Passively Sampled Ambient Hydrocarbon Abundances in a Texas Oil Patch
Abstract
:1. Introduction
2. Methods
2.1. Location and Sampling
2.2. Sample Analysis
2.3. Auxiliary Data
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Energy Information Administration. Oil: Crude and petroleum products explained—Where our oil comes from. Available online: https://www.eia.gov/energyexplained/oil-and-petroleum-products/where-our-oil-comes-from.php (accessed on 9 February 2019).
- Energy Information Administration. Horizontally Drilled Wells Dominate U.S. Tight Formation Production. Available online: https://www.eia.gov/todayinenergy/detail.php?id=39752 (accessed on 9 February 2019).
- Energy Information Administration. Annual Energy Outlook 2019; EIA: Washington, DC, USA, 2019; p. 83. [Google Scholar]
- Schade, G.W.; Roest, G. Analysis of non-methane hydrocarbon data from a monitoring station affected by oil and gas development in the Eagle Ford shale, Texas. Elem. Sci. Anthr. 2016, 4, 000096. [Google Scholar] [CrossRef] [Green Version]
- Schade, G.W.; Roest, G.S. Is the shale boom reversing progress in curbing ozone pollution? Eos Trans. Am. Geophys. Union 2015, 96. [Google Scholar] [CrossRef]
- Marrero, J.E.; Townsend-Small, A.; Lyon, D.R.; Tsai, T.R.; Meinardi, S.; Blake, D.R. Estimating Emissions of Toxic Hydrocarbons from Natural Gas Production Sites in the Barnett Shale Region of Northern Texas. Environ. Sci. Technol. 2016, 50, 10756–10764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petron, G.; Frost, G.; Miller, B.R.; Hirsch, A.I.; Montzka, S.A.; Karion, A.; Trainer, M.; Sweeney, C.; Andrews, A.E.; Miller, L.; et al. Hydrocarbon emissions characterization in the Colorado Front Range: A pilot study. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Lyon, D.R.; Alvarez, R.A.; Zavala-Araiza, D.; Brandt, A.R.; Jackson, R.B.; Hamburg, S.P. Aerial Surveys of Elevated Hydrocarbon Emissions from Oil and Gas Production Sites. Environ. Sci. Technol. 2016, 50, 4877–4886. [Google Scholar] [CrossRef]
- Brantley, H.L.; Thoma, E.D.; Squier, W.C.; Guven, B.B.; Lyon, D. Assessment of Methane Emissions from Oil and Gas Production Pads using Mobile Measurements. Environ. Sci. Technol. 2014, 48, 14508–14515. [Google Scholar] [CrossRef] [Green Version]
- Warneke, C.; Geiger, F.; Edwards, P.M.; Dube, W.; Pétron, G.; Kofler, J.; Zahn, A.; Brown, S.S.; Graus, M.; Gilman, J.B.; et al. Volatile organic compound emissions from the oil and natural gas industry in the Uintah Basin, Utah: Oil and gas well pad emissions compared to ambient air composition. Atmos. Chem. Phys. 2014, 14, 10977–10988. [Google Scholar] [CrossRef] [Green Version]
- Caulton, D.R.; Shepson, P.B.; Cambaliza, M.O.L.; McCabe, D.; Baum, E.; Stirm, B.H. Methane Destruction Efficiency of Natural Gas Flares Associated with Shale Formation Wells. Environ. Sci. Technol. 2014, 48, 9548–9554. [Google Scholar] [CrossRef]
- Knighton, W.B.; Herndon, S.C.; Franklin, J.F.; Wood, E.C.; Wormhoudt, J.; Brooks, W.; Fortner, E.C.; Allen, D.T. Direct measurement of volatile organic compound emissions from industrial flares using real-time online techniques: Proton Transfer Reaction Mass Spectrometry and Tunable Infrared Laser Differential Absorption Spectroscopy. Ind. Eng. Chem. Res. 2012, 51, 12674–12684. [Google Scholar] [CrossRef]
