North Atlantic Hurricane Winds in Warmer than Normal Seas
Abstract
:1. Introduction
The Importance of Geography
2. Materials and Methods
2.1. The Data
2.2. Calculating the Expected Extreme
2.3. Relationship to SST
3. Results
4. Discussion and Concluding Remarks
The Where Matters
Funding
Conflicts of Interest
Abbreviations
ENSO | El Niño Southern Oscillation |
GPD | Generalized Pareto Distribution |
GWR | Geographically Weighted Regression |
NOAA | National Oceanic and Atmospheric Administration |
SST | Sea Surface Temperature |
References
- Blake, E.S.; Zelinsky, D.A. Hurricane Hurricane Harvey Tropical Cyclone Report AL092017; Technical Report; National Hurricane Center: Miami, FL, USA, 2018. [Google Scholar]
- Podlaha, A.; Bowen, S.; Lorinc, M.; Bhattacharya, A. Global Catastrophe Recap; Technical Report; Aon Benfield: London, UK, 2018. [Google Scholar]
- Milken Institute School of Public Health. Project Report: Ascertainment of the Estimated Excess Mortality from Hurricane Maria in Puerto Rico; Technical Report; The George Washington University: Washington, DC, USA, 2018. [Google Scholar]
- Stewart, S.R.; Berg, R. Hurricane Florence Tropical Cyclone Report AL062018; Technical Report; National Hurricane Center: Miami, FL, USA, 2019. [Google Scholar]
- National Hurricane Center. Costliest U.S. Tropical Cyclones Tables Updated; Technical report; National Hurricane Center: Miami, FL, USA, 2018. [Google Scholar]
- Small, C.; Nicholls, R.J. A global analysis of human settlement in coastal zones. J. Coast. Res. 2003, 19, 584–599. [Google Scholar]
- McGranahan, G.; Balk, D.; Anderson, B. The rising tide: Assessing the risks of climate change and human settlements in low elevation coastal zones. Environ. Urban. 2007, 19, 17–37. [Google Scholar] [CrossRef]
- Neumann, B.; Vafeidis, A.T.; Zimmerman, J.; Nicholls, R.J. Future coastal population growth and exposure to sea-level rise and coastal flooding–A global assessment. PLoS ONE 2015. [Google Scholar] [CrossRef]
- Emanuel, K. The dependence of hurricane intensity on climate. Nature 1987, 326, 483–485. [Google Scholar] [CrossRef]
- Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 2005, 436, 686–688. [Google Scholar] [CrossRef]
- Knutson, T.; McBride, J.; Chan, J.; Emanuel, K.; Holland, G.; Landsea, C.; Held, I.; Kossin, J.; Srivastava, A.; Sugi, M. Tropical cyclones and climate change. Nat. Geosci. 2010. [Google Scholar] [CrossRef] [Green Version]
- Bacmeister, J.T.; Reed, K.A.; Hannay, C.; Lawrence, P.; Bates, S.; Truesdale, J.E.; Rosenbloom, N.; Levy, M. Projected changes in tropical cyclone activity under future warming scenarios using a high-resolution climate model. Clim. Chang. 2018, 146, 547–560. [Google Scholar] [CrossRef]
- Darling, R. Estimating probabilities of hurricane wind speeds using a large-scale empirical model. J. Clim. 1991, 4, 1035–1046. [Google Scholar] [CrossRef]
- Bender, M.A.; Knutson, T.R.; Tuleya, R.E.; Sirutis, J.J.; Vecchi, G.A.; Garner, S.T.; Held, I.M. Modeling impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science 2010, 327, 454–458. [Google Scholar] [CrossRef] [Green Version]
- Lin, N.; Emanuel, K.; Oppenheimer, M.; Vanmarcke, E. Physically based assessment of hurricane surge threat under climate change. Nat. Clim. Chang. 2012, 2, 462–467. [Google Scholar] [CrossRef] [Green Version]
- Trepanier, J.C. Hurricane winds over the North Atlantic: Spatial analysis and sensitivity to ocean temperature. Nat. Hazards 2014. [Google Scholar] [CrossRef]
- Trepanier, J.C.; Ellis, K.N.; Tucker, C.S. Hurricane risk variability along the Gulf of Mexico Coastline. PLoS ONE 2015, 10, e0118196. [Google Scholar] [CrossRef] [PubMed]
- Landsea, C.; Pielke, R., Jr.; Mestas-Nunez, A.; Knaff, J. Atlantic basin hurricanes: Indices of climatic changes. Clim. Chang. 1999, 42, 89–129. [Google Scholar] [CrossRef]
- Gray, W. Atlantic seasonal hurricane frequency: Part I: El Niño and 30 mb quasibiennial oscillation influences. Mon. Weather Rev. 1984, 112, 1649–1668. [Google Scholar] [CrossRef] [Green Version]
- Emanuel, K. The maximum intensity of hurricanes. J. Atmos. Sci. 1988, 45, 1143–1155. [Google Scholar] [CrossRef]
