A Review and Insights for Eleven Years of Urban Microclimate Research Towards a New Egyptian ERA of Low Carbon, Comfortable and Energy-Efficient Housing Typologies
Abstract
:1. Introduction
2. Methodology
3. Research for urban fabric geometrical adjustments
3.1. Urban Patterns Thermal Comfort Assessment
3.2. The Compactness Degree Scale
3.3. Development of an Urban Passive Thermal Comfort System
3.4. Development of an Urban Thermal Comfort Design Model
3.5. The Clustered Urban Form: from Cairo to Aswan
3.6. Connecting Outdoor—Indoor Environments
4. Urban Adaptation and Mitigation Strategies Research
4.1. Assessing Urban Trees Numerical Parameters Without Measurements
4.2. Assessing Urban Trees with Measured LAI and Albedo
4.3. UHI Mitigation
4.4. The Green and Blue Infra
5. Methods of Microclimate Research in the Egyptian Context
5.1. ENVI-Met and Field Measurements
5.2. Assessing Energy Efficiency through Coupling ENVI-Met and Design-Builder
6. Urban Microclimate Research Gaps in Egypt
6.1. The Need for an Urban Microclimate Design Model
6.2. Neighborhood as a Sustainable Town Planning Unit in Egypt
6.3. Present Housing Typologies; with or against the Climate Responsive Neighborhood Design?
6.4. Limitations of Urban Microclimate Research Methods
6.4.1. Limitations of Simulation Tools
6.4.2. Limitations of Field Measurement Methods
6.5. Vegetation in the Energy Codes and Green Rating Systems
6.6. The Need to Customize a Hot Arid Thermal Comfort Index
6.7. Integrating Multidisciplinary Sustainabile Design Experts Towards the 5th Generation of Egyptian Cities
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jamei, E.; Rajagopalan, P.; Seyedmahmoudian, M.; Jamei, Y. Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort. Renew. Sustain. Energy Rev. 2016, 54, 1002–1017. [Google Scholar] [CrossRef]
- EEAA. Egypt 3rd National Communication Under the United Nations Framework Convention on Climate Change (UNFCCC); Egyptian Environmental Affairs Agency (EEAA): Cairo, Egypt, 2016.
- Fahmy, M.; Mahdy, M.; El-Hady, H.; Yasser, I.; Abdelalim, M. Simulating the Carbon foot Print Reduction of an Arid Urban form Applying Canopy Layer Green Coverage under Climate Change Scenarios. Int. J. Appl. Eng. Res. 2017, 12, 12906–12913. [Google Scholar]
- Fahmy, M. Numerical assessment for urban developments on a climate change basis; A case study in New Cairo, Egypt. In Proceedings of the 2nd International Conference on quality of life, Cairo, Egypt, 18–19 March 2012. [Google Scholar]
- WHO; UNFCCC. Climate and Health Country Profile of Egypt; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Hassan, K. The Future Impacts of Climate Change on Egyptian Population; Egyptian Society for Migration Studies: Cairo, Egypt, 2009. [Google Scholar]
- Shaharon, M.; Jalaludin, J. Thermal Comfort Assessment-A Study Toward Workers’ Satisfaction in a Low Energy Office Building. Am. J. Appl. Sci. 2012, 9, 1037–1045. [Google Scholar]
- Fahmy, M.; Sharples, S. Passive design for urban thermal comfort: a comparison between different urban forms in Cairo, Egypt. In Proceedings of the PLEA 2008—25th Conference on Passive and Low Energy Architecture, University Collage of Dublin, Dublin, UK, 22–24 October 2008. [Google Scholar]
- Galal, O.M.; Mahmoud, H.; Sailor, D. Impact of evolving building morphology on microclimate in a hot arid climate. Sustain. Cities Soc. 2020, 54, 102011. [Google Scholar] [CrossRef]
- Elnabawi, M.H.; Hamza, N. Behavioural Perspectives of Outdoor Thermal Comfort in Urban Areas: A Critical Review. Atmosphere 2019, 11, 51. [Google Scholar] [CrossRef] [Green Version]
- Makumbe, P. Egypt Energy Efficiency Implementation: Energy Efficiency and Rooftop Solar PV Opportunities, Report Summary; World Bank Group: Washington, DC, USA, 2017. [Google Scholar]
- Hanna, B. Sustainable Energy Potential in the Egyptian Residential Sector. J. Environ. Sci. Eng. B 2013, 2, 374–382. [Google Scholar]
- Abdallaha, L.; El-Shennawyb, T. Evaluation of CO2 emissions from electricity generation in Egypt: Present Status and Projections to 2030. In Proceedings of the First International Conference of Chemical, Energy and Environmnetal Engieering, ICCEEE, Alexandria, Egypt, 19–21 March 2019. [Google Scholar]
