Heat Vulnerability and Heat Island Mitigation in the United States
Abstract
:1. Introduction
2. Risk of Extreme Heat in the USA
3. Community Heat Island Mitigation (HIM) Actions
4. Conceptual Framework, Data, and Methodology
4.1. Major Components of Heat Vulnerability
4.1.1. Heat Hazard Profile
4.1.2. Climatic and Environmental Conditions
4.1.3. Demographic and Socio-Economic Characteristics
4.1.4. Institutional Efforts for Mitigation and Adaptation
4.2. First-Phase: Heat Hazard Mitigation
4.3. Second-Phase: Heat Fatality
- : the inverse of the logit link
- : the set of heat observations that result in zero deaths (: death = 0)
- : Inflation variables for the binary Logit model predicting whether an observation is in the always-zero group where
- : Covariates for counts model
- (i)
- Heat Hazard Mitigation Model
- (ii)
- Heat Vulnerability–Fatality Model
4.4. Heat Island Mitigation(HIM) Actions and Heat Fatality: A Direct Estimation
5. Results and Discussion
5.1. First-Phase: Heat Hazard Mitigation
5.2. Second-Phase: Heat Vulnerability–Fatality Model
5.2.1. Heat Hazard Profile
5.2.2. Climatic and Environmental Conditions
5.2.3. Demographic and Socio-Economic Characteristics
5.3. Heat Island Mitigation Actions and Heat Fatality
5.3.1. First and Second Phase Models Combined: A Mediated Effect
5.3.2. A Direct Estimation of the Effect
5.4. Falsification Tests
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Determination of a Heat Category Event in NWS Storm Data |
---|
Heat |
A period of heat results from the combination of high temperatures (above normal) and relative humidity. A heat event occurs and is reported in Storm Data whenever heat index values meet or exceed locally/regionally established heat advisory thresholds. Fatalities or major impacts on human health occurring when ambient weather conditions meet heat advisory criteria are reported using the heat event. If the ambient weather conditions are below heat advisory criteria, a heat event entry is permissible only if a directly related fatality occurred due to unseasonably warm weather, and not man-made environments. |
Excess Heat |
Excessive heat results from a combination of high temperatures (well above normal) and high humidity. An Excessive heat event occurs and is reported in Storm Data whenever heat index values meet or exceed locally/regionally established excessive heat warning thresholds. Fatalities (directly related) or major impacts to human health that occur during excessive heat warning conditions are reported using this event category. If the event that occurred is considered significant, even though it affected a small area, it should be entered into Storm Data. |
References
- Kochanek, K.D.; Miniño, A.M.; Murphy, S.L.; Xu, J.; Kung, H.-C. Deaths: Final Data for 2009. 2011. Available online: https://stacks.cdc.gov/view/cdc/12124 (accessed on 8 March 2018).
- Greenough, G.; McGeehin, M.; Bernard, S.M.; Trtanj, J.; Riad, J.; Engelberg, D. The potential impacts of climate variability and change on health impacts of extreme weather events in the United States. Environ. Health Perspect. 2001, 109, 191–198. [Google Scholar]
- Beniston, M.; Stephenson, D.B. Extreme climatic events and their evolution under changing climatic conditions. Glob. Planet. Chang. 2004, 44, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Meehl, G.A.; Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 2004, 305, 994–997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milly, P.C.D.; Wetherald, R.T.; Dunne, K.A.; Delworth, T.L. Increasing risk of great floods in a changing climate. Nature 2002, 415, 514–517. [Google Scholar] [CrossRef] [PubMed]
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. IPCC, 2013: Summary for Policymakers in Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Strader, S.M.; Ashley, W.S.; Pingel, T.J.; Krmenec, A.J. Projected 21st century changes in tornado exposure, risk, and disaster potential. Clim. Chang. 2017, 141, 301–313. [Google Scholar] [CrossRef]
- Deschênes, O.; Greenstone, M. Climate Change, Mortality, and Adaptation: Evidence from Annual Fluctuations in Weather in the US. Am. Econ. J. Appl. Econ. 2011, 3, 152–185. [Google Scholar] [CrossRef]
- Morss, R.E.; Wilhelmi, O.V.; Meehl, G.A.; Dilling, L. Improving Societal Outcomes of Extreme Weather in a Changing Climate: An Integrated Perspective. Annu. Rev. Environ. Resour. 2011, 36, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Gago, E.J.; Roldan, J.; Pacheco-Torres, R.; Ordóñez, J. The city and urban heat islands: A review of strategies to mitigate adverse effects. Renew. Sustain. Energy Rev. 2013, 25, 749–758. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (EPA). Reducing Urban Heat Islands: Compendium of Strategies Draft; U.S. Environmental Protection Agency (EPA): Washington, DC, USA, 2008.
