Local and Remote Sources of Airborne Suspended Particulate Matter in the Antarctic Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Sampling
2.2. Data Processing
2.3. Polar Contour Maps
2.4. Air-Mass Back Trajectories
3. Results and Discussion
3.1. Statistical Description of the Data Normality Tests
3.2. Correlation Analysis
3.3. Multivariate Analysis
- Air mass backward trajectories associated to 01 February 2017 (Figure 4) show previous winds to this day with origin on the Weddell Sea, passing through the Antarctic continent and the Bellingshausen Sea. These areas are mostly covered by ice and snow. This explains the low concentration levels of crustal or marine elements.
- Backward trajectories associated to 24 February 2017 and 26 February 2017 (Figure 4) show previous days were similar, although on the 26th wind travelled through areas farther north than on the 24th. In both cases, the wind route passed mainly through ice-free areas, so these days prevail the presence of Na and the elements correlated with it, such as Mg. In addition, on 26 February 2017 there was moderate rainfall and high relative humidity, which favoured the deposition of the aerosol.
- On 07 January 2017 (Figure 4), very low levels of all the elements were detected. This cannot be explained either by the air mass backward trajectories or by the sampling weather conditions. Therefore, it should be considered to be anomalous.
3.4. Polar Contour Maps
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Turner, J.; Barrand, N.E.; Bracegirdle, T.J.; Convey, P.; Hodgson, D.A.; Jarvis, M.; Jenkins, A.; Marshall, G.; Meredith, M.P.; Roscoe, H.; et al. Antarctic climate change and the environment: An update. Polar Rec. 2014, 50, 237–259. [Google Scholar] [CrossRef] [Green Version]
- IAATO. Report on Iaato Operator Use of Antarctic Peninsula Landing Sites and Atcm Visitor Site Guidelines, 2016-17 Season. Ip 164; International Association of Antarctica Tour Operators (IAATO): South Kingston, RI, USA, 2017; Available online: https://iaato.org/es/past-iaato-information-papers (accessed on 28 April 2017).
- Nielsen, I.E.; Skov, H.; Massling, A.; Eriksson, A.C.; Dall’Osto, M.; Junninen, H.; Sarnela, N.; Lange, R.; Collier, S.; Zhang, Q.; et al. Biogenic and anthropogenic sources of aerosols at the High Arctic site Villum Research Station. Atmos. Chem. Phys. 2019, 19, 10239–10256. [Google Scholar] [CrossRef] [Green Version]
- Tomasi, C.; Lanconelli, C.; Mazzola, M.; Lupi, A. Aerosol and Climate Change: Direct and Indirect Aerosol Effects on Climate. In Atmospheric Aerosols; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2016; pp. 437–551. [Google Scholar]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group i to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013.
- Cáceres, J.O.; Sanz-Mangas, D.; Manzoor, S.; Pérez-Arribas, L.V.; Anzano, J. Quantification of particulate matter, tracking the origin and relationship between elements for the environmental monitoring of the Antarctic region. Sci. Total Environ. 2019, 665, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Mahowald, N.; Albani, S.; Kok, J.F.; Engelstaeder, S.; Scanza, R.; Ward, D.S.; Flanner, M.G. The size distribution of desert dust aerosols and its impact on the Earth system. Aeolian Res. 2014, 15, 53–71. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.-H.; Xie, Z.-Q.; Wang, X.-M.; Kang, H.; Zhang, P. Levoglucosan indicates high levels of biomass burning aerosols over oceans from the Arctic to Antarctic. Sci. Rep. 2013, 3, 3119. [Google Scholar] [CrossRef]
- Radojevic, M.; Bashkin, V.N. Practical Environmental Analysis; RSC: Cambridge, UK, 2006. [Google Scholar]
