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Abstract: Heat waves are the deadliest type of natural hazard among all weather extremes in the
United States. Given the observed and anticipated increase in heat risks associated with ongoing
climate change, this study examines community vulnerability to extreme heat and the degree to
which heat island mitigation (HIM) actions by state/local governments reduce heat-induced fatalities.
The analysis uses all heat events that occurred over the 1996–2011 period for all United States counties
to model heat vulnerability. Results show that: (1) Higher income reduces extreme heat vulnerability,
while poverty intensifies it; (2) living in mobile homes or rental homes heightens susceptibility to
extreme heat; (3) increased heat vulnerability due to the growth of the elderly population is predicted
to result in a two-fold increase in heat-related fatalities by 2030; and (4) community heat island
mitigation measures reduce heat intensities and thus heat-related fatalities. Findings also show that
an additional locally implemented measure reduces the annual death rate by 15%. A falsification
test rules out the possibility of spurious inference on the life-saving role of heat island mitigation
measures. Overall, these findings inform efforts to protect the most vulnerable population subgroups
and guide future policies to counteract the growing risk of deadly heat waves.

Keywords: disaster; vulnerability; extreme heat; heat island mitigation; development; aging; poverty;
housing; urbanization

1. Introduction

Heat waves are the deadliest type of natural hazard among all weather extremes in the United
States (USA). Every year, more than 1000 heat events occur, causing an average of 131 direct heat
fatalities during the last twenty years. However, excess heat exposure contributes to a far greater
number of deaths, directly and indirectly—658 deaths per year on average during the years 1999–2009
according to National Center for Health Statistics (NCHS) [1]. The risk of extreme heat has been
elevated in many regions of the world including the USA as extreme weather phenomena is increasing
in both frequency and magnitude under global climate change [2,3]. The observed and predicted
shifts in the variability and intensity of weather extremes that are driven by climate change, such as
heat waves, flooding, droughts, and tornadoes have been discussed in many scientific studies [4–7].
With regard to heat events, [4] and [6] predict that future heat waves in North America will occur
more frequently with greater intensity and longer duration. [8] estimates that extreme temperatures
due to climate change will result in a loss of 1.3 million life-years annually in the USA by the end of
21st century.

Increasing frequency of weather extremes in recent decades coupled with predictions about climate
change triggered policy efforts and community actions for hazard mitigation and adaptation [9,10].
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The most relevant heat-related actions currently undertaken by state and local governments in the USA
are the community-based “heat island” reduction activities [11]. The statewide or community level
actions database contains all 172 actions and are publicly available from the United States Environmental
Protection Agency (EPA) website https://www.epa.gov/heat-islands/heat-island-community-actions-
database. Heat island reduction measures include trees and vegetation, green roofs, cool roofs,
and cool pavements; these strategies are implemented through demonstration projects (e.g., green
roof installation), incentive programs (e.g., tax abatements or rebates), urban forestry and community
tree planting programs (e.g., Million Trees Initiative in Los Angeles, New York City, Denver, etc.),
and outreach and education programs. The primary goal of community heat island reduction measures
is to reduce a populated area’s elevated surface/atmospheric temperatures. Heat island reduction
actions are important heat hazard mitigation measures in that they help to limit temperature rise in
risk areas.

Previous studies on heat waves from a disaster vulnerability perspective have been mostly
conducted by epidemiologists, sociologists, or geographers. These studies are primarily interested in
the temperature–mortality relationship; most of them use daily all-cause mortality of the study area
to find factors that can explain the increase in mortality during (and in the aftermath of) heat waves.
Some studies examine vulnerability using excess mortality due to high temperature of certain areas
in the USA [12–14], or in an international context [15–17]. Other researchers examine the impact of a
large heat event as a case study [18,19]. Another large set of studies focuses on the construction and/or
evaluation of a heat vulnerability index for a certain region in the USA [20–23].