- Hondula, D.M.; Davis, R.E.; Leisten, M.J.; Saha, M.V.; Veazey, L.M.; Wegner, C.R. Fine-scale spatial variability of heat-related mortality in Philadelphia County, USA, from 1983–2008: A case-series analysis. Environ. Health 2012, 11, 16. [Google Scholar] [CrossRef] [Green Version]
- Sheridan, S.C.; Dolney, T.J. Heat, mortality, and level of urbanization: Measuring vulnerability across Ohio, USA. Clim. Res. 2003, 24, 255–265. [Google Scholar] [CrossRef] [Green Version]
- Uejio, C.K.; Wilhelmi, O.V.; Golden, J.S.; Mills, D.M.; Gulino, S.P.; Samenow, J.P. Intra-urban societal vulnerability to extreme heat: The role of heat exposure and the built environment, socioeconomics, and neighborhood stability. Health Place 2011, 17, 498–507. [Google Scholar] [CrossRef]
- Bell, M.L.; O’neill, M.S.; Ranjit, N.; Borja-Aburto, V.H.; Cifuentes, L.A.; Gouveia, N.C. Vulnerability to heat-related mortality in Latin America: A case-crossover study in Sao Paulo, Brazil, Santiago, Chile and Mexico City, Mexico. Int. J. Epidemiol. 2008, 37, 796–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loughnan, M.; Tapper, N.; Phan, T. Identifying Vulnerable Populations in Subtropical Brisbane, Australia: A Guide for Heatwave Preparedness and Health Promotion. Int. Sch. Res. Not. 2014, 2014, e821759. [Google Scholar] [CrossRef] [Green Version]
- Stafoggia, M.; Forastiere, F.; Agostini, D.; Biggeri, A.; Bisanti, L.; Cadum, E.; Caranci, N.; de’Donato, F.; De Lisio, S.; De Maria, M.; et al. Vulnerability to heat-related mortality: A multicity, population-based, case-crossover analysis. Epidemiology 2006, 17, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Klinenberg, E. Denaturalizing Disaster: A Social Autopsy of the 1995 Chicago Heat Wave. Theory Soc. 1999, 28, 239–295. [Google Scholar] [CrossRef]
- Browning, C.R.; Wallace, D.; Feinberg, S.L.; Cagney, K.A. Neighborhood social processes, physical conditions, and disaster-related mortality: The case of the 1995 Chicago heat wave. Am. Sociol. Rev. 2006, 71, 661–678. [Google Scholar] [CrossRef] [Green Version]
- Aubrecht, C.; Özceylan, D. Identification of heat risk patterns in the U.S. National Capital Region by integrating heat stress and related vulnerability. Environ. Int. 2013, 56, 65–77. [Google Scholar] [CrossRef]
- Harlan, S.L.; Declet-Barreto, J.H.; Stefanov, W.L.; Petitti, D.B. Neighborhood Effects on Heat Deaths: Social and Environmental Predictors of Vulnerability in Maricopa County, Arizona. Environ. Health Perspect. (Online) Res. Triangle Park 2013, 121, 197. [Google Scholar] [CrossRef] [Green Version]
- Johnson, D.P.; Stanforth, A.; Lulla, V.; Luber, G. Developing an applied extreme heat vulnerability index utilizing socioeconomic and environmental data. Appl. Geogr. 2012, 35, 23–31. [Google Scholar] [CrossRef]
- Reid, C.E.; O’Neill, M.S.; Gronlund, C.J.; Brines, S.J.; Brown, D.G.; Diez-Roux, A.V.; Schwartz, J. Mapping community determinants of heat vulnerability. Environ. Health Perspect. 2009, 117, 1730. [Google Scholar] [CrossRef]
- North America Land Data Assimilation System (NLDAS). Daily Air Temperatures and Heat Index, years 1979–2011 on CDC WONDER Online Database. Available online: http://wonder.cdc.gov/NCA-heatwavedays-historic.html (accessed on 11 January 2018).
