA, 2012. [Google Scholar]
- Hajat, A.; Allison, M.; Diez-Roux, A.V.; Jenny, N.S.; Jorgensen, N.W.; Szpiro, A.A.; Vedal, S.; Kaufman, J.D. Long-term exposure to air pollution and markers of inflammation, coagulation, and endothelial activation a repeat-measures analysis in the multi-ethnic study of atherosclerosis (MESA). Epidemiology 2015, 26, 310–320. [Google Scholar] [CrossRef]
- Ernst, E. The role of fibrinogen as a cardiovascular risk factor. Atherosclerosis 1993, 100, 1–12. [Google Scholar] [CrossRef]
- Abou-Raya, A.; Abou-Raya, S. Inflammation: A pivotal link between autoimmune diseases and atherosclerosis. Autoimmun. Rev. 2006, 5, 331–337. [Google Scholar] [CrossRef]
- Hwang, S.J.; Ballantyne, C.M.; Sharrett, A.R.; Smith, L.C.; Davis, C.E.; Gotto, A.M.J.; Boerwinkle, E. Circulating adhesion molecules VCAM-1, ICAM-1, and E-selectin in carotid atherosclerosis and incident coronary heart disease cases: The Atherosclerosis Risk In Communities (ARIC) study. Circulation 1997, 96, 4219–4225. [Google Scholar] [CrossRef]
- Galea, S.; Tracy, M. Participation Rates in Epidemiologic Studies. Ann. Epidemiol. 2007, 17, 643–653. [Google Scholar] [CrossRef]
- World Health Organization. Human Biomonitoring: Facts and Figures; Regional Office for Europe: Copenhagen, Denmark, 2015. [Google Scholar]
- Pedersen, O.B.; Erikstrup, C.; Kotzé, S.R.; Sørensen, E.; Petersen, M.S.; Grau, K.; Ullum, H. The Danish Blood Donor Study: A large, prospective cohort and biobank for medical research. Vox Sanguinis 2012, 102, 271. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yarza, S.; Hassan, L.; Shtein, A.; Lesser, D.; Novack, L.; Katra, I.; Kloog, I.; Novack, V. Novel Approaches to Air Pollution Exposure and Clinical Outcomes Assessment in Environmental Health Studies. Atmosphere 2020, 11, 122. https://doi.org/10.3390/atmos11020122
Yarza S, Hassan L, Shtein A, Lesser D, Novack L, Katra I, Kloog I, Novack V. Novel Approaches to Air Pollution Exposure and Clinical Outcomes Assessment in Environmental Health Studies. Atmosphere. 2020; 11(2):122. https://doi.org/10.3390/atmos11020122
Chicago/Turabian StyleYarza, Shaked, Lior Hassan, Alexandra Shtein, Dan Lesser, Lena Novack, Itzhak Katra, Itai Kloog, and Victor Novack. 2020. "Novel Approaches to Air Pollution Exposure and Clinical Outcomes Assessment in Environmental Health Studies" Atmosphere 11, no. 2: 122. https://doi.org/10.3390/atmos11020122
APA StyleYarza, S., Hassan, L., Shtein, A., Lesser, D., Novack, L., Katra, I., Kloog, I., & Novack, V. (2020). Novel Approaches to Air Pollution Exposure and Clinical Outcomes Assessment in Environmental Health Studies. Atmosphere, 11(2), 122. https://doi.org/10.3390/atmos11020122