A Building-Block Urban Meteorological Observation Experiment (BBMEX) Campaign in Central Commercial Area in Seoul
Abstract
:1. Introduction
2. Experiment Design
2.1. Domain: Gwanghwamun Square and Sejong-Daero Streets
2.2. Instrumentations
2.3. Sky View
2.4. Experimental Period
2.5. Synoptic Meteorological Features
2.6. Horizontal Distribution Near the Campaign Domain
3. Results
3.1. Sky View and Sky View Factor
3.2. Temporal and Spatial Distribution of Surface Temperature Obtained by Thermal Infrared Imager (TIR)
3.3. Air and Surface Temperatures in Building Blocks Obtained by AWSs
4. Summary and Discussion
4.1. Summary
4.2. Discussions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations. World Population Prospects 2019: Highlight; United Nations, Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2019. [Google Scholar]
- United Nations. World Urbanization Prospects: The 2018 Revision; UN Population Division Department of Economic and Social Affairs: New York, NY, USA, 2018. [Google Scholar]
- Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Baklanov, A.; Grimmond, C.S.B.; Carlson, D.; Terbalnceh, D.; Tang, X.; Bouchet, V.; Lee, B.; Langendijk, G.; Kolli, R.K.; Hovsepyan, A. From urban meteorology, climate and environment research to integrated city services. Urban Clim. 2018, 23, 330–341. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Quart. J. Royal Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Tam, B.Y.; Gough, W.A.; Mohsin, T. The impact of urbanization and the urban heat island effect on day to day temperature variation. Urban Clim. 2015, 12, 1–10. [Google Scholar] [CrossRef]
- Arnfield, A.J. Decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. J. Clim. 2003, 23, 1–26. [Google Scholar] [CrossRef]
- Anderson, C.I.; William, A.G.; Tanzina, M. Characterization of the urban heat island at Toronto: Revisiting the choice of rural sites using a measure of day-to-day variation. Urban Climatol. 2018, 25, 187–195. [Google Scholar] [CrossRef]
- Ryu, Y.-H.; Baik, J.-J. Daytime local circulations and their interactions in the Seoul Metropolitan Area. J. Appl. Meteorol. Climatol. 2013, 52, 784–801. [Google Scholar] [CrossRef]
- Oke, T.R. Canyon geometry and the nocturnal urban heat island: Comparison for scale model and field observation. J. Climatol. 1981, 1, 237–254. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Baik, J.-J. Spatial and temporal structure of urban heat island in Seoul. J. Appl. Meteorol. 2005, 44, 591–605. [Google Scholar] [CrossRef]
- Macdonald, R.W.; Griffiths, R.F.; Hall, D.J. An improved method for estimation of surface roughness of obstacle arrays. Atmos. Environ. 1998, 32, 1857–1864. [Google Scholar] [CrossRef]
- Park, M.-S.; Park, S.-H.; Chae, J.-H.; Choi, M.-H.; Song, Y.; Kang, M.; Rho, J.-W. High-resolution urban observation network for user-specific meteorological information service in the Seoul Metropolitan Area, South Korea. Atmos. Meas. Tech. 2017, 10, 1575–1594. [Google Scholar] [CrossRef]
- Gomez, C.; Paradells, J. Urban automation networks: Current emerging solutions for sensed data collection and actuation in smart cities. Sensors 2015, 15, 22874–22898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, J.; Yang, L.; Grimmond, C.S.B.; Shi, J.; Gu, W.; Chang, Y.; Hu, P.; Sun, J.; Ao, X.; Hang, Z. Urban integrated meteorological observations practice and experience in Shanghai, China. Bull. Am. Meteorol. Soc. 2015, 96, 85–102. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Miao, S.; Li, J.; Bornstein, R.; Zhang, X.; Gao, Y.; Chen, F.; Cao, X.; Cheng, Z.; Clements, C.; et al. SURF: Understanding and predicting urban convection and haze. Bull. Am. Meteorol. Soc. 2008, 99, 1391–1413. [Google Scholar] [CrossRef]