- Albala-Bertrand, J.M. Political Economy of Large Natural Disasters; Oxford University Press: New York, NY, USA, 1993. [Google Scholar]
- Blaikie, P.; Canon, T.; Davis, I.; Wisner, B. At risk: Natural Hazards, People’s Vulnerability, and Disasters; Routledge: New York, NY, USA, 1994. [Google Scholar]
- Cutter, S.L. The landscape of disaster resilience indicators in the USA. Nat. Hazards 2016, 80, 741–758. [Google Scholar] [CrossRef]
- Enarson, E.; Morrow, B.H. The Gendered Terrain of Disaster: Through Womens Eyes; International Hurricane Center, Praeger Publishers: Westport, CT, USA, 1998. [Google Scholar]
- Peacock, W.G.; Morrow, B.H.; Gladwin, H. Hurricane Andrew: Ethnicity, Gender, and the Sociology of Disasters; Routledge: New York, NY, USA, 1997. [Google Scholar]
- Morrow, B.H. Identifying and Mapping Community Vulnerability. Disasters 1999, 23, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Brooks, N.; Adger, W.N.; Kelly, P.M. The Determinants of Vulnerability and Adaptive Capacity at the National Level and the Implications for Adaptation. Glob. Environ. Chang. Adapt. Clim. Chang. Perspect. Across Scales 2005, 15, 151–163. [Google Scholar] [CrossRef]
- Donner, W.R. The political ecology of disaster: An analysis of factors influencing U.S. tornado fatalities and injuries, 1998–2000. Demography 2007, 44, 669–685. [Google Scholar] [CrossRef]
- Lim, J.; Loveridge, S.; Shupp, R.; Skidmore, M. Double Danger in the Double Wide: Dimensions of Poverty, Housing Quality and Tornado Impacts. Reg. Sci. Urban Econ. 2017, 65, 1–15. [Google Scholar] [CrossRef]
- Lim, J.; Skidmore, M. Flood Fatalities in the United States: The Roles of Socio-Economic Factors and the National Flood Insurance Program. South. Econ. J. 2019, 85, 1032–1057. [Google Scholar] [CrossRef]
- Zahran, S.; Brody, S.D.; Peacock, W.G.; Vedlitz, A.; Grover, H. Social Vulnerability and the Natural and Built Environment: A Model of Flood Casualties in Texas. Disasters 2008, 32, 537–560. [Google Scholar] [CrossRef]
- Kahn, M.E. The Death Toll from Natural Disasters: The Role of Income, Geography, and Institutions. Rev. Econ. Stat. 2005, 87, 271–284. [Google Scholar] [CrossRef]
- Toya, H.; Skidmore, M. Economic development and the impacts of natural disasters. Econ. Lett. 2007, 94, 20–25. [Google Scholar] [CrossRef]
- Strömberg, D. Natural Disasters, Economic Development, and Humanitarian Aid. J. Econ. Perspect. 2007, 21, 199–222. [Google Scholar] [CrossRef]
- Kellenberg, D.K.; Mobarak, A.M. Does rising income increase or decrease damage risk from natural disasters? J. Urban Econ. 2008, 63, 788–802. [Google Scholar] [CrossRef]
- Raschky, P.A. Institutions and the Losses from Natural Disasters. Nat. Hazards Earth Syst. Sci. 2008, 8, 627–634. [Google Scholar] [CrossRef]
- Simmons, K.M.; Sutter, D. The Economic and Societal Impact of Tornadoes; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Hajat, S.; Kosatky, T. Heat-Related Mortality: A Review and Exploration of Heterogeneity. J. Epidemiol. Community Health 2010, 64, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Åström, D.O.; Bertil, F.; Joacim, R. Heat wave impact on morbidity and mortality in the elderly population: A review of recent studies. Maturitas 2011, 69, 99–105. [Google Scholar] [CrossRef]
- Kovats, R.S.; Hajat, S. Heat Stress and Public Health: A Critical Review. Annu. Rev. Public Health 2008, 29, 41–55. [Google Scholar] [CrossRef] [PubMed]
- Fothergill, A.; Maestas, E.G.; Darlington, J.D. Race, ethnicity and disasters in the United States: A review of the literature. Disasters 1999, 23, 156–173. [Google Scholar] [CrossRef]