- Strosher, M.T. Characterization of Emissions from Diffusion Flare Systems. J. Air Waste Manag. Assoc. 2000, 50, 1723–1733. [Google Scholar] [CrossRef]
- Torres, V.M.; Herndon, S.; Wood, E.; Al-Fadhli, F.M.; Allen, D.T. Emissions of Nitrogen Oxides from Flares Operating at Low Flow Conditions. Ind. Eng. Chem. Res. 2012, 51, 12600–12605. [Google Scholar] [CrossRef]
- Fawole, O.G.; Cai, X.M.; MacKenzie, A.R. Gas flaring and resultant air pollution: A review focusing on black carbon. Environ. Pollut. 2016, 216, 182–197. [Google Scholar] [CrossRef] [PubMed]
- Majid, A.; Val Martin, M.; Lamsal, L.N.; Duncan, B.N. A decade of changes in nitrogen oxides over regions of oil and natural gas activity in the United States. Elemanta Sci. Anthr. 2017, 5, 76. [Google Scholar] [CrossRef]
- Cheadle, L.C.; Oltmans, S.J.; Pétron, G.; Schnell, R.C.; Mattson, E.J.; Herndon, S.C.; Thompson, A.M.; Blake, D.R.; McClure-Begley, A. Surface ozone in the Colorado northern Front Range and the influence of oil and gas development during FRAPPE/DISCOVER-AQ in summer 2014. Elemanta Sci. Anthr. 2017, 5, 61. [Google Scholar] [CrossRef]
- Kort, E.A.; Smith, M.L.; Murray, L.T.; Gvakharia, A.; Brandt, A.R.; Peischl, J.; Ryerson, T.B.; Sweeney, C.; Travis, K. Fugitive emissions from the Bakken shale illustrate role of shale production in global ethane shift. Geophys. Res. Lett. 2016, 43, 4617–4623. [Google Scholar] [CrossRef] [Green Version]
- Strum, M.; Scheffe, R. National review of ambient air toxics observations. J. Air Waste Manag. Assoc. 2016, 66, 120–133. [Google Scholar] [CrossRef] [Green Version]
- Bolden, A.L.; Kwiatkowski, C.F.; Colborn, T. New Look at BTEX: Are Ambient Levels a Problem? Environ. Sci. Technol. 2015, 49, 5261–5276. [Google Scholar] [CrossRef]
- Goethel, G.; Brucker, N.; Moro, A.M.; Charao, M.F.; Fracasso, R.; Barth, A.; Bubols, G.; Durgante, J.; Nascimento, S.; Baierle, M.; et al. Evaluation of genotoxicity in workers exposed to benzene and atmospheric pollutants. Mutat. Res. Genet. Toxicol. Environ. Mutagenesis 2014, 770, 61–65. [Google Scholar] [CrossRef]
- McKenzie, L.M.; Blair, B.; Hughes, J.; Allshouse, W.B.; Blake, N.J.; Helmig, D.; Milmoe, P.; Halliday, H.; Blake, D.R.; Adgate, J.L. Ambient Nonmethane Hydrocarbon Levels Along Colorado’s Northern Front Range: Acute and Chronic Health Risks. Environ. Sci. Technol. 2018. [Google Scholar] [CrossRef]
- McKenzie, L.M.; Witter, R.Z.; Newman, L.S.; Adgate, J.L. Human health risk assessment of air emissions from development of unconventional natural gas resources. Sci. Total Environ. 2012, 424, 79–87. [Google Scholar] [CrossRef]
- McMullin, T.S.; Bamber, A.M.; Bon, D.; Vigil, D.I.; Van Dyke, M. Exposures and Health Risks from Volatile Organic Compounds in Communities Located near Oil and Gas Exploration and Production Activities in Colorado (U.S.A.). Int. J. Environ. Res. Public Health 2018, 15, 1500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Gonzales, D.A.; Shonkoff, S.B.C.; Hays, J.; Jerrett, M. Hazardous Air Pollutants Associated with Upstream Oil and Natural Gas Development: A Critical Synthesis of Current Peer-Reviewed Literature. Annu. Rev. Public Health 2019, 40, 283–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zabiegala, B.; Kot-Wasik, A.; Urbanowicz, M.; Namiesnik, J. Passive sampling as a tool for obtaining reliable analytical information in environmental quality monitoring. Anal. Bioanal. Chem. 2010, 396, 273–296. [Google Scholar] [CrossRef] [PubMed]
- Oury, B.; Lhuillier, F.; Protois, J.C.; Morele, Y. Behavior of the GABIE, 3M 3500, PerkinElmer Tenax TA, and RADIELLO 145 diffusive samplers exposed over a long time to a low concentration of VOCs. J. Occup. Environ. Hyg. 2006, 3, 547–557. [Google Scholar] [CrossRef]
- Pennequin-Cardinal, A.; Plaisance, H.; Locoge, N.; Ramalho, O.; Kirchner, S.; Galloo, J.C. Performances of the Radiello((R)) diffusive sampler for BTEX measurements: Influence of environmental conditions and determination of modelled sampling rates. Atmos. Environ. 2005, 39, 2535–2544. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Method 325A—Volatile Organic Compounds from Fugitive and Area Sources; Air Emission Measurement Center (EMC), Ed.; EPA: Research Triangle Park, NC, USA, 2019; p. 18. [Google Scholar]
- Mukerjee, S.; Smith, L.A.; Caudill, M.P.; Oliver, K.D.; Whipple, W.; Whitaker, D.A.; Cousett, T.A. Application of passive sorbent tube and canister samplers for volatile organic compounds at refinery fenceline locations in Whiting, Indiana. J. Air Waste Manag. Assoc. 2018, 68, 170–175. [Google Scholar] [CrossRef]
- Thoma, E.D.; Brantley, H.L.; Oliver, K.D.; Whitaker, D.A.; Mukerjee, S.; Mitchell, B.; Wu, T.; Squier, B.; Escobar, E.; Cousett, T.A.; et al. South Philadelphia passive sampler and sensor study. J. Air Waste Manag. Assoc. 2016, 66, 959–970. [Google Scholar] [CrossRef] [Green Version]
- Zabiegala, B.; Urbanowicz, M.; Namiesnik, J.; Gorecki, T. Spatial and Seasonal Patterns of Benzene, Toluene, Ethylbenzene, and Xylenes in the Gdansk, Poland and Surrounding Areas Determined Using Radiello Passive Samplers. J. Environ. Qual. 2010, 39, 896–906. [Google Scholar] [CrossRef]
- Zabiegala, B.; Urbanowicz, M.; Szymanska, K.; Narniesnik, J. Application of Passive Sampling Technique for Monitoring of BTEX Concentration in Urban Air: Field Comparison of Different Types of Passive Samplers. J. Chromatogr. Sci. 2010, 48, 167–175. [Google Scholar] [CrossRef] [Green Version]
- Eisele, A.P.; Mukerjee, S.; Smith, L.A.; Thoma, E.D.; Whitaker, D.A.; Oliver, K.D.; Wu, T.; Colon, M.; Alston, L.; Cousett, T.A.; et al. Volatile organic compounds at two oil and natural gas production well pads in Colorado and Texas using passive samplers. J. Air Waste Manag. Assoc. 2016, 66, 412–419. [Google Scholar] [CrossRef]
- Lahr, E.C.; Schade, G.W.; Crossett, C.C.; Watson, M.R. Photosynthesis and isoprene emission from trees along an urban-rural gradient in Texas. Glob. Chang. Biol. 2015, 21, 4221–4236. [Google Scholar] [CrossRef] [PubMed]
- TCEQ. Air toxics monitoring data. Available online: https://www.tceq.texas.gov/toxicology/AirToxics.html (accessed on 18 February 2020).