- Misumi, R.; Shoji, Y.; Saito, K.; Seko, H.; Seino, N.; Suzuki, S.-I.; Shusse, Y.; Hirano, K.; Belair, S.; Chandrasekar, V.; et al. Results of the Tokyo Metropolitan Area Convection Study for Extreme Weather Resilient Cities (TOMACS). Bull. Am. Meteorol. Soc. 2019, 100, 2027–2041. [Google Scholar] [CrossRef]
- Muller, C.L.; Chapmann, L.; Grimmond, C.S.B.; Young, D.T.; Cai, X. Sensor and the city: A review of urban meteorological networks. Int. J. Climatol. 2013, 33, 1585–1600. [Google Scholar] [CrossRef]
- Nadeau, D.F.; Brutsaert, W.; Parlange, M.B.; Bou-Zeid, E.; Barrenetxea, G.; Couach, O.; Boldi, M.-O.; Selker, J.S.; Vetterli, M. Estimation of urban sensible heat flux using dense wireless network of observations. Envrion. Fluid Mech. 2009, 9, 635–653. [Google Scholar] [CrossRef] [Green Version]
- Thepvilojanapon, N.; Ono, T.; Tobe, Y. A deployment of fine-grained sensor network and empirical analysis of urban temperature. Sensors 2010, 10, 2217–2241. [Google Scholar] [CrossRef] [Green Version]
- He, B.-J.; Ding, L.; Prasad, D. Wind-sensitive urban planning and design: Precinct ventilation performance and its potential for local warming mitigation in an open midrise gridiron precinct. J. Build. Eng. 2019, 29, 101145. [Google Scholar] [CrossRef]
- Rotach, M.W.; Vogt, R.; Bernhofer, C.; Batchvarova, E.; Christen, A.; Clappier, A.; Feddersen, B.; Gryning, S.-E.; Martucci, G.; Mayer, H.; et al. BUBBLE – an Urban Boundary Layer Meteorology Project. Theor. Appl. Climatol. 2005, 81, 231–261. [Google Scholar] [CrossRef] [Green Version]
- Changnon, S.A.; Semonin, R.G.; Auer, A.H.; Braham, R.R.; Hales, J. METROMEX: A Review and Summary; Springer: Berlin/Heidelberg, Germany, 1981. [Google Scholar]
- Allwine, J.; Shinn, J.H.; Streit, G.E.; Clawson, K.L.; Brown, B. Overview of URBAN 2000: A multi-scale field study of dispersion through an urban environment. Bull. Am. Meteorol. Soc. 2002, 83, 521–536. [Google Scholar] [CrossRef] [Green Version]
- Doran, J.C.; Fast, J.D.; Horel, J. The VTMX 2000 Campaign. Bull. Am. Meteorol. Soc. 2002, 83, 537–554. [Google Scholar] [CrossRef]
- Koskinen, J.T.; Poutiainen, J.; Shultz, D.M.; Joffre, S.; Koistinen, J.; Saltikoff, E.; Gregow, E.; Turtiainen, H.; Dabberdt, W.F.; Damski, J.; et al. The Helsinki testbed—A mesoscale measurement, research, and service platform. Bull. Am. Meteorol. Soc. 2011, 92, 325–342. [Google Scholar] [CrossRef] [Green Version]
- Nakatani, T.; Misumi, R.; Shoji, Y.; Saito, K.; Seko, H.; Seino, N.; Sugawara, H. Tokyo Metropolitan area convection study for extreme weather resilient cities. Bull. Am. Meteorol. Soc. 2015, 96, ES123–ES126. [Google Scholar] [CrossRef]
- Gade, R.; Moeslund, T.B. Thermal cameras and applications: A survey. Mach. Vis. Appl. 2014, 25, 245–262. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-J.; Jee, J.-B.; Kim, G.-T.; Nam, H.-G.; Lee, J.-S.; Kim, B.-J. Diurnal variation of surface and air temperature on the urban streets in Seoul, Korea: An observational analysis during BBMEX Campaign. Atmosphere 2020, 11, 60. [Google Scholar] [CrossRef] [Green Version]