- Patricola, C.M.; Wehner, M.F. Anthropogenic influences on major tropical cyclone events. Nature 2018, 563, 339–346. [Google Scholar] [CrossRef] [Green Version]
- Simpson, R.; Lawrence, M. Atlantic Hurricane Frequencies along the U.S. Coastline; Technical Memo to the National Weather Service SR-58; National Oceanic and Atmospheric Administration: Silver Spring, MD, USA, 1971. [Google Scholar]
- Keim, B.; Muller, R.; Stone, G. Spatiotemporal patterns and return periods of tropical storm and hurricane strikes from Texas to Maine. J. Clim. 2007, 20, 3498–3509. [Google Scholar] [CrossRef]
- Jagger, T.; Elsner, J. Climatology models for extreme hurricane winds in the United States. J. Clim. 2006, 19, 3220–3236. [Google Scholar] [CrossRef]
- Elsner, J.; Kossin, J.; Jagger, T. The increasing intensity of the strongest tropical cyclones. Nature 2008, 455, 92–95. [Google Scholar] [CrossRef]
- Malmstadt, J.; Elsner, J.; Jagger, T. Risk of strong hurricane winds to Florida cities. J. Appl. Meteorol. Climatol. 2010, 49, 2121–2132. [Google Scholar] [CrossRef]
- CoreWriting Team; Pachauri, R.K.; Meyer, L.A. (Eds.) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Ellis, K.N.; Sylvester, L.; Trepanier, J.C. Spatiotemporal patterns of extreme hurricanes impacting U.S. coastal cities. Nat. Hazards 2015, 75, 2733–2749. [Google Scholar] [CrossRef]
- Cheng, L.; Trenberth, K.E.; Fasullo, J.; Boyer, T.; Abraham, J.; Zhu, J. Taking the pulse of the planet. Eos 2018, 98. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Cheng, L.; Jacobs, P.; Zhang, Y.; Fasullo, J. Hurricane Harvey links to ocean heat content and climate change adaptation. Earth Future 2018, 6, 730–744. [Google Scholar] [CrossRef]
- Davidson, R.A.; Lambert, K.B. Comparing the hurricane disaster risk of U. S. coastal counties. Nat. Hazards Rev. 2001, 2, 132–142. [Google Scholar] [CrossRef]
- Blake, E.S.; Kimberlain, T.B.; Berg, R.J.; Cangialosi, J.P.; Bevin, J.L., II. Hurricane Sandy Tropical Cyclone Report AL182012; Technical Report; National Hurricane Center: Miami, FL, USA, 2013. [Google Scholar]
- Cangialosi, J.P.; Latto, A.S.; Berg, R. Hurricane Irma Tropical Cyclone Report AL112017; Technical Report; National Hurricane Center: Miami, FL, USA, 2018. [Google Scholar]
- Pasch, R.J.; Penny, A.B.; Berg, R. Hurricane Maria Tropical Cyclone Report Al152017; Technical Report; National Hurricane Center: Miami, FL, USA, 2019. [Google Scholar]
- Landsea, C.W.; Franklin, J.L. Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Weather Rev. 2013, 141, 3576–3592. [Google Scholar] [CrossRef]
- Elsner, J.B.; Jagger, T.H. Hurricane Climatology: A Modern Statistical Guide Using R; Oxford University Press: New York, NY, USA, 2013; p. 430. [Google Scholar]
- Hagen, A.B.; Landsea, C.W. On the classification of extreme Atlantic hurricanes utilizing mid-Twentieth-Century monitoring capabilities. J. Clim. 2012, 25, 4461–4475. [Google Scholar] [CrossRef] [Green Version]
- Delgado, S.; Landsea, C.W.; Willoughby, H. Reanalysis of the 1954–63 Atlantic hurricane seasons. J. Clim. 2018, 31, 4177–4192. [Google Scholar] [CrossRef] [Green Version]
- Landsea, C. A climatology of intense (or major) Atlantic hurricanes. Mon. Weather Rev. 1993, 121, 1703–1713. [Google Scholar] [CrossRef] [Green Version]
- Elsner, J.; Kara, A. Hurricanes of the North Atlantic: Climate and Society; Oxford University Press: New York, NY, USA, 1999; p. 488. [Google Scholar]
- Emanuel, K. Tropical Cyclones. Annu. Rev. Earth Planet. Sci. 2003, 31, 75–104. [Google Scholar] [CrossRef]
- Scheitlin, K.; Elsner, J.; Lewers, S.; Malmstadt, J.; Jagger, T. Risk assessment of hurricane winds for Eglin Air Force Base in northwestern Florida, USA. Theor. Appl. Climatol. 2011. [Google Scholar] [CrossRef]
- Brettschneider, B. Climatological hurricane landfall probability for the United States. J. Appl. Meteorol. Climatol. 2008, 47, 704–716. [Google Scholar] [CrossRef]
- Emanuel, K. An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci. 1986, 43, 585–604. [Google Scholar] [CrossRef]
- DeMaria, M.; Kaplan, J. Sea surface temperature and the maximum intensity of Atlantic tropical cyclones. J. Clim. 1994, 7, 1324–1334. [Google Scholar] [CrossRef] [Green Version]