- Harlan, S.L.; Brazel, A.J.; Prashad, L.; Stefanov, W.L.; Larsen, L. Neighborhood microclimates and vulnerability to heat stress. Soc. Sci. Med. 2006, 63, 2847–2863. [Google Scholar] [CrossRef]
- Hassan, A.N.; Anthony, J.B.; Robert, C.B.J. Analysis of the Kuwait city urban heat island. Int. J. Climatol. 1990, 10, 401–405. [Google Scholar]
- Balling, R.C.; Brazel, S.W. Time and Space Characteristics of the Phoenix Urban Heat Island. J. Ariz. Nev. Acad. Sci. 1987, 21, 75–81. [Google Scholar]
- Rosenfeld, A.H.; Akbari, H.; Bretz, S.; Fishman, B.L.; Kurn, D.M.; Sailor, D.; Taha, H. Mitigation of urban heat islands: Materials, utility programs, updates. Energy Build. 1995, 22, 255–265. [Google Scholar] [CrossRef]
- Huang, Y.J.; Akbari, H.; Taha, H.; Rosenfeld, A.H. The Potential of Vegetation in Reducing Summer Cooling Loads in Residential Buildings. J. Clim. Appl. Meteorol. 1987, 26, 1103–1116. [Google Scholar] [CrossRef]
- Oke, T.R. Towards better scientific communication in urban climate. Theor. Appl. Climatol. 2006, 84, 179–190. [Google Scholar] [CrossRef]
- Oke, T.R. Towards a prescription for the greater use of climatic principles in settlement planning. Energy Build. 1984, 7, 1–10. [Google Scholar] [CrossRef]
- Arnfield, A. Two Decades of Urban Climate Research: A review of Turbulence, Exchange of Energy, Water and the urban heat islands. Int. J. Climatol. 2003, 23, 1–26. [Google Scholar] [CrossRef]
- Givoni, B. Climate Consideration in Urban and Building Design; Van Nostrand Reinhold: New York, NY, USA, 1998. [Google Scholar]
- Burton, E. Measuring urban compactness in UK towns and cities. Environ. Plan. B Plan. Des. 2002, 29, 219–250. [Google Scholar] [CrossRef]
- Burton, E. The compact city: Just or just compact? A preliminary analysis. Urban. Stud. 2000, 37, 1969–2006. [Google Scholar] [CrossRef]
- Tablada, A.; De Troyer, F.; Blocken, B.; Carmeliet, J.; Verschure, H. On natural ventilation and thermal comfort in compact urban environments - the Old Havana case. Build. Environ. 2009, 44, 1943–1958. [Google Scholar] [CrossRef]
- Ali-Toudert, F.; Mayer, H. Effects of asymmetry, galleries, overhanging facades and vegetation on thermal comfort in urban street canyons. Sol. Energy 2007, 81, 742–754. [Google Scholar] [CrossRef]
- Ali-Toudert, F.; Mayer, H. Thermal comfort in an east-west oriented street canyon in Freiburg (Germany) under hot summer conditions. Theor. Appl. Climatol. 2007, 87, 223–237. [Google Scholar] [CrossRef]
- Ali-Toudert, F.; Mayer, H. Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate. Build. Environ. 2006, 41, 94–108. [Google Scholar] [CrossRef]
- Oke, T.R. Street Design and Urban Canopy Layer Climate. Energy Build. 1988, 11, 103–113. [Google Scholar] [CrossRef]
- Nakamura, Y.; Oke, T.R. Wind, Temperature and Stability Conditions in an East-West Oriented Urban Canyon. Atmos. Environ. 1988, 22, 2691–2700. [Google Scholar] [CrossRef]
- Shashua-Bar, L.; Hoffman, M.E. Quantitative evaluation of passive cooling of the UCL microclimate in hot regions in summer, case study: Urban streets and courtyards with trees. Build. Environ. 2004, 39, 1087–1099. [Google Scholar] [CrossRef]
- Muhaisen, A.S. Shading simulation of the courtyard form in different climatic regions. Build. Environ. 2006, 41, 1731–1741. [Google Scholar]
- Aldawoud, A.; Clark, R. Comparative analysis of energy performance between courtyard and atrium in buildings. Energy Build. 2008, 40, 209–214. [Google Scholar] [CrossRef]
- Fahmy, M.; Sharples, S. On the development of an urban passive thermal comfort system in Cairo, Egypt. Build. Environ. 2009, 44, 1907–1916. [Google Scholar] [CrossRef]
- Mahmoud, H. Effect of urban form on outdoor thermal comfort of governmental residential buildings: New aswan as a case study, Egypt. J. Eng. Sci. Assiut Univ. Fac. Eng. 2019, 47, 309–325. [Google Scholar]
- Fahmy, M.; Sharples, S. The need for an urban climatology applied design model. Available online: http://www.urban-climate.org/IAUC028.pdf, (accessed on 20 February 2020).
- Fahmy, M. Interactive Urban form Design of Local Climate Scale in Hot Semi-Arid Zone; The University of Sheffield: Sheffield, UK, 2010. [Google Scholar]
- Shalaby, A.; Shafey, A. Optimizing the Thermal Performance of Street Canyons in New Cairo, Egypt. Available online: https://www.researchgate.net/publication/326973081_Optimizing_the_Thermal_Performance_of_Street_Canyons_in_New_Cairo_Egypt (accessed on 25 February 2020).
- Fahmy, M. Climate Change Adaptation for Mid-latitude Urban Developments. In Proceedings of the PLEA2012 - 28th Conference, Lima, Perú, 7–9 November 2012. [Google Scholar]
- Fahmy, M.; Elwy, I. Visual and Thermal Comfort Optimization for Arid Urban Spaces using Parametric Techniques on the Scale of Compactness Degree. In Proceedings of the Passive and Low Energy Architecture Conference, Los Angeles, California, USA, 11–13 July 2016. [Google Scholar]
- NOUH. Environmental Guide for Urban; Urban Spaces; NOUH: Cairo, Egypt, 2013. [Google Scholar]
- Hassaan, A.; Mahmoud, A. Analysis of the microclimatic and human comfort conditions in an urban park in hot and arid regions. Build. Environ. 2011, 46, 2641–2656. [Google Scholar]
- Limona, S.; Al-hagla, K.; El-Sayed, Z. Using simulation methods to investigate the impact of urban form on human comfort. Case study: Coast of Baltim, North Coast, Egypt. Alex. Eng. J. 2019, 58, 273–282. [Google Scholar] [CrossRef]
- Fahmy, M.; Kamel, H.; Mokhtar, H.; Elwy, I.; Gimiee, A.; Ibrahim, Y.; Abdelalim, M. On the Development and Optimization of an Urban Design Comfort Model (UDCM) on a Passive Solar Basis at Mid-Latitude Sites. Climate 2019, 7, 1. [Google Scholar] [CrossRef] [Green Version]
- Fahmy, M.; Sharples, S. Urban form, thermal comfort and building CO2 emissions - a numerical analysis in Cairo. Build. Serv. Eng. Res. Technol. 2011, 32, 73–84. [Google Scholar] [CrossRef]
- Jendritzky, G.; Nübler, W. A model analysing the urban thermal environment in physiologically significant terms. Meteorology and Atmospheric Physics 1981, 29, 313–326. [Google Scholar] [CrossRef]
- d’Ambrosio Alfano, F.R.; Olesen, B.W.; Palella, B.I.; Pepe, D.; Riccio, G. Fifty Years of PMV Model: Reliability, Implementation and Design of Software for Its Calculation. Atmosphere 2019, 11, 49. [Google Scholar] [CrossRef] [Green Version]
- Lai, A.C.K.; Mui, K.W.; Wong, L.T.; Law, L.Y. An evaluation model for indoor environmental quality (IEQ) acceptance in residential buildings. Energy Build. 2009, 41, 930–936. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Dahanayake, K.W.D.K.C.; Ng, E.; Chow, C.L. Temperature and cooling demand reduction by green-roof types in different climates and urban densities: A co-simulation parametric study. Energy Build. 2017, 145, 226–237. [Google Scholar] [CrossRef]
- Fahmy, M.; Sharples, S.; Trabolsi, A. Dual stage simulations to study microclimate thermal effect of trees on comfort levels in a multi family residential building. In Proceedings of the 11th International Building Performance Simulation Association Conference University of Strathclyde, Glasgow, UK, 27–30 July 2009. [Google Scholar]
- Abdallah, A. The Influence of Urban Geometry on Thermal Comfort and Energy Consumption in Residential Building of Hot Arid Climate, Assiut, Egypt. Procedia Eng. 2015, 121, 158–166. [Google Scholar] [CrossRef] [Green Version]
- Taha, H. Urban climates and heat islands: Albedo, evapotranspiration, and anthropogenic heat. Energy Build. 1997, 25, 99–103. [Google Scholar] [CrossRef] [Green Version]
- McPherson, E.G.; Nowak, D.; Heisler, G.; Grimmond, S.; Souch, C.; Grant, R.; Rowntree, R. Quantifying urban forest structure, function, and value: The Chicago Urban Forest Climate Project. Urban. Ecosyst. 1997, 1, 49–61. [Google Scholar] [CrossRef]
- Dimoudi, A.; Nikolopoulou, M. Vegetation in the Urban Environments: Microclimatic Analysis and Benefits. Energy Build. 2003, 35, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Avissar, R. Potential effects of vegetation on the urban thermal environment. Atmos. Environ. 1996, 30, 437–448. [Google Scholar] [CrossRef]
- McPherson, E.G.; Simpson, J.R.; Xiao, Q.; Wu, C. Million trees Los Angeles canopy cover and benefit assessment. Landsc. Urban. Plan. 2011, 99, 40–50. [Google Scholar] [CrossRef]
- McPherson, G.; Simpson, J.R. Shade trees as a demand-side resource. Home Energy 1995, 12, 11–17. [Google Scholar]
- Mahmoud, A.H.A. An analysis of bioclimatic zones and implications for design of outdoor built environments in Egypt. Build. Environ. 2011, 46, 605–620. [Google Scholar] [CrossRef]
- Fahmy, M.; Sharples, S.; Yahiya, M. LAI based trees selection for mid latitude urban developments: A microclimatic study in Cairo, Egypt. Build. Environ. 2010, 45, 345–357. [Google Scholar] [CrossRef] [Green Version]
- Fahmy, M.; El-Hady, H.; Mahdy, M.; Abdelalim, M.F. On the green adaptation of urban developments in Egypt; predicting community future energy efficiency using coupled outdoor-indoor simulations. Energy Build. 2017, 153, 241–261. [Google Scholar] [CrossRef]
- Oke, T.R. Boundary Layer Climates; Methuen: London, UK, 1987. [Google Scholar]
- Sailor, D.J.; Hutchinson, D.; Bokovoy, L. Thermal property measurements for ecoroof soils common in the western U.S. Energy Build. 2008, 40, 1246–1251. [Google Scholar] [CrossRef]
- Jacobs, A.F.G.; Ronda, R.J.; Holtslag, A.A.M. Water vapour and carbon dioxide fluxes over bog vegetation. Agric. For. Meteorol. 2003, 116, 103–112. [Google Scholar] [CrossRef]
- Kurn, M.; Bretz, S.E.; Huang, B.; Akbari, H. The Potential for Reducing Urban Air Temperatures and Energy Consumption Through Vegetative Cooling; Heat Island Project Energy & Environment Division, Lawrence Berkeley Laboratory, University of California: Berkeley, CA, USA, 1994. [Google Scholar]
- Streiling, S.; Matzarakis, A. Influence of single and small clusters of trees on the bio climate of a city: A case study. J. Arboric. 2003, 29, 309–315. [Google Scholar]
- Shahidan, M.; Salleh, E.; Shariff, K. Effects of Tree Canopies on Solar Radiation Filtration In a Tropical Microclimatic Environment. In Proceedings of the 24th Conference on Passive and Low Energy Architecture, Singapore, 22–24 November 2007. [Google Scholar]
- Lalic, B.; Mihailovic, D.T. An empirical relation describing leaf-area density inside the forest for environmental modeling. J. Appl. Meteorol. 2004, 43, 641–645. [Google Scholar] [CrossRef]
- Bruse, M. ENVI-met V4.0, a microscale urban climate model. Available online: www.envi-met.com (accessed on 19 December 2019).
- Fahmy, M.; El-Hady, H.; Mahdy, M. LAI and Albedo Measurements Based Methodology for Numerical Simulation of Urban Tree’s Microclimate: A Case Study in Egypt. Int. J. Sci. Eng. Res. 2016, 7, 790–797. [Google Scholar]
- LI-COR. LAI Plant Canopy Analizer. Available online: https://www.licor.com/env/products/leaf_area/LAI-2200C/ (accessed on 18 September 2017).
- KippZonen. CMP21 Pyranometer. Available online: http://www.kippzonen.com/Product/14/CMP21-Pyranometer#.WBL8a (accessed on 2 November 2019).
- Taheri Shahraiyni, H.; Sodoudi, S.; El-Zafarany, A.; Abou El Seoud, T.; Ashraf, H.; Krone, K. A Comprehensive Statistical Study on Daytime Surface Urban Heat Island during Summer in Urban Areas, Case Study: Cairo and Its New Towns. Remote Sens. 2016, 8, 643. [Google Scholar] [CrossRef] [Green Version]
- Fahmy, M.; Ibrahim, Y.; Hanafi, E.; Barakat, M. Would LEED-UHI greenery and high albedo strategies mitigate climate change at neighborhood scale in Cairo, Egypt? Build. Simul. 2018, 11, 1273–1288. [Google Scholar] [CrossRef]
- Yasser, A. The Role of Trees in Improving Thermal Comfort and Mitigating Urban Heat Island. In Envi-Met Simulation Study of an Urban Model in Cairo City; Arabic. Cairo University: Cairo, Egypt, 2017. [Google Scholar]
- Aboelata, A.; Sodoudi, S. Evaluating urban vegetation scenarios to mitigate urban heat island and reduce buildings’ energy in dense built-up areas in Cairo. Build. Environ. 2019, 166, 106407. [Google Scholar] [CrossRef]
- Aboelata, A.; Sodoudi, S. Evaluating the effect of trees on UHI mitigation and reduction of energy usage in different built up areas in Cairo. Build. Environ. 2020, 168, 106490. [Google Scholar] [CrossRef]
- Duany, A. Introduction to the Special Issue: The Transect. J. Urban. Des. 2002, 7, 251–260. [Google Scholar] [CrossRef]
- Fahmy, M.; Sharples, S. Extensive review for urban climatology: Definitions, aspects and scales. In Proceedings of the 7th International Conference on Civil and Architecture Engineering, ICCAE-7, Military Technical Collage, Cairo, Egypt, 27–29 May 2008. [Google Scholar]
- Mahmoud, A.H.; Omar, R.H. Planting design for urban parks: Space syntax as a landscape design assessment tool. Front. Archit. Res. 2015, 4, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Arnold, H.F. Trees in Urban Design, 1st ed.; Van Nostrand Reinhold: New York, NY, USA, 1980. [Google Scholar]
- Trowbridge, P.J.; Bassuk, N.L. Trees in the Urban Landscape; Site Assessment, Design and Installation; John Wiley & Sons, Inc.: Hoboken, New Jersey, USA, 2004. [Google Scholar]
- Lam, K.C.; Leung, S.; Hui, W.C.; Chan, P.K. Environmental Quality of Urban parks and open spaces in Hong Kong. Environ. Monit. Assess. 2005, 111, 55–73. [Google Scholar] [CrossRef]
- Oke, T.R.; Crowther, J.M.; McNaughton, K.G.; Monteith, J.L.; Gardiner, B. The Micrometeorology of the Urban Forest and Discussion. Philos. Trans. R. Soc. Lond. Biol. Sci. 1989, 324, 335–349. [Google Scholar] [CrossRef]
- Akbari, H. Shade trees reduce building energy use and CO2 emissions from power plants. Environ. Pollut. 2002, 116, S119–S126. [Google Scholar] [CrossRef]
- Akbari, H.; Pomerantz, M.; Taha, H. Cool surfaces and Shade Trees to Reduce Energy Use and Improve Air Quality in Urban Areas. Sol. Energy 2001, 70, 295–310. [Google Scholar] [CrossRef]
- Ayad, A.; Kamel, W.; Mohamad, F. Urban Green and Blue Infrastructure Simulation in a Changing Climate from Microclimate to Energy Consumption: A Case study in Alexandria, Egypt. In Proceedings of the Building Simulation 2019, Rome, Italy, 2–4 September 2019. [Google Scholar]
- Bruse, M.; Fleer, H. Simulating surface-plant-air interactions inside urban environments with a three dimensional numerical model. Environ. Model. Softw. 1998, 13, 373–384. [Google Scholar] [CrossRef]
- Hoppe, P. The physiological equivalent temperature—A universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef] [PubMed]
- AutoDesk. ECOTECT2010. Available online: http://www.autodesk.co.uk/adsk/servlet/mform?validate=no&siteID=452932&id=14205163 (accessed on 4 April 2017).