- Kwon, T.H.; Park, M.-S.; Yi, C.; Choi, Y.J. Effects of different averaging operators on the urban turbulent fluxes. Atmos. Korea Meteorol. Soc. 2014, 24, 197–206. [Google Scholar]
- Bernard, J.; Bocher, E.; Petit, G.; Palominos, S. Sky view factor calculation in urban context: Computational performance and accuracy analysis of two open and free GIS tools. Climate 2018, 6, 60. [Google Scholar] [CrossRef] [Green Version]
- Park, M.-S.; Chae, J.-H. Features of sea-land-breeze circulation over the Seoul Metropolitan Area. Geosci. Lett. 2018, 5, 28. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-H.; Baik, J.-J. Maximum urban heat island intensity in Seoul. J. Appl. Meteorol. 2002, 41, 651–659. [Google Scholar] [CrossRef]
- Park, M.-S.; Joo, S.J.; Park, S.-U. Carbon dioxide concentration and flux in an urban residential area in Seoul, Korea. Adv. Atmos. Sci. 2014, 31, 1101–1112. [Google Scholar] [CrossRef]
- Aubinet, M.; Vesala, T.; Papale, D. Eddy Covariance A Practical Guide to Measurement and Data Analysis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; p. 438. [Google Scholar]
- Kim, D.-J.; Lee, D.-I.; Kim, J.-J.; Park, M.-S.; Lee, S.-H. Development of a building-scale meteorological prediction system including a realistic surface heating. Atmosphere 2020, 11, 67. [Google Scholar] [CrossRef] [Green Version]
- Gartland, L. Heat Islands: Understanding and Mitigating Heat in Urban Areas; Routledge: London, UK, 2011; p. 192. [Google Scholar]
Name | Major Instruments | Location | Period | Resolu-tion | Reference |
---|---|---|---|---|---|
METROMEX1 | Rain gauge Meteorology | St. Louis, USA | Summer 1971–1975 | Changnon (1981) [22] | |
BUBBLE2 | Meteorology Energy balance Wind profiler Lidar | Basel, Switzerland | Summer 2001–summer 2002 | ~0.5 km | Rotach et al. (2005) [23] |
URBAN2000 VTMX3 | Meteorology Energy balance Trace sampler SODAR | Salt Lake City, USA | October 2000 | ~0.2 km | Allwine et al. (2002) [24], Doran et al. (2002) [25] |
Helsinki testbed | Meteorology Radar Vertical profiles | Helsinki, Finland | 2007- | ~1.2 km | Koshikinen et al. (2011) [26] |
TOMACS4 | Meteorology Radar | Tokyo, Japan | 2010s | Nakatani et al. (2015) [27], Misumi et al. (2019) [17] | |
SUIMON5 | Meteorology Energy balance Vertical profile | Shanghai, China | Tan et al. (2015) [15] | ||
UMS-Seoul6 | Meteorology Energy balance Vertical profile Mobile | Seoul, Korea | 2014- | ~1.5 km | Park et al. (2017) [13] |
LUCE7 | Meteorology | Lausanne, Switzerland | October 2006 –April 2007 | ~40 m | Nadeau et al. (2009) [19] |
USscan | Meteorology | Tokyo, Japan | July–August 2007 | ~20 m | Thepvilojanapong et al. (2010) [20] |
PVP8 | Meteorology | Sydney, Australia | February 2019 | ~80 m | He et al. (2019) [21] |
System | Sensor or Specification | Reference Sampling Rate |
---|---|---|
Surface energy balance system (Gwanghwamun (GHM) Station) | Thermal Infrared Imager (TS9230, Nippon Avionics), 3-D sonic anemometer and CO2/H2O Gas Analyzer (CSAT3A/EC150, Campbell Sci.), temperature and relative humidity (HMP155A, Campbell Sci.), wind speed and direction (W300P/A100M, Vector Instruments), air pressure (CS105, Campbell Sci.), precipitation (WDSA-205, Wedaen) | Park et al. (2017) [13] |
Thermal Infrared Imager (TS9230, Nippon Avionics) | Spectral range: 8−13 μm Field of view: 21.7 ° (h) × 16.4 ° (v) Pixels: 320 (h) × 240 (v) Temperature range: −40 to 500 °C Temperature accuracy: ±2 °C | 10 min |