- Reeve, R.N. Introduction to Environmental Analysis; John Wiley & Sons: Chichester, UK, 2002. [Google Scholar]
- Bargagli, R. Atmospheric chemistry of mercury in Antarctica and the role of cryptogams to assess deposition patterns in coastal ice-free areas. Chemosphere 2016, 163, 202–208. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bullet. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Fleming, Z.L.; Monks, P.S.; Manning, A.J. Review: Untangling the influence of air-mass history in interpreting observed atmospheric composition. Atmos. Res. 2012, 104, 1–39. [Google Scholar] [CrossRef] [Green Version]
- Hondula, D.M.; Sitka, L.; Davis, R.E.; Knight, D.B.; Gawtry, S.D.; Deaton, M.L.; Lee, T.R.; Normile, C.P.; Stenger, P.J. A back-trajectory and air mass climatology for the Northern Shenandoah Valley, USA. Int. J. Climatol. 2010, 30, 569–581. [Google Scholar] [CrossRef]
- Moody, J.; Galusky, J.; Galloway, J. The use of atmospheric transport pattern recognition techniques in understanding variation in precipitation chemistry. In Atmospheric Deposition (Proceedings of the Baltimore Symposium, May 1989); IAHS Publ. No. 179; IAHS: Wallingford, UK, 1989. [Google Scholar]
- Pérez-Arribas, L.V.; León-González, M.E.; Rosales-Conrado, N. Learning Principal Component Analysis by Using Data from Air Quality Networks. J. Chem. Educ. 2017, 94, 458–464. [Google Scholar] [CrossRef]
- Cristofanelli, P.; Putero, D.; Bonasoni, P.; Busetto, M.; Calzolari, F.; Camporeale, G.; Grigioni, P.; Lupi, A.; Petkov, B.; Traversi, R.; et al. Analysis of multi-year near-surface ozone observations at the WMO/GAW “Concordia” station (75°06′S, 123°20′E, 3280 m a.s.l. – Antarctica). Atmos. Environ. 2018, 177, 54–63. [Google Scholar] [CrossRef]
- Mihalikova, M.; Kirkwood, S. Tropopause fold occurrence rates over the Antarctic station Troll (72° S, 2.5° E). Ann. Geophys. 2013, 31, 591–598. [Google Scholar] [CrossRef] [Green Version]
- Osipov, E.Y.; Osipova, O.P.; Khodzher, T.V. Recent variability of atmospheric circulation patterns inferred from East Antarctica glaciochemical records. Geochemistry 2019, 125554. [Google Scholar] [CrossRef]
- Mishra, V.K.; Kim, K.-H.; Hong, S.; Lee, K. Aerosol composition and its sources at the King Sejong Station, Antarctic peninsula. Atmos. Environ. 2004, 38, 4069–4084. [Google Scholar] [CrossRef]
- Marina-Montes, C.; Pérez-Arribas, L.V.; Escudero, M.; Anzano, J.; Cáceres, J.O. Heavy metal transport and evolution of atmospheric aerosols in the Antarctic region. Sci. Total Environ. 2020, 721, 137702. [Google Scholar] [CrossRef]
- Szumińska, C.; Czapiewski, S.; Szopińska, M.; Polkowska, Ż. Analysis of air mass back trajectories with present and historical volcanic activity and anthropogenic compounds to infer pollution sources in the South Shetland Islands (Antarctica). Bull. Geogr. Phys. Geogr. Ser. 2018, 15, 111–137. [Google Scholar]
- European Committee for Standardization (CEN). UNE EN 12341:2015. AmbientAir. Standard Gravimetric Measurement Method for the Determination of the PM10 and PM2.5 MassConcentration of Suspended Particulate Matter; European Committee for Standardization: Brussel, Belgium, 2015. [Google Scholar]
- Zhu, G.; Guo, Q.; Xiao, H.; Chen, T.; Yang, J. Multivariate statistical and lead isotopic analyses approach to identify heavy metal sources in topsoil from the industrial zone of Beijing Capital Iron and Steel Factory. Environ. Sci. Pollut. Res. 2017, 24, 14877–14888. [Google Scholar] [CrossRef]