- Chatzinikolaou, E.; Chalkias, C.; Dimopoulou, E. Urban microclimate improvement using ENVI-MET climate model. In Proceedings of the ISPRS TC IV Mid-Term Symposium on 3D Spatial Information Science—The Engine of Change, Delft, The Netherlands, 1–5 October 2018; pp. 69–76. [Google Scholar]
- Salata, F.; Golasi, I.; de Lieto Vollaro, R.; de Lieto Vollaro, A. Urban microclimate and outdoor thermal comfort. A proper procedure to fit ENVI-met simulation outputs to experimental data. Sustain. Cities Soc. 2016, 26, 318–343. [Google Scholar] [CrossRef]
- Crank, P.J.; Sailor, D.J.; Ban-Weiss, G.; Taleghani, M. Evaluating the ENVI-met microscale model for suitability in analysis of targeted urban heat mitigation strategies. Urban. Clim. 2018, 26, 188–197. [Google Scholar] [CrossRef]
- Toudert, F.A. Dependence of Outdoor Thermal Comfort on Street Design in Hot and Dry Climate; Institutes der Universität Freiburg: Freiburg, Germany, 2005. [Google Scholar]
- Onset. HOBO U30 Data Loggers. Available online: http://www.onsetcomp.com/products/data-loggers/U30-data-loggers (accessed on 2 March 2018).
- Park, S.; Tuller, S.E.; Jo, M. Application of Universal Thermal Climate Index (UTCI) for microclimatic analysis in urban thermal environments. Landsc. Urban. Plan. 2014, 125, 146–155. [Google Scholar] [CrossRef]
- de Freitas, C.R.; Grigorieva, E.A. A comprehensive catalogue and classification of human thermal climate indices. Int. J. Biometeorol. 2015, 59, 109–120. [Google Scholar] [CrossRef]
- d’Ambrosio Alfano, F.R.; Malchaire, J.; Palella, B.I.; Riccio, G. WBGT index revisited after 60 years of use. Ann. Occup. Hyg. 2014, 58, 955–970. [Google Scholar]
- Cardinali, M.; Pisello, A.L.; Piselli, C.; Pigliautile, I.; Cotana, F. Microclimate mitigation for enhancing energy and environmental performance of Near Zero Energy Settlements in Italy. Sustain Cities Soc 2020, 53, 101964. [Google Scholar] [CrossRef]
- Elwy, I.; Ibrahim, Y.; Fahmy, M.; Mahdy, M. Outdoor microclimatic validation for hybrid simulation workflow in hot arid climates against ENVI-met and field measurements. Energy Procedia 2018, 153, 29–34. [Google Scholar] [CrossRef]
- Tedeschi, A.; Andreani, S.; Buono, A.; Degni, M.; Friesen, L.; Galli, A.; Lipari, F.; Lombardi, D.; Lonnbardi, L.; Mamou-Mani, A.; et al. AAD_Algorithms-Aided Design, Parametric Strategies using Grasshopper®; Le Penseur: Potenza, Italy, 2014. [Google Scholar]
- McNeel, R. Rhinoceros (Version 5). Available online: https://www.rhino3d.com/features (accessed on 8 October 2017).
- WOODBURY, R. Elements of Parametric Design; Routledge, Taylor & Francis Group: Abingdon, Oxon, UK, 2010. [Google Scholar]
- Olgyay, V. Design with climate; Bioclimatic Approach and Architectural Regionalism; Princeton University Press: London, UK, 1963. [Google Scholar]
- Olgyay, V. Bioclimatic orientation method for buildings. Int. J. Biometeorol. 1967, 11, 163–174. [Google Scholar] [CrossRef]
- Fanger, P.O. Thermal Comfort; Analysis and Applications in Environmental Engineering; McGraw-Hill: New York, NY, USA, 1970. [Google Scholar]
- Givoni, B. Man, Climate and Architecture; Elsevier Ltd.: London, UK, 1969. [Google Scholar]
- Givoni, B. The effect of heat capacity in direct gain buildings. Passiv. Sol. Energy 1987, 4, 25–40. [Google Scholar]
- DOE. EnergyPlus Energy Simulation Software. Available online: www.apps1.eere.energy.gov/buildings/energyplus/cfm/reg_form.cfm. (accessed on 15 January 2009).
- Fahmy, M.; Mahdy, M.; Mahmoud, S.; Abdelalim, M.; Ezzeldin, S.; Attia, S. Influence of urban canopy green coverage and future climate change scenarios on energy consumption of new sub-urban residential developments using coupled simulation techniques: A case study in Alexandria, Egypt. Energy Rep. 2020. [Google Scholar] [CrossRef]
- CCWorldWeatherGen. Climate Change World Weather File Generator. Available online: www.serg.soton.ac.uk/ccworldweathergen/ (accessed on 20 February 2020).