- Hansen, A.; Bi, L.; Saniotis, A.; Nitschke, M. Vulnerability to Extreme Heat and Climate Change: Is Ethnicity a Factor? Glob. Health Action 2013, 6, 21364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lal, P.N.; Lal, P.N.; Singh, R.; Holland, P. Relationship between Natural Disasters and Poverty: A Fiji Case Study; SOPAC: Suva, Fiji, 2009. [Google Scholar]
- Fothergill, A.; Peek, L.A. Poverty and Disasters in the United States: A Review of Recent Sociological Findings. Nat. Hazards 2004, 32, 89–110. [Google Scholar] [CrossRef]
- Aptekar, L. The Psychosocial Process of Adjusting to Natural Disasters; Natural Hazards Research and Applications Information Center, University of Colorado: Boulder, CO, USA, 1991. [Google Scholar]
- Phillips, B.D. Cultural diversity in disasters: Sheltering, housing, and long-term recovery. Int. J. Mass Emerg. Disasters 1993, 11, 99–110. [Google Scholar]
- Pastor, M.; Bullard, R.D.; Boyce, J.K.; Fothergill, A.; Morello-Frosch, R.; Wright, B. In the Wake of the Storm: Environment, Disaster and Race after Katrina; Russell Sage Foundation: New York, NY, USA, 2006. [Google Scholar]
- Cutter, S.L.; Boruff, B.J.; Shirley, W.L. Social Vulnerability to Environmental Hazards*. Soc. Sci. Q. 2003, 84, 242–261. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Solecki, W.D.; Cox, J.; Hodges, S.; Parshall, L.; Lynn, B.; Goldberg, R.; Gaffin, S.; Slosberg, R.B.; Savio, P. Mitigating New York City’s Heat Island: Integrating Stakeholder Perspectives and Scientific Evaluation. Bull. Am. Meteorol. Soc. 2009, 90, 1297–1312. [Google Scholar] [CrossRef]
- Synnefa, A.; Dandou, A.; Santamouris, M.; Tombrou, M.; Soulakellis, N. On the Use of Cool Materials as a Heat Island Mitigation Strategy. J. Appl. Meteorol. Climatol. 2008, 47, 2846–2856. [Google Scholar] [CrossRef]
- Perini, K.; Magliocco, A. Effects of Vegetation, Urban Density, Building Height, and Atmospheric Conditions on Local Temperatures and Thermal Comfort. Urban. For. Urban Green. 2014, 13, 495–506. [Google Scholar] [CrossRef]
- Tan, Z.; Lau, K.K.-L.; Ng, E. Urban Tree Design Approaches for Mitigating Daytime Urban Heat Island Effects in a High-Density Urban Environment. Energy Build. 2016, 114, 265–274. [Google Scholar] [CrossRef]
- Akbari, H.; Pomerantz, M.; Taha, H. Cool Surfaces and Shade Trees to Reduce Energy Use and Improve Air Quality in Urban Areas. Sol. Energy Urban. Environ. 2001, 70, 295–310. [Google Scholar] [CrossRef]
- Center for Disease Control and Prevention National Climate Assessment-Extreme Heat Events: Heat Wave Days in May-September for years 1981–2010 on CDC WONDER Online Database. Available online: http://wonder.cdc.gov/NCA-heatwavedays-historic.html (accessed on 15 January 2018).
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; MIT Press: Cambridge, MA, USA, 2010; ISBN 978-0-262-29679-3. [Google Scholar]
- Long, J.S.; Freese, J. Regression Models for Categorical Dependent Variables Using Stata; Stata Press: College Station, TX, USA, 2006. [Google Scholar]
- Wooldridge, J.M. Specification testing and quasi-maximum-likelihood estimation. J. Econom. 1991, 48, 29–55. [Google Scholar] [CrossRef] [Green Version]
- U.S. Census Bureau. Projected Age Groups and Sex. Composition of the Population: Main Projections Series for the United States, 2017–2060; U.S. Census Bureau, Population Division: Washington, DC, USA, 2017.
- U.S. Census Bureau. 65+ in the United States: 2010; U.S. Government Printing Office: Washington, DC, USA, 2014.
Years | Trees and Vegetation | Cool Roofs | Green Roofs | Cool Pavements | Others (HVI, Master Plan) | |
---|---|---|---|---|---|---|
Within-County Actions | Total | |||||
1985–1989 | 2 | 0 | 0 | 0 | 0 | 2 |
1990–1994 | 2 | 1 | 0 | 0 | 0 | 3 |
1995–1999 | 4 | 2 | 3 | 1 | 1 | 11 |
2000–2004 | 19 | 9 | 10 | 8 | 0 | 46 |
2005–2009 | 35 | 19 | 18 | 23 | 1 | 96 |
2010–2014 | 22 | 19 | 15 | 15 | 0 | 71 |
Total | 84 | 50 | 46 | 47 | 2 | 229 |
Statewide Actions | Total | |||||
1995–1999 | 0 | 1 | 0 | 0 | 0 | 1 |
2000–2004 | 2 | 2 | 1 | 0 | 0 | 5 |
2005–2009 | 3 | 3 | 1 | 0 | 1 | 8 |
2010–2014 | 6 | 2 | 2 | 3 | 0 | 13 |
Total | 11 | 8 | 4 | 3 | 1 | 27 |
Dependent Variable | Source | ||
---|---|---|---|
Max. for Monthly Average Heat Index Value (°F) of year t (t = 1998–2011) | NLDAS | ||
Heat Wave Days Based on Daily Max. Heat Index or Net Daily Heat Stress | NCA | ||
Explanatory/Control Variables | |||
Heat Island Mitigation Actions | Lagged Heat Island Mitigation Status (Yes = 1, No = 0) | EPA | |
Lagged Total No. of Heat Island Mitigation Actions | EPA | ||
Group Indicators (Lagged No. of actions: 0, 1, 2–3, 4+) | EPA | ||
Climatic Conditions | Total Heat Wave Days During the Previous 3 Years | NCA | |
Annual Average of Max. Daily Air Temperature (°F) | NLDAS | ||
Annual Average of Min. Daily Air Temperature (°F) | NLDAS | ||
Population | County Population Size | Census | |
County FE | Time-invariant County Traits and Characteristics. | ||
Fixed Effects Trend | County-specific Linear Trend | ||
Time FE | A set of Year Indicators (1998–2011) |
Heat Island Mitigation Actions Adoption Status | Direct Fatalities Resulted from Heat Events (1996–2010) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Metro + Micro + Rural | Metro + Micro | Metropolitan only | |||||||
Avg. | Obs. | % | Avg. | Obs. | % | Avg. | Obs. | % | |
No Actions taken | 0.031 | 39,128 | 84% | 0.050 | 22,190 | 82% | 0.074 | 13,879 | 80% |
1 or more Actions | 0.094 | 7447 | 16% | 0.146 | 4705 | 18% | 0.196 | 3461 | 20% |
Total | 0.041 | 46,575 | 100% | 0.067 | 26,895 | 100% | 0.098 | 17,340 | 100% |
Dependent Variable | Source | ||
---|---|---|---|
Direct Deaths from Heat Event | NCEI | ||
Explanatory/Control Variables | |||
Heat Hazard Profile | Begin Time of the event: Overnight, Morning, Early Afternoon, Late Afternoon, Evening | NCEI | |
Season: Spring, Summer, Fall, Winter | NCEI | ||
Event Type: Heat, Excess Heat | NCEI | ||
Monthly Average of Daily Maximum Heat Index (°F) | NLDAS | ||
Climatic & Environmental Conditions | Annual Average of Daily Air Temperature (°F) | NLDAS | |
Annual Average of Max. Daily Air Temperature (°F) | NLDAS | ||
Population Size | Census | ||
Urban Population Density (per 1000 m2) | Census | ||
Demographic Composition | Percent of Non-White | Census | |
Percent of the Young (under 18) | Census | ||
Percent of the Elderly (over 65) | Census | ||
Percent of the Elderly Living Alone | Census | ||
Economic Factors | Poverty Rate among Elderly | Census | |
Poverty Rate | Census | ||
Per Capita Income | Census | ||
Housing Factors | Percent of Renter Occupied Housing Units | Census | |
Percent of Mobile Homes in Total Housing Units | Census | ||
Time FE | Year Indicator Variables | ||
State FE | Indicator Variables for USA States | ||
Inflation Variables of ZINB logit model | |||
Climate | Annual Average of Daily Air Temperature (°F) | NLDAS | |
Annual Average of Max. Daily Air Temperature (°F) | NLDAS | ||
Urbanization | Metropolitan Status (Metro = 1, Micro = 0, Rural = −1) | Census | |
Economic Status | Per capita Income | Census |
Variables | Mean | Standard Deviation | Min | Max | Obs. No. |
---|---|---|---|---|---|
First-Phase Random Trend Model | |||||
Max. for Monthly Avg. Max. Heat Index (°F) | 94.45 | 6.09 | 78.40 | 111.02 | 40,168 |
(°C) | 34.69 | −14.39 | 25.78 | 43.90 | |
Heat Island Mitigation Status (=1 if yes) | 0.164 | 0.37 | 0 | 1 | 40,168 |
Total No. of Heat Island Mitigation Actions | 0.218 | 0.60 | 0 | 11 | 40,168 |
No. of Mitigation Actions: 0 (=1 if yes) | 0.836 | 0.37 | 0 | 1 | 40,168 |
No. of Mitigation Actions: 1 (=1 if yes) | 0.132 | 0.34 | 0 | 1 | 40,168 |
No. of Mitigation Actions: 2–3 (=1 if yes) | 0.028 | 0.16 | 0 | 1 | 40,168 |
No. of Mitigation Actions: 4+ (=1 if yes) | 0.004 | 0.06 | 0 | 1 | 40,168 |
Total Heat Wave Days during the previous 3 years | 20.29 | 10.18 | 0 | 81 | 40,168 |
Annual Avg. of Max. Daily Temperature (°F) | 65.31 | 8.99 | 40.84 | 89.79 | 40,168 |
(°C) | 18.51 | −12.78 | 4.91 | 32.11 | |
Annual Avg. of Min. Daily Temperature (°F) | 47.11 | 7.66 | 22.71 | 72.01 | 40,168 |
(°C) | 8.39 | −13.52 | −5.16 | 22.23 | |
Population (in thousands) | 91.73 | 295.33 | 0.055 | 9818.61 | 40,168 |
Heat Wave Days Based on Daily Max Heat Index | 7.36 | 6.75 | 0 | 52 | 43,414 |
Heat Wave Days Based on Net Daily Heat Stress | 6.62 | 6.93 | 0 | 51 | 43,414 |
Second-Phase ZINB Model | |||||
Direct Heat Fatalities | 0.13 | 1.30 | 0 | 93 | 15,050 |
Monthly Avg. of Max. Heat Index (°F) | 96.91 | 6.16 | 78.80 | 111.02 | 15,050 |
(°C) | 36.06 | −14.36 | 26.00 | 43.90 | |
Annual Avg. of Max. Daily Temperature (°F) | 67.00 | 7.02 | 44.36 | 89.04 | 15,050 |
(°C) | 19.44 | −13.88 | 6.87 | 31.69 | |
Annual Avg. of Daily Temperature (°F) | 57.65 | 6.21 | 36.07 | 77.41 | 15,050 |
(°C) | 14.25 | −14.33 | 2.26 | 25.23 | |
Ln (Population) | 10.69 | 1.54 | 5.70 | 16.09 | 15,050 |
Urban Population Density per 1000 m2 | 1.63 | 1.92 | 0 | 69.47 | 15,050 |
Metro Status (Metro = 1, Micro = 0, Rural = −1) | 0.12 | 0.91 | −1 | 1 | 15,050 |
Ln (Per capita Income) | 10.01 | 0.23 | 9.23 | 11.03 | 15,050 |
Poverty Rate | 14.75 | 6.60 | 2.56 | 46.09 | 15,050 |
Percent of the Young (under 18) | 24.38 | 2.66 | 13.88 | 41.66 | 15,050 |
Percent of the Elderly (over 65) | 14.94 | 3.68 | 1.95 | 34.03 | 15,050 |
Percent of the Elderly Living Alone | 4.31 | 1.29 | 0.36 | 11.08 | 15,050 |
Poverty Rate among Elderly | 11.02 | 4.86 | 0 | 40.87 | 15,050 |
Percent of Non-White | 16.96 | 16.35 | 0.47 | 89.22 | 15,050 |
Percent of Renter Occupied Housing | 27.59 | 8.13 | 10.16 | 80.09 | 15,050 |
Percent of Mobile Homes | 11.46 | 8.58 | 0 | 59.36 | 15,050 |
Excessive Heat | 0.25 | 0.44 | 0 | 1 | 15,050 |
Heat | 0.75 | 0.44 | 0 | 1 | 15,050 |
Overnight | 0.20 | 0.40 | 0 | 1 | 15,050 |
Morning | 0.42 | 0.49 | 0 | 1 | 15,050 |
Early Afternoon | 0.04 | 0.19 | 0 | 1 | 15,050 |
Late Afternoon | 0.01 | 0.07 | 0 | 1 | 15,050 |
Evening | 0.20 | 0.40 | 0 | 1 | 15,050 |
Spring | 0.04 | 0.20 | 0 | 1 | 15,050 |
Summer | 0.91 | 0.29 | 0 | 1 | 15,050 |
Fall | 0.05 | 0.21 | 0 | 1 | 15,050 |
Winter | 0.00 | 0.04 | 0 | 1 | 15,050 |
Poisson Fixed Effects Heat Fatality Model | |||||
Annual Heat Fatalities per Heat Event | 0.47 | 1.92 | 0 | 35 | 1585 |
No. of Heat Island Mitigation Actions_All | 0.22 | 0.83 | 0 | 11 | 1585 |