Radiation and Sonic Anemometer (RS) | 3-dimensional sonic anemometer (model CSAT3A, Campbell scientific), net radiometer (downward/upward, shortwave/longwave) (model CNR4, Kipp and Zonen) | 10 Hz (sonic), 1 min (radiation) |
Automatic Weather Station (Type A) | Temperature, relative humidity, wind speed, wind direction (model WXT536, Vaisala; temperature accuracy: ±0.3 °C) | 1 min |
Automatic Weather Station (Type B) | Temperature (MWS: Pt100 sensor, accuracy: ±0.3 °C for −40 to 60 °C; ktWS: silicon bandgap sensor, accuracy: ±0.3 °C for 20 to 40 °C, ±1.0 °C for 0 to 70 °C), relative humidity, PM10/PM2.5 concentration, noise level | 1 min |
Mobile Meteorological Observation Cart (MOCA) | Surface temperature (model SI-111-SS, Apogee; accuracy: ±0.2 °C for −10 to 65 °C), air temperature (0.5 m, 1.5 m, 2.5 m) (Pt100, accuracy: ±0.3 °C for −40 to 60 °C), Global Positioning System (GPS) | 1 s |
Mobile Observation Vehicle (MOVE) | Temperature, Relative Humidity, Air pressure, precipitation, solar radiation (downward/upward shortwave/longwave), insolation, Global Navigation Satellite System (GNSS), GPS, road surface sensor (temperature, status, salinity, water depth, conductivity) | Kim et al. (2020) [29] 1 s |
No. | Mobile Vehicle (MOVE) | Mobile Cart (MOCA) | ||
---|---|---|---|---|
Day | Time (LST) | Day | Time (LST) | |
1 | 5 Aug 2019 | 1451–1516 | 5 Aug 2019 | 1200–1240 |
2 | 1548–1618 | 1300–1340 | ||
3 | 1758–1818 | 1400–1440 | ||
4 | 1948–2017 | 1500–1540 | ||
5 | 2048–2115 | 1600–1640 | ||
6 | 6 Aug 2019 | 0648–0716 | 1700–1740 | |
7 | 0754–0807 | 1800–1840 | ||
8 | 0848–0919 | 2100–2140 | ||
9 | 0947–1015 | 6 Aug 2019 | 0400–0440 | |
10 | 1048–1115 | 0600–0640 | ||
11 | 1148–1220 | 0700–0740 | ||
12 | 1447–1515 | 0800–0840 | ||
13 | 1547–1622 | 0900–0940 | ||
14 | 1647–1705 | 1000–1040 | ||
15 | 1747–1821 | 1100–1140 | ||
16 | 1947–2017 | 1200–1240 | ||
17 | 2047–2114 | 1300–1340 | ||
18 | 1400–1440 | |||
19 | 1500–1540 | |||
20 | 1600–1640 | |||
21 | 1700–1740 | |||
22 | 1800–1840 | |||
23 | 2100–2140 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, M.-S.; Byon, J.-Y.; Kim, B.-J.; Choi, W.; Myung, K.-M.; Lee, S.-H.; Cho, T.-I.; Chae, J.-H.; Min, J.-S.; Kang, M.; et al. A Building-Block Urban Meteorological Observation Experiment (BBMEX) Campaign in Central Commercial Area in Seoul. Atmosphere 2020, 11, 299. https://doi.org/10.3390/atmos11030299
Park M-S, Byon J-Y, Kim B-J, Choi W, Myung K-M, Lee S-H, Cho T-I, Chae J-H, Min J-S, Kang M, et al. A Building-Block Urban Meteorological Observation Experiment (BBMEX) Campaign in Central Commercial Area in Seoul. Atmosphere. 2020; 11(3):299. https://doi.org/10.3390/atmos11030299
Chicago/Turabian StylePark, Moon-Soo, Jae-Young Byon, Baek-Jo Kim, Woosuk Choi, Kwang-Min Myung, Sang-Hyun Lee, Tae-Il Cho, Jung-Hoon Chae, Jae-Sik Min, Minsoo Kang, and et al. 2020. "A Building-Block Urban Meteorological Observation Experiment (BBMEX) Campaign in Central Commercial Area in Seoul" Atmosphere 11, no. 3: 299. https://doi.org/10.3390/atmos11030299
APA StylePark, M. -S., Byon, J. -Y., Kim, B. -J., Choi, W., Myung, K. -M., Lee, S. -H., Cho, T. -I., Chae, J. -H., Min, J. -S., Kang, M., Jee, J. -B., Kim, S. -H., & Cho, C. -R. (2020). A Building-Block Urban Meteorological Observation Experiment (BBMEX) Campaign in Central Commercial Area in Seoul. Atmosphere, 11(3), 299. https://doi.org/10.3390/atmos11030299