- Warneke, C.; de Gouw, J.A.; Holloway, J.S.; Peischl, J.; Ryerson, T.B.; Atlas, E.; Blake, D.; Trainer, M.; Parrish, D.D. Multiyear trends in volatile organic compounds in Los Angeles, California: Five decades of decreasing emissions. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Schade, G.W.; Roest, G.S. Source apportionment of non-methane hydrocarbons, NOx and H2S data from a central monitoring station in the Eagle Ford shale, Texas. Elementa Sci. Anthr. 2018, 6, 35. [Google Scholar] [CrossRef] [Green Version]
- Fortin, T.J.; Howard, B.J.; Parrish, D.D.; Goldan, P.D.; Kuster, W.C.; Atlas, E.L.; Harley, R.A. Temporal changes in US benzene emissions inferred from atmospheric measurements. Environ. Sci. Technol. 2005, 39, 1403–1408. [Google Scholar] [CrossRef] [PubMed]
- Halliday, H.S.; Thompson, A.M.; Wisthaler, A.; Blake, D.R.; Hornbrook, R.S.; Mikoviny, T.; Müller, M.; Eichler, P.; Apel, E.C.; Hills, A.J. Atmospheric benzene observations from oil and gas production in the Denver-Julesburg Basin in July and August 2014. J. Geophys. Res. Atmos. 2016, 121, 11055–11074. [Google Scholar] [CrossRef] [Green Version]
Compound 1 | Average (ppb) | Median (ppb) | Maximum (ppb) | Long Term AMCV (ppb) | Average CoV Of Duplicate Samples |
---|---|---|---|---|---|
2-methylpentane | 0.32 | 0.28 | 1.29 | 190 | 0.12 |
3-methylpentane | 0.17 | 0.15 | 0.67 | 190 | 0.12 |
n-hexane | 0.30 | 0.28 | 0.99 | 190 | 0.14 |
Benzene | 0.31 | 0.25 | 1.32 | 1.4 | 0.21 |
Toluene | 0.07 | 0.06 | 0.23 | 1100 | 0.32 |
AQM Station | Benzene (ppb) | n-hexane (ppb) | Site ID (AQS) | ||
---|---|---|---|---|---|
2017 | 2018 | 2017 | 2018 | ||
Dallas Hinton 1 | 0.12 | 0.11 | 0.15 | 0.16 | 481130069 |
Houston Bayland Park 2 | 0.22 | 0.18 | 0.14 | 0.15 | 482010055 |
Houston Haden Road 1,3 | 0.36 | 0.39 | 0.51 | 0.58 | 482010803 |
This work (2018/2019) | 0.31 | 0.30 | NA |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sablan, O.M.; Schade, G.W.; Holliman, J. Passively Sampled Ambient Hydrocarbon Abundances in a Texas Oil Patch. Atmosphere 2020, 11, 241. https://doi.org/10.3390/atmos11030241
Sablan OM, Schade GW, Holliman J. Passively Sampled Ambient Hydrocarbon Abundances in a Texas Oil Patch. Atmosphere. 2020; 11(3):241. https://doi.org/10.3390/atmos11030241
Chicago/Turabian StyleSablan, Olivia M., Gunnar W. Schade, and Joel Holliman. 2020. "Passively Sampled Ambient Hydrocarbon Abundances in a Texas Oil Patch" Atmosphere 11, no. 3: 241. https://doi.org/10.3390/atmos11030241
APA StyleSablan, O. M., Schade, G. W., & Holliman, J. (2020). Passively Sampled Ambient Hydrocarbon Abundances in a Texas Oil Patch. Atmosphere, 11(3), 241. https://doi.org/10.3390/atmos11030241