No. of Heat Island Mitigation Actions_Local | 0.08 | 0.59 | 0 | 11 | 1585 |
Total Heat Wave Days During the Previous 3 Years | 18.27 | 7.98 | 0 | 48 | 1585 |
Heat Wave Days Based on Daily Max Temp. | 11.40 | 11.20 | 0 | 65 | 1585 |
Annual Avg. of Max. Daily Temperature (°F) | 67.12 | 6.72 | 49.93 | 84.95 | 1585 |
(°C) | 19.51 | −14.04 | 9.96 | 29.42 | |
Annual Avg. of Min. Daily Temperature (°F) | 49.11 | 5.20 | 35.63 | 68.91 | 1585 |
(°C) | 9.51 | −14.89 | 2.02 | 20.51 | |
Population (in thousands) | 395.20 | 833.40 | 2.20 | 9737.96 | 1585 |
Percent Urban Population | 67.01 | 28.98 | 0 | 100 | 1585 |
Percent of the Elderly (over 65) | 12.68 | 3.29 | 3.64 | 22.24 | 1585 |
Ln (Per Capita Income) | 10.08 | 0.24 | 9.35 | 10.92 | 1585 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
RTM_HI 1 | RTM_HI 2 | RTM_HI 3 | RTM_HD 1 | RTM_HD 2 | |
Dependent Variable | Heat Index | Heat Index | Heat Index | Heat Days by Heat Index | Heat Days by Heat Stress |
HIM Status_lag | −0.710 *** | ||||
(0.102) | |||||
No. of HIM Actions_lag | −0.261 *** | ||||
(0.063) | |||||
1 HIM Action Group_lag | −0.698 *** | −1.710 *** | −1.992 *** | ||
(0.106) | (0.248) | (0.255) | |||
2–3 HIM Actions Group_lag | −0.903 *** | −2.843 *** | −2.658 *** | ||
(0.186) | (0.444) | (0.382) | |||
4+ HIM Actions Group_lag | −1.930 *** | −4.068 *** | −3.999 *** | ||
(0.296) | (1.499) | (1.317) | |||
Previous-3yrs_HeatWaveDays | −0.019 *** | −0.019 *** | −0.019 *** | −0.029 *** | −0.022 *** |
(0.001) | (0.001) | (0.001) | (0.005) | (0.004) | |
Population (in thousands) | 0.018 *** | 0.017 *** | 0.018 *** | 0.006 | 0.012 |
(0.005) | (0.005) | (0.005) | (0.011) | (0.010) | |
Annual Avg of Max Daily Temp | 0.540 *** | 0.541 *** | 0.540 *** | 1.946 *** | 1.709 *** |
(0.012) | (0.011) | (0.011) | (0.035) | (0.037) | |
Annual Avg of Min Daily Temp | 0.041 ** | 0.039 ** | 0.039 ** | −1.205 *** | −1.170 *** |
(0.018) | (0.018) | (0.018) | (0.045) | (0.042) | |
County Fixed Effects | Yes | Yes | Yes | Yes | Yes |
County-Specific Time Trend | Yes | Yes | Yes | Yes | Yes |
Time Effects | Yes | Yes | Yes | Yes | Yes |
R-squared (within) | 0.436 | 0.435 | 0.436 | 0.406 | 0.397 |
Number of Counties | 3093 | 3093 | 3093 | 3101 | 3101 |
Observations | 40,168 | 40,168 | 40,168 | 43,414 | 43,414 |
Zero Inflated Negative Binomial Model (ZINB) | ||||
---|---|---|---|---|
Dependent Variable | (1) | (2) | (3) | (4) |
Direct Heat Fatalities | Specification 1 | Specification 2 | Specification 3 | Specification 4 |
Monthly Avg. Max Heat Index (°F) | 0.110 *** | 0.110 *** | 0.115 *** | 0.110 *** |
(0.017) | (0.017) | (0.017) | (0.017) | |
Annual Avg. of Daily Temp. (°F) | −0.319 *** | −0.333 *** | −0.351 *** | −0.307 *** |
(0.104) | (0.098) | (0.108) | (0.098) | |
Annual Avg. of Max. Daily Temp. (°F) | 0.220 ** | 0.230 *** | 0.245 *** | 0.206 ** |
(0.087) | (0.084) | (0.090) | (0.083) | |
Ln (Population) | 0.932 *** | 0.927 *** | 0.946 *** | 0.953 *** |
(0.083) | (0.082) | (0.083) | (0.084) | |
Urban Population Density (per 1000 m2) | 0.072 *** | 0.067 *** | 0.050 ** | 0.069 *** |
(0.022) | (0.021) | (0.020) | (0.020) | |
Percent Young | 0.086 ** | 0.087 *** | 0.074 ** | 0.083 ** |
(0.034) | (0.033) | (0.033) | (0.033) | |
Percent Elderly | 0.103 *** | 0.094 *** | 0.092 *** | |
(0.027) | (0.028) | (0.028) | ||
Percent Elderly Living Alone | 0.292 *** | |||