The present study takes a different analytical approach. We examine every individual heat
event and the resulting direct deaths that occurred across the USA within every county over 14 years.
Our findings differ from previous studies in several respects. First, the modelling of heat wave impacts
on society is structurally different—previous heat studies use all-cause mortality while this study
uses direct heat-induced fatalities. As a result of using all-cause mortality, it is not obvious in those
studies whether the factors found to be significantly contributing to mortality indicate true “heat”
vulnerability factors, or just those associated with general mortality. Second, epidemiological studies
apply case-oriented approaches, thus their findings are often not comparable to each other and not
easily generalizable across different spatial or temporal contexts. The present article constructs a
model of USA nationwide heat fatalities at a local scale, utilizing both spatial and temporal variations
while controlling for regional fixed effects. Finally, none of the previous studies empirically address
political and institutional aspects, whereas we seek to identify the role of community-based heat
island mitigation actions initiated by state/local governments in reducing heat intensities and resulting
fatalities. However, in both strands of the heat study literature, the importance of social vulnerability
components in defining overall place vulnerability to heat are emphasized. We build upon the findings
of previous heat studies to construct an integrative conceptual framework of heat vulnerability.

We draw on prior disaster vulnerability research from multiple disciplines to construct a framework
that integrates the climatic, built-environmental, and socio-economic elements of disaster vulnerability.
A fundamental notion of this integrative framework is that heat vulnerability is defined and shaped
not only by physical and meteorological characteristics of the hazard itself, but also the various human
components such as built-environmental conditions, population characteristics, and socio-economic
factors. Within this framework, we empirically analyze the dynamics of heat vulnerability, taking into
consideration meteorological socio-economic factors as well as heat hazard mitigation efforts.

Our empirical analysis involves the modeling of two critical components of heat vulnerability.
For the first component, the heat hazard mitigation model, we use county-year panel structured data for
years 1998–2011 to evaluate the role of heat island reduction measures in mitigating heat hazard intensity.
We employ the random trend model that controls for both county-fixed effects and county-specific time
trends. In the second component, we consider a heat vulnerability–fatality model, where we examine
all county-level heat and excessive heat events over the 1996–2011 period to analyze a wide range of
meteorological and anthropogenic determinants of heat-induced fatalities. Considering the nature
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of the non-panel structured heat event data with excess zero fatalities, we employ the zero-inflated
negative binomial (ZINB). Lastly, we directly estimate the effects of heat island mitigation (HIM)
measures on heat fatalities using the Poisson fixed effects estimator, controlling for the unobserved
county heterogeneity.

Our two-part analysis shows that because of the long-lasting and synergistic effects of the
heat island mitigation (HIM) measures, the heat intensity reductions of such measures accumulate.
Thus, counties with more mitigation actions are progressively less vulnerable to extreme heat than
counties with fewer activities. We also find that an additional locally implemented measure reduces
annual death rates (deaths per heat event) by 14.87%. Urbanization as measured by the urban
population density tends to increase the adverse impacts of heat waves, leading to more fatalities.
The analysis also confirms that higher income reduces vulnerability to heat waves, while poverty
intensifies it. Housing related factors are critical predictors of heat wave fatalities; living in mobile
homes or rental homes increases disaster vulnerability. Also, population composition is important;
heat vulnerability is greater in counties with higher proportions of elderly, young, and non-white
populations. Findings suggest that the socially isolated elderly and the elderly living in poverty are
the most heat-vulnerable population sub-groups. Notably, heightened heat vulnerability due to the
growth of the elderly population is predicted to result in a two-fold increase in heat fatalities by 2030.

The rest of this article is organized as follows. In the next two sections, we discuss the risks of
extreme heat in the USA and community heat island mitigation actions. In Section 3, we provide
a summary of extreme heat events across the USA, and in Section 4 we present the modeling, data,
and empirical methods we use in the analysis. In Section 5, we offer a discussion of our results,
and Section 6 concludes the article.

2. Risk of Extreme Heat in the USA

Heat waves are not as destructive as other types of natural hazards such as hurricanes or tornadoes;
however, extