Dust Deposition on the Gulf of California Caused by Santa Ana Winds
Abstract
:1. Introduction
2. Study Area
Description of the Event
3. Methodology
3.1. Dust Deposition Estimation Methodology
4. Results
4.1. Temperature and Wind
4.2. Relative Humidity
4.3. Dust Concentrations
4.4. Estimation of Dust Deposition over Gulf of California
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Middleton, N.J. Desert dust hazards: A global review. Aeolian Res. 2017, 24, 53–63. [Google Scholar] [CrossRef]
- Zommers, Z.; Singh, A. Introduction. In Reducing Disaster: Early Warning Systems for Climate Change; Springer: Berlin, Germany, 2014. [Google Scholar]
- Franzen, L.G.; Hjelmroos, M.; Kallberg, P.; Brorstrom-Lunden, E.; Juntto, S.; Savolainen, A.L. The ‘yellow snow’ episode of northern Fennoscandia, March 1991—A case study of long-distance transport of soil, pollen and stable organic com- pounds. Atmos. Environ. 1994, 28, 3587–3604. [Google Scholar] [CrossRef]
- Stefanski, R.; Sivakumar, M. Impacts of sand and dust storms on agriculture and potential agricultural applications of a SDSWS. Iop Conf. Ser. Earth Environ. Sci. 2009, 7, 012016. [Google Scholar] [CrossRef]
- Rennó NO Dust storm. In Encyclopedia of Natural Hazards; Encyclopedia of Earth Sciences Series; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Shao, Y.; Wyrwoll, K.; Chappell, A.; Huang, J.; Lin, Z.; Mctainsh, G.H.; Mikami, M.; Tanaka, T.Y.; Wang, X.; Yoon, S. Dust cycle: An emerging core theme in Earth system science. Aeolian Res. 2011, 2. [Google Scholar] [CrossRef]
- Jones, C. Forecast Skill of Synoptic Conditions Associated with Santa Ana Winds in Southern California. Am. Meteorol. Soc. 2010, 138. [Google Scholar] [CrossRef] [Green Version]
- Raphael, M.N. The Santa Ana winds of California. Earth Interact. 2003, 7, 1–13. [Google Scholar] [CrossRef]
- Carpenter, F.A.; Gorthwaite, J.W. Memorandum on air drainage in the vicinity of the Corona district, California. Mon. Weather Rev. 1914, 42, 572–573. [Google Scholar] [CrossRef]
- Sommers, L. FM forecast variables related to Santa Ana wind occurrences. Mon. Weather Rev. 1978, 106. [Google Scholar] [CrossRef]
- Westerling, A.L.; Cayan, D.R.; Brown, T.J.; Hall, B.; Riddle, L.G. Climate, Santa Ana winds and autumn wildfires in Southern California. Eos Trans. Am. Geophys. Union 2004, 85, 289–300. [Google Scholar] [CrossRef]
- Yoshino, M.M. Climate in a Small Area: An. Introduction to Local Meteorology; University of Tokyo Press: Tokyo, Japan, 1975; p. 549. [Google Scholar]
- Jackson, P.; Mayr, G.; Vosper, S. Dynamically-driven winds. In Mountain Weather Research and Forecasting; Springer: Dordrecht, The Netherlands, 2013; pp. 121–218. [Google Scholar] [CrossRef]
- Goudie, A.S.; Middleton, N.J. Desert Dust in the Global System; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Phuleria, H.C.; Fine, P.M.; Zhu, Y. Air quality impacts of the October 2003 Southern California wildfires. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- California Department of Forestry and Fire Protection, Governor’s Office of Emergency Services, United States Department of Agriculture. California Fire Siege 2007: An Overview. Sacramento, CA: California Dept. of Forestry and Fire Protection. 2008. Available online: https://scvhistory.com/scvhistory/files/lw3443/lw3443.pdf (accessed on 12 August 2019).
- Lynn, R.J.; Svejkovsky, J. Remotely Sensed Sea Surface Temperature Variability Off California During a “Santa Ana” Clearing. J. Geophys. Res. 1984, 89, 8151–8162. [Google Scholar] [CrossRef]
- Hu, H.; Liu, W.T. Oceanic thermal and biological responses to Santa Ana winds. Geophys. Res. Lett. 2003, 30, 10–13. [Google Scholar] [CrossRef] [Green Version]
- Trasviña, A.; Ortiz-figueroa, M.; Herrera, H.; Cos, M.A.; González, E. “Santa Ana” winds and upwelling filaments off Northern Baja California. Dyn. Atmos. Ocean. 2003, 37, 113–129. [Google Scholar] [CrossRef]
- Muñoz-Barbosa, A.; Segovia-Zavala, J.A.; Huerta-Diaz, M.A.; Delgadillo-Hinojosa, F.; Torres-Delgado, E.V.; Lares, M.L.; Gutiérrez-Galindo, E.A. Atmospheric iron fluxes in the northern region of the Gulf of California: Implications for primary production and potential Fe limitation. Deep-Sea Res. Part. I Oceanogr. Res. Pap. 2017, 129, 69–79. [Google Scholar] [CrossRef]
- Castro, R. Spatial influence and oceanic thermal response to Santa Ana events along the Baja California peninsula. Atmosfera 2006, 19, 195–211. [Google Scholar]
- Castro, R.; Pares, A.; Marinone, S. Evolución y extensión de los vientos Santa Ana de febrero de 2002 en el océano, frente a California y la Peninsula de Baja California. Cienc. Mar. 2003, 29, 275–281. [Google Scholar] [CrossRef] [Green Version]
- Álvarez-Borrego, S.; Lara-Lara, R. The physical environment and primary productivity of the Gulf of California. In the Gulf Peninsular Province of the Californias; American Association of Petroleum Geologists Mem: Tulsa, OK, USA, 1991; Volume 47, pp. 555–567. [Google Scholar]
- Alonso-Rodríguez, R.; Páez-Osuna, F. Nutrients, phytoplankton and harmful algal blooms in shrimp ponds: A review with special reference to the situation in the Gulf of California. Aquaculture 2003, 219, 317–336. [Google Scholar] [CrossRef]
- Beman, J.; Arrigo, K.; Matson, P. Agricultural Runoff Fuels Large Phytoplankton Blooms in Vulnerable Areas of the Ocean. Nature 2005, 434, 211–214. [Google Scholar] [CrossRef]
- Bali, K.; Mishra, A.K.; Singh, S.; Chandra, S.; Lehahn, Y. Impact of dust storm on phytoplankton bloom over the Arabian Sea: A case study during March 2012. Environ. Sci. Pollut. Res. 2019, 26, 11940–11950. [Google Scholar] [CrossRef]
- Jickells, T.D.; An, Z.S.; Andersen, K.K.; Baker, A.R.; Bergametti, C.; Brooks, N.; Torres, R. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 2005, 308, 67–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segovia-Zavala, J.A.; Delgadillo-Hinojosa, F.; Lares-Reyes, M.L.; Huerta-Diaz, M.A.; Munoz-Barbosa, A.; Torres-Delgado, E.V. Atmospheric input and concentration of dissolved iron in the surface layer of the Gulf of California. Ciencias Marinas. 2009, 35, 75–90. [Google Scholar] [CrossRef] [Green Version]
- Wells, M.L.; Price, N.M.; Bruland, K.W. Iron chemistry in seawater and its relationship to phytoplankton: A workshop report. Mar. Chem. 1995, 48, 157–182. [Google Scholar] [CrossRef]
- Thunell, R. Seasonal and annual variability in particle fluxes in the Gulf of California: A response to climate change. Deep-Sea Res. 1998, 45, 2083–3059. [Google Scholar] [CrossRef]
- Morales-Acuña, E.J. Influencia de la variabilidad espacio-temporal del viento en el transporte de polvo hacia el Golfo de California. Master’s Thesis in Sciences, Instituto Politécnico Nacional, Ciudad de México, México, 2015. [Google Scholar]
- Álvarez, C. Vientos de Santa Ana y Tormentas de Polvo en el Noroeste de México. Master’s Thesis in Sciences, Instituto Potosíno de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, México, 2017. [Google Scholar]
- Álvarez, C.; Carbajal, N. Regions of influence and environmental effects of Santa Ana wind event. Air Qual. Atmos. Health 2019, 12, 1019–1034. [Google Scholar] [CrossRef]
- CONANP. Comisión Nacional de Áreas Naturales Protegidas. Reserva de la Biosfera El Pinacate y El Gran Desierto del Altar. Available online: http://www.conanp.gob.mx/conanp/dominios/pinacate1/ (accessed on 4 May 2019).
- INEGI. Características Edafológicas, Fisiográficas, Climáticas e Hidrográficas de México; Instituto Nacional de Estadística y Geografía: Aguascalientes, México, 2008. [Google Scholar]
- INEGI. Conjunto de Datos Vectoriales de Uso de Suelo y Vegetación. Escala 1:250 000. Serie VI (Capa Union)’, escala: 1:250 000, 1st ed.; Instituto Nacional de Estadística y Geografía: Aguascalientes, México, 2016. [Google Scholar]
- USGS. Enhanced Historical Land-Use and Land-Cover Data Sets of the U.S. Geological Survey; Digital Data Series 240; U.S. Geological Survey: Washington, DC, USA, 2006.
- García, E. Modificaciones al sistema de clasificación climática de Köppen, 5th ed.; Serie libros #6; Instituto de Geografía, UNAM: Mexico City, Mexico, 2004. [Google Scholar]
- Roden, G.I. Oceanographic and meteorological aspects of the Gulf of California. Pac. Sci. 1958, 12, 21–45. [Google Scholar]
- Beier, E.; Ripa, P. Seasonal gyres in the northern Gulf of California. J. Phys. Oceanogr. 1998, 29, 305–311. [Google Scholar] [CrossRef]
- Sverdrup, H.U. The Gulf of California: Preliminary discussion on the cruise of the E.W. Scripps in February and March. Proc. 6th Pac. Sci. Congr. 1939, 3, 161–166. [Google Scholar]
- Robles, J.M.; Marinone, S.G. Seasonal and interannual thermohaline variability in the Guaymas Basin in the Gulf of California. Cont. Shelf Res. 1987, 7, 715–733. [Google Scholar] [CrossRef]
- Roden, G.L. On sea level, temperature, and salinity variations in the tropical Pacific Ocean and on Pacific Ocean Islands. J. Geoph. Res. 1963, 68, 455–472. [Google Scholar] [CrossRef]
- Rasmussen, E.M. Atmospheric water vapor transport and the water balance of North America, 1, Characteristics of the water vapor flux field. Mon. Weather Rev. 1967, 95, 403–426. [Google Scholar] [CrossRef]
- Reyes, C.S.; Pavía, L.E.; Candela, P.J.; Troncoso, G.R. Estudio preliminar de las condiciones meteorológicas y cIimatológicas alrededor del Golfo de California. 1ra. Parte. Análisis sur del viento. Cienc. Mar. 1984, 10, 9–26. [Google Scholar]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.; Duda, M.G.; Huang, X.Y.; Wang, W.; Powers, J.G. A description of the Advanced Research WRF Version 3. NCAR Technical Note NCAR/TN-475+STR; University Corporation for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar] [CrossRef]
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 2005, 39. [Google Scholar] [CrossRef]
- NCEP. National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce. updated daily. NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. 2000. Available online: https://rda.ucar.edu/datasets/ds083.2/ (accessed on 3 December 2016). [CrossRef]
- Hong, S.Y.; Dudhia, J.; Chen, S.H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Weather Rev. 2004, 132. [Google Scholar] [CrossRef]
- Dudhia, J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Pleim, J.E. A simple, efficient solution of flux–profile relationships in the atmospheric surface layer. J. Appl. Meteorol. Climatol. 2006, 45. [Google Scholar] [CrossRef]
- Pleim, J.E.; Xiu, A. Development of a Land Surface Model. Part II: Data Assimilation. J. Appl. Meteor. 2003, 42, 1811–1822. [Google Scholar] [CrossRef] [Green Version]
- Kain, J.S. The Kain–Fritsch convective parameterization: An update. J. Appl. Meteorol. 2004, 43. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y.; Ishizuka, M.; Mikami, M.; Leys, J. Parameterization of size-resolved dust emission and validation with measurements. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Martínez-López, A.; Cervantes-Duarte, R.; Reyes-Salinas, A.; Valdez-Holguín, J.E. Cambio estacional de clorofila a en la Bahía de La Paz, B.C.S.; México. Hidrobiológica 2001, 11, 45–52. [Google Scholar]
- Thunell, R.; Pride, C.; Ziveri, P.; Muller-Karger, F.; Sancetta, C.; Murray, D. Plankton response to physical forcing in the Gulf of California. J. Plankton Res. 1996, 18, 2017–2026. [Google Scholar] [CrossRef]
- Delgadillo-Hinojosa, F. Biogeoquímica del Cadmio y Manganeso en el Golfo de California. Ph.D. Thesis, Universidad Autónoma de Baja California, Ensenada, ME, USA, 2000; 181p. [Google Scholar]
- Muñoz-Barbosa, A.; Huerta-Diaz, M.A. Trace metal enrichments in nearshore sediments and accumulation in mussels (Modiolus capax) along the eastern coast of Baja California, Mexico: Environmental status in 1995. Mar. Pollut. Bull. 2013, 77, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Kasper-Zubillaga, J.J.; Acevedo-Vargas, B.; Bermea, O.M.; Zamora, G.O. Rare earth elements of the Altar Desert dune and coastal sands, Northwestern Mexico. Chem. Der Erde 2008, 68, 45–59. [Google Scholar] [CrossRef]
- Prospero, J.M.; Lamb, P.J. African droughts and dust transport to the Caribbean: Climate change implications. Science 2003, 302, 1024–1027. [Google Scholar] [CrossRef]
- Morales-Acuña, E.; Torres, C.R.; Delgadillo-Hinojosa, F.; Linero-Cueto, J.R.; Santamaría-del-ángel, E.; Castro, R. The Baja California Peninsula, a significant source of dust in Northwest Mexico. Atmosphere 2019, 10, 582. [Google Scholar] [CrossRef] [Green Version]
- Félix-Bermúdez, A.; Delgadillo-Hinojosa, F.; Huerta-Diaz, M.A.; Camacho-Ibar, V.; Torres-Delgado, E.V. Atmospheric Inputs of Iron and Manganese to Coastal Waters of the Southern California Current System: Seasonality, Santa Ana Winds, and Biogeochemical Implications. J. Geophys. Res. Ocean. 2017, 122, 9230–9254. [Google Scholar] [CrossRef]
- Chauhan, A.; de Azevedo, S.C.; Singh, R.P. Pronounced changes in air quality, atmospheric and meteorological parameters, and strong mixing of smoke associated with a dust event over Bakersfield, California. Environ. Earth Sci. 2018, 77, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Bhattachan, A.; Okin, G.S.; Zhang, J.; Vimal, S.; Lettenmaier, D.P. Characterizing the Role of Wind and Dust in Traffic Accidents in California. Geo. Health 2019, 3, 328–336. [Google Scholar] [CrossRef] [Green Version]
- Colson, A.J.; Vredenburgh, L.; Guevara, R.E.; Rangel, N.P.; Kloock, C.T.; Lauer, A. Large-Scale Land Development, Fugitive Dust, and Increased Coccidioidomycosis Incidence in the Antelope Valley of California, 1999–2014. Mycopathologia 2017, 182, 439–458. [Google Scholar] [CrossRef] [PubMed]
Description | Namelist Otions | Scheme/References |
---|---|---|
Microphysics | mp_physics = 3 | WRF Single moment 3 [49] |
Shortwave radiation | ra_sw_physics = 1 | Dudhia [50] |
Longwave radiation | ra_lw_physics = 1 | RRTM scheme [51] |
Surface layer physics | sf_sfclay_physics = 7 | Pleim Xiu scheme [52] |
Land surface model | sf_surface_physics = 7 | Pleim Xiu land surface model [53] |
Cumulus parametrization | cu_physics = 1 | Kain–Fritsch scheme [54] |
Dust scheme | dust_opt=4, dust_schme = 3 | Shao2011 dust emission scheme [55] |
Station | RMSE | BIAS | MEAN | ||||||
---|---|---|---|---|---|---|---|---|---|
T (°C) | RH (%) | Wind Speed (m/s) | T | RH | Wind Speed | T (°C) | RH (%) | Wind Speed (m/s) | |
Mexicali | 2.73 | 7.59 | 1.55 | −1.94 | 0.51 | 0.30 | 22.42 | 18.84 | 4.38 |
Ensenada | 2.99 | 22.02 | 4.15 | −1.26 | −0.32 | −2.36 | 24.64 | 23.79 | 6.88 |
Bahía de los Ángeles | 3.93 | 20.84 | 4.36 | −3.70 | 17.48 | 3.56 | 25.8 | 31.9 | 7.99 |
Case 1 | |||
---|---|---|---|
Date | Particles Percentage Deposited in Gulf (%) | Dust Deposited in Gulf (ton) | Dust Emitted from the Area (ton) |
21/Oct 12:00 | 61 | 23,285 | 38,097 |
22/Oct 00:00 | 44 | 7248 | 16,317 |
22/Oct 12:00 | 28 | 6805 | 24,262 |
23/Oct 00:00 | 27 | 1128 | 4106 |
23/Oct 12:00 | 35 | 5073 | 14,097 |
Total | 43,539 | 96,879 | |
Case 2 | |||
Date | Particles Percentage Deposited in Gulf (%) | Dust Deposited in Gulf (ton) | Dust Emitted from the Area (ton) |
21/Oct 12:00 | 9 | 1611 | 16,749 |
22/Oct 00:00 | 8 | 1524 | 17,517 |
22/Oct 12:00 | 24 | 4499 | 18,185 |
23/Oct 00:00 | 23 | 1904 | 7979 |
23/Oct 12:00 | 20 | 1239 | 5932 |
Total | 10,777 | 66,362 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Álvarez, C.A.; Carbajal, J.N.; Pineda-Martínez, L.F.; Tuxpan, J.; Flores, D.E. Dust Deposition on the Gulf of California Caused by Santa Ana Winds. Atmosphere 2020, 11, 275. https://doi.org/10.3390/atmos11030275
Álvarez CA, Carbajal JN, Pineda-Martínez LF, Tuxpan J, Flores DE. Dust Deposition on the Gulf of California Caused by Santa Ana Winds. Atmosphere. 2020; 11(3):275. https://doi.org/10.3390/atmos11030275
Chicago/Turabian StyleÁlvarez, Christian A., José N. Carbajal, Luis F. Pineda-Martínez, José Tuxpan, and David E. Flores. 2020. "Dust Deposition on the Gulf of California Caused by Santa Ana Winds" Atmosphere 11, no. 3: 275. https://doi.org/10.3390/atmos11030275
APA StyleÁlvarez, C. A., Carbajal, J. N., Pineda-Martínez, L. F., Tuxpan, J., & Flores, D. E. (2020). Dust Deposition on the Gulf of California Caused by Santa Ana Winds. Atmosphere, 11(3), 275. https://doi.org/10.3390/atmos11030275