- Ayad, A.; Fahmy, M.; Kamel, W. Urban Green and Blue Infrastructure Simulation in a Changing Climate from Microclimate to Energy Consumption: A Case study in Alexandria, Egypt. In Proceedings of the 16th IBPSA International Conference and Exhibition, Rome, Italy, 7–9 September 2019. [Google Scholar]
- IPCC. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2014. [Google Scholar]
- ARUP. Weather Shift. Available online: http://www.weather-shift.com/ (accessed on 2 November 2019).
- Mahmoud, S.; Fahmy, M.; Mahdy, M.; Elwy, I.; Abdelalim, M. Comparative energy performance simulation for passive and conventional design: A case study in Cairo, Egypt. Energy Rep. 2020. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- EPA. Reducing Urban Heat Islands: Compendium of Strategies; Cool Pavements. Available online: http://www.epa.gov/heatisland/resources/compendium.htm. (accessed on 14 September 2009).
- EPA. Reducing Urban Heat Islands: Compendium of Strategies; Cool Roofs. Available online: http://www.epa.gov/heatisland/resources/compendium.htm. (accessed on 14 September 2009).
- Santamouris, M. Cooling the cities–a review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol. Energy 2014, 103, 682–703. [Google Scholar] [CrossRef]
- Al-Hafith, O.; BK, S.; Bradbury, S.; de Wilde, P. The Impact of Courtyard parameters on its shading level An experimental study in Baghdad, Iraq. Energy Procedia 2017, 134, 99–109. [Google Scholar] [CrossRef]
- Al-Hafith, O.; Satish, B.K.; Bradbury, S.; de Wilde, P. The impact of courtyard compact urban fabric on its shading: Case study of Mosul city, Iraq. Energy Procedia 2017, 122, 889–894. [Google Scholar] [CrossRef]
- Al-Hafith, O.; Satish, B.K.; Bradbury, S.; Wilde, P.D. Simulation of courtyard spaces in a desert climate. Energy Procedia 2017, 142, 1997–2002. [Google Scholar] [CrossRef]
- Li, H.; Zhou, Y.; Wang, X.; Zhou, X.; Zhang, H.; Sodoudi, S. Quantifying urban heat island intensity and its physical mechanism using WRF/UCM. Sci. Total Environ. 2019, 650, 3110–3119. [Google Scholar] [CrossRef]
- Li, H.; Wolter, M.; Wang, X.; Sodoudi, S. Impact of land cover data on the simulation of urban heat island for Berlin using WRF coupled with bulk approach of Noah-LSM. Theor. Appl. Climatol. 2018, 134, 67–81. [Google Scholar] [CrossRef]
- LadybugTools. Dragonfly. Available online: https://www.ladybug.tools/dragonfly.html (accessed on 20 December 2019).
- Roudsari, M.S. What is Ladybug Tools? Available online: http://www.ladybug.tools/ (accessed on 18 November 2017).
- Mackey, C.; Galanos, T.; Norford, L.; Roudsari, M.S. Wind, Sun, Surface Temperature, and Heat Island: Critical Variables for High-Resolution Outdoor Thermal Comfort. In Proceedings of the 15th IBPSA Conference, San Francisco, CA, USA, 7–9 August 2017. [Google Scholar]
- Bueno, B.; Nakano, A.; Norford, L.; Reinhart, C. Urban Weather Generator—A Novel Workflow for Integrating Urban Heat Island Effect within Urban Design Process. Available online: http://www.ibpsa.org/proceedings/BS2015/p2909.pdf (accessed on 25 February 2020).
- Naboni, E.; Natanian, J.; Brizzi, G.; Florio, P.; Chokhachian, A.; Galanos, T.; Rastogi, P. A digital workflow to quantify regenerative urban design in the context of a changing climate. Renew. Sustain. Energy Rev. 2019, 113, 109255. [Google Scholar] [CrossRef]
- METEONORM. Irradiation Data for Every Place on Earth. Available online: www.meteonorm.com (accessed on 25 January 2018).
- Nielsen, C.K. Hygrotermic Control of the Microclimate Around Buildings. Technical University of Denmark: Copenhagen, Denmark, 2018. [Google Scholar]
- Manickathan, L.; Defraeye, T.; Allegrini, J.; Derome, D.; Carmelieta, J. Parametric study of the influence of environmental factors and tree properties on the transpirative cooling effect of trees. Agric. For. Meteorol. 2017, 248, 259–274. [Google Scholar] [CrossRef] [Green Version]
- OpenFOAM. OpenFOAM. Available online: https://openfoam.org/ (accessed on 20 December 2019).