(0.068) | ||||
Poverty Rate among Elderly | 0.065 *** | |||
(0.021) | ||||
Poverty Rate | 0.038 * | |||
(0.021) | ||||
Ln (Per Capita Income) | −1.003 * | −0.290 | −0.146 | −0.899 |
(0.537) | (0.644) | (0.607) | (0.551) | |
Percent Non-White | 0.016 *** | 0.012 ** | 0.010 * | 0.014 *** |
(0.005) | (0.006) | (0.006) | (0.005) | |
Percent Renter Occupied Housing | 0.021 * | 0.013 | 0.019 | 0.013 |
(0.012) | (0.013) | (0.012) | (0.012) | |
Percent Mobile Homes | 0.029 * | 0.028 * | 0.027 | 0.032 * |
(0.017) | (0.016) | (0.016) | (0.018) | |
Excessive Heat | 0.001 | 0.012 | 0.007 | −0.002 |
(0.141) | (0.141) | (0.141) | (0.141) | |
State Fixed Effects | Yes | Yes | Yes | Yes |
Time Effects | Yes | Yes | Yes | Yes |
Observations | 15,050 | 15,050 | 15,050 | 15,050 |
Population aged 65+ | 65+ Population Growth | Yearly Heat Fatalities 2 | |||||
---|---|---|---|---|---|---|---|
Year | Share | Number 1 | Δ Share | Δ Number 1 | Pct Δ | Avg. Deaths/year | Δ Deaths |
1998–2011 | 12.3% | 35,945 | 142 | ||||
2030 | 20.6% | 73,138 | 8.3% | 37,193 | 215% | 305 | 163 |
2050 | 22.6% | 85,675 | 10.3% | 49,730 | 258% | 366 | 224 |
Model | Variables | Estimates | Effects on Heat Fatalities | |
---|---|---|---|---|
Heat Fatality Model | Monthly Avg. Max Heat Index (°F) | = +0.110 *** | ||
Heat Hazard Model | 1 | Heat Island Mitigation (HIM) Adoption Status 1 | = −0.710 *** | 7.51% Reduction 1 |
2 | No. of HIM Measures | = −0.261 *** | 2.83% Reduction (for one additional action) | |
3 | 1 Mitigation Actions Group 1 | = −0.698 *** | 7.39% Reduction 1 | |
2–3 Mitigation Actions Group 1 | = −0.903 *** | 9.46% Reduction 1 | ||
+4 Mitigation Actions Group 1 | = −1.930 *** | 19.13% Reduction 1 |
Dependent Variable | (1) | (2) | (3) | (4) |
---|---|---|---|---|
Direct Heat Fatalities | Poisson FE | Poisson RE | Poisson FE | Poisson RE |
No. of HIM Actions_lag (All) | −0.052 | −0.107 * | ||
(0.068) | (0.064) | |||
No. of HIM Actions_lag_(Non-Statewide) | −0.161 *** | −0.169 ** | ||
(0.060) | (0.066) | |||
Previous-3yrs_HeatWaveDays | −0.057 *** | −0.047 *** | −0.057 *** | −0.047 *** |
(0.018) | (0.016) | (0.018) | (0.016) | |
Heat Wave Days (based on Max Temp) | 0.017 * | 0.009 | 0.017 * | 0.010 |
(0.010) | (0.008) | (0.009) | (0.008) | |
Population (in thousands) | 0.001 | 0.001 *** | 0.001 | 0.001 *** |
(0.001) | (0.000) | (0.002) | (0.000) | |
Pct Urban Population | 0.041 | 0.028 *** | 0.030 | 0.028 *** |
(0.051) | (0.006) | (0.050) | (0.006) | |
Ln (Per Capita Income) | −2.202 | −1.477 ** | −3.195 | −1.491 ** |
(3.025) | (0.587) | (2.971) | (0.590) | |
Number of Counties | 260 | 1906 | 260 | 1906 |
Observations | 1519 | 6635 | 1519 | 6635 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, J.; Skidmore, M. Heat Vulnerability and Heat Island Mitigation in the United States. Atmosphere 2020, 11, 558. https://doi.org/10.3390/atmos11060558
Lim J, Skidmore M. Heat Vulnerability and Heat Island Mitigation in the United States. Atmosphere. 2020; 11(6):558. https://doi.org/10.3390/atmos11060558
Chicago/Turabian StyleLim, Jungmin, and Mark Skidmore. 2020. "Heat Vulnerability and Heat Island Mitigation in the United States" Atmosphere 11, no. 6: 558. https://doi.org/10.3390/atmos11060558
APA StyleLim, J., & Skidmore, M. (2020). Heat Vulnerability and Heat Island Mitigation in the United States. Atmosphere, 11(6), 558. https://doi.org/10.3390/atmos11060558