- Cabello, M.; Orza, J.A.G.; Galiano, V.; Ruiz, G. Influence of meteorological input data on backtrajectory cluster analysis – a seven-year study for southeastern Spain. Adv. Sci. Res. 2008, 2, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Rolph, G.; Stein, A.; Stunder, B. Real-time Environmental Applications and Display sYstem: READY. Environ. Model. Softw. 2017, 95, 210–228. [Google Scholar] [CrossRef]
- Jorba, O.; Pérez, C.; Rocadenbosch, F.; Baldasano, J. Cluster Analysis of 4-Day Back Trajectories Arriving in the Barcelona Area, Spain, from 1997 to 2002. J. Appl. Meteorol. 2004, 43, 887–901. [Google Scholar] [CrossRef]
- Moore, B.J.; Neiman, P.J.; Ralph, F.M.; Barthold, F.E. Physical Processes Associated with Heavy Flooding Rainfall in Nashville, Tennessee, and Vicinity during 1–2 May 2010: The Role of an Atmospheric River and Mesoscale Convective Systems. Mon. Weather Rev. 2012, 140, 358–378. [Google Scholar] [CrossRef]
- Su, L.; Yuan, Z.; Fung, J.C.H.; Lau, A.K.H. A comparison of HYSPLIT backward trajectories generated from two GDAS datasets. Sci. Total Environ. 2015, 506–507, 527–537. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.-b.; Yoon, Y.J.; Becagli, S.; Gim, Y.; Chambers, S.D.; Park, K.-T.; Park, S.-J.; Traversi, R.; Severi, M.; Vitale, V.; et al. Seasonality of aerosol chemical composition at King Sejong Station (Antarctic Peninsula) in 2013. Atmos. Environ. 2019, 117185. [Google Scholar] [CrossRef]
- Budhavant, K.; Safai, P.D.; Rao, P.S.P. Sources and elemental composition of summer aerosols in the Larsemann Hills (Antarctica). Environ. Sci. Pollut. Res. 2015, 22, 2041–2050. [Google Scholar] [CrossRef]
- Budhavant, K.B.; Rao, P.S.P.; Safai, P.D. Size distribution and chemical composition of summer aerosols over Southern Ocean and the Antarctic region. J. Atmos. Chem. 2017, 74, 491–503. [Google Scholar] [CrossRef]
- Mazzera, D.; Lowenthal, D.; Chow, J.; Watson, J.; Grubišić, V. PM10 measurements at McMurdo Station, Antarctica. Atmos. Environ. 2001, 35, 1891–1902. [Google Scholar] [CrossRef]
Total Particulate Matter (µg/m3) | |
Date | PM10 (µg/m3) |
28 December 2016 | 6.1 |
30 December 2016 | 28.2 |
01 January 2017 | 21.7 |
07 January 2017 | 8.1 |
21 January 2017 | 12.2 |
22 January 2017 | 2.9 |
23 January 2017 | 9.4 |
01 February 2017 | 4.3 |
08 February 2017 | 3.8 |
14 February 2017 | 2.9 |
17 February 2017 | 4.7 |
23 February 2017 | 12.1 |
24 February 2017 | 19.5 |
25 February 2017 | 7.4 |
26 February 2017 | 6.0 |
PM10 Statistical Overview | |
Number of samples | 15 |
Average | 9.95 |
Standard deviation | 7.60 |
Coefficient of variation | 76.4% |
Minimum | 2.9 |
Maximum | 28.2 |
Range | 25.3 |
Standard Skewness | 2.1299 |
Standard Kurtosis | 0.8392 |
Lognormal | Normal | |
---|---|---|
Phosphorus | 0.806278 | 0.0123709 |
Potassium | 0.735451 | 0.0267816 |
Copper | 0.288687 | 0.315736 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marina-Montes, C.; Pérez-Arribas, L.V.; Anzano, J.; Cáceres, J.O. Local and Remote Sources of Airborne Suspended Particulate Matter in the Antarctic Region. Atmosphere 2020, 11, 373. https://doi.org/10.3390/atmos11040373
Marina-Montes C, Pérez-Arribas LV, Anzano J, Cáceres JO. Local and Remote Sources of Airborne Suspended Particulate Matter in the Antarctic Region. Atmosphere. 2020; 11(4):373. https://doi.org/10.3390/atmos11040373
Chicago/Turabian StyleMarina-Montes, César, Luis Vicente Pérez-Arribas, Jesús Anzano, and Jorge O. Cáceres. 2020. "Local and Remote Sources of Airborne Suspended Particulate Matter in the Antarctic Region" Atmosphere 11, no. 4: 373. https://doi.org/10.3390/atmos11040373
APA StyleMarina-Montes, C., Pérez-Arribas, L. V., Anzano, J., & Cáceres, J. O. (2020). Local and Remote Sources of Airborne Suspended Particulate Matter in the Antarctic Region. Atmosphere, 11(4), 373. https://doi.org/10.3390/atmos11040373