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Zeitschrif 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Rheologic. Rheologic. Available online: https://rheologic.net/en (accessed on 20 December 2019).
- Horvath, A.; Nagy, J. uhiSolver-Developing an effective transient Multi-Physics Solver for prediction and mitigation of Urban Heat Island dynamics. In Proceedings of the 6th ESI OpenFOAM User Conference, Hamburg, Germany, 23–25 October 2018. [Google Scholar]
- Li, H.; Zhou, Y.; Li, X.; Meng, L.; Wang, X.; Wu, S.; Sodoudi, S. A new method to quantify surface urban heat island intensity. Sci. Total Environ. 2018, 624, 262–272. [Google Scholar] [CrossRef] [PubMed]
- HBRC. Egyptian Code for Reducing Energy Consumption in Residentail Buildings; Egyptian Ministry of Housing, Utilities and Urban Communities; Housing and Building Research Centre: Cairo, Egypt, 2008. [Google Scholar]
- EGBC. Green Pyramid Rating System, 1st ed.; The Housing and Building National Research Center (HBRC), The Egyptian Green Building Council (EGBC): Cairo, Egypt, 2011. [Google Scholar]
- Nikolopoulou, M.; Steemers, K. Thermal comfort and psychological adaptation as a guide for designing urban spaces. Energy and Buildings 2003, 35, 95–101. [Google Scholar] [CrossRef]
- Hegazy, I.R.; Moustafa, W.S. Toward revitalization of new towns in Egypt case study: Sixth of October. Int. J. Sustain. Built Env. 2013, 2, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Peng, C.; Huang, Y.; Wu, Z. Building-integrated photovoltaics (BIPV) in architectural design in China. Energy Build. 2011, 43, 3592–3598. [Google Scholar] [CrossRef]
- Hulme, M. 1.5 °C and climate research after the Paris Agreement. Nat. Clim. Chang. 2016, 6, 222–224. [Google Scholar] [CrossRef] [Green Version]
- Brunnée, J.; Streck, C. The UNFCCC as a negotiation forum: Towards common but more differentiated responsibilities. Clim. Policy 2013, 13, 589–607. [Google Scholar] [CrossRef]
- Disch, R. The energy plus buildings in the solar settlement of Freiburg, Germany. Available online: http://www.rolfdisch.de/en/architects-office/ (accessed on 7 February 2020).
- EU. EU Research and Innovation Magazine. Available online: https://horizon-magazine.eu/article/record-breaking-solar-cells-get-ready-mass-production.html (accessed on 7 February 2020).
- NUCA. Social Housing. Available online: http://www.newcities.gov.eg/about/Projects/Housing_projects/SocialHousing/default.aspx (accessed on 14 February 2020).
No. | City Sector | Corresponding Compactness Category | Compactness Degree |
---|---|---|---|
1 | City center | Very compact | 5–8 |
2 | Central urban | Compact | 2.8–5 |
3 | General urban | Medium | 1.6–3 |
4 | Suburban | Open | 0.4–1.8 |
5 | Rural urban | Very open | 0.3–0.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fahmy, M.; Mahmoud, S.; Elwy, I.; Mahmoud, H. A Review and Insights for Eleven Years of Urban Microclimate Research Towards a New Egyptian ERA of Low Carbon, Comfortable and Energy-Efficient Housing Typologies. Atmosphere 2020, 11, 236. https://doi.org/10.3390/atmos11030236
Fahmy M, Mahmoud S, Elwy I, Mahmoud H. A Review and Insights for Eleven Years of Urban Microclimate Research Towards a New Egyptian ERA of Low Carbon, Comfortable and Energy-Efficient Housing Typologies. Atmosphere. 2020; 11(3):236. https://doi.org/10.3390/atmos11030236
Chicago/Turabian StyleFahmy, Mohammad, Sherif Mahmoud, Ibrahim Elwy, and Hatem Mahmoud. 2020. "A Review and Insights for Eleven Years of Urban Microclimate Research Towards a New Egyptian ERA of Low Carbon, Comfortable and Energy-Efficient Housing Typologies" Atmosphere 11, no. 3: 236. https://doi.org/10.3390/atmos11030236
APA StyleFahmy, M., Mahmoud, S., Elwy, I., & Mahmoud, H. (2020). A Review and Insights for Eleven Years of Urban Microclimate Research Towards a New Egyptian ERA of Low Carbon, Comfortable and Energy-Efficient Housing Typologies. Atmosphere, 11(3), 236. https://doi.org/10.3390/atmos11030236