- Bhatia, K.; Vecchi, G.; Murakami, H.; Underwood, S.; Kossin, J. Projected response of tropical cyclone intensity and intensification in a global climate model. J. Clim. 2018, 31, 8281–8303. [Google Scholar] [CrossRef]
- Heckert, N.; Simiu, E.; Whalen, T. Estimates of hurricane wind speeds by ‘peaks over threshold’ method. J. Struct. Eng. ASCE 1998, 124, 445–449. [Google Scholar] [CrossRef]
- Chu, P.; Wang, J. Modeling return periods of tropical cyclone intensities in the vicinity of Hawaii. J. Appl. Meteorol. Climatol. 1998, 37, 951–960. [Google Scholar] [CrossRef]
- Coles, S. An Introduction to Statistical Modeling of Extreme Values; Springer: Berlin/Heidelberg, Germany, 2001; p. 208. [Google Scholar]
- Trepanier, J.C.; Scheitlin, K.N. Hurricane wind risk in Louisiana. Nat. Hazards 2014, 70, 1181–1195. [Google Scholar] [CrossRef]
- Kotz, S.; Nadarajah, S. Extreme Value Distributions: Theory and Applications; Imperial College Press: London, UK, 2000; p. 185. [Google Scholar]
- Fisher, R.; Tippett, L. Limiting forms of the frequency distribution of the largest or smallest member of a sample. Process. Camb. Philos. Soc. 1928, 24, 180–190. [Google Scholar] [CrossRef]
- Coles, S.; Powell, E. Bayesian methods in extreme value modelling: A review and new developments. Int. Stat. Rev. 1996, 64, 119–136. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, A.; Charlton, M. Geographically weighted regression–Modelling spatial non-stationarity. J. R. Stat. Soc. Ser. Stat. 1998, 47, 431–443. [Google Scholar] [CrossRef]
- Fotheringham, A.; Brunsdon, C.; Charlton, M. Quantitative Geography: Perspectives on Spatial Data Analysis; Sage: London, UK, 2000. [Google Scholar]
- Bivand, R.; Yu, D. spgwr: Geographically Weighted Regression; Esri: Redlands, CA, USA, 2017. [Google Scholar]
- Environmental Protection Agency. Climate Change Indicators: Sea Surface Temperature; Technical Report; United States Environmental Protection Agency: Washingotn, DC, USA, 2016. [Google Scholar]
- Alexander, M.A.; Scott, J.D.; Friedland, K.D.; Mills, K.E.; Nye, J.A.; Pershing, A.J.; Thomas, A.C. Projected sea surface temperatures over the 21st century: Changes in the mean, variability and extremes for large marine ecosystem regions of Northern Oceans. Elem. Sci. Anthr. 2018, 6, 1–9. [Google Scholar]
- Abramson, D.M.; Redlener, I. Hurricane Sandy: Lessons learned, again. Disaster Med. Public Health Prep. 2012, 6, 328–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powell, T.; Hanfling, D.; Gostin, L.O. Emergency preparedness and public health: The lessons of Hurricane Sandy. JAMA 2012, 308, 2569–2570. [Google Scholar] [CrossRef] [PubMed]
- Bevin, R.B.J.L., II; Hagen, A. Hurricane Michael Tropical Cyclone Report AL142018; Technical Report; National Hurricane Center: Miami, FL, USA, 2019. [Google Scholar]
- Gray, W. Strong association between West African rainfall and U.S. landfall of intense hurricanes. Science 1990, 249, 1251–1256. [Google Scholar] [CrossRef] [PubMed]
- Emanuel, K. Environmental factors affecting tropical cyclone power dissipation. J. Clim. 2007, 20, 5497–5509. [Google Scholar] [CrossRef]
- Vecchi, G.A.; Swanson, K.L.; Soden, B.J. Whither hurricane activity? Science 2008, 322, 687–689. [Google Scholar] [CrossRef]
- Hausfather, Z.; Cowtan, K.; Clarke, D.C.; Jacobs, P.; Richardson, M.; Rohde, R. Assessing recent warming using instrumentally homogeneous sea surface temperature records. Sci. Adv. 2017, 3, 1–13. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trepanier, J.C. North Atlantic Hurricane Winds in Warmer than Normal Seas. Atmosphere 2020, 11, 293. https://doi.org/10.3390/atmos11030293
Trepanier JC. North Atlantic Hurricane Winds in Warmer than Normal Seas. Atmosphere. 2020; 11(3):293. https://doi.org/10.3390/atmos11030293
Chicago/Turabian StyleTrepanier, Jill C. 2020. "North Atlantic Hurricane Winds in Warmer than Normal Seas" Atmosphere 11, no. 3: 293. https://doi.org/10.3390/atmos11030293
APA StyleTrepanier, J. C. (2020). North Atlantic Hurricane Winds in Warmer than Normal Seas. Atmosphere, 11(3), 293. https://doi.org/10.3390/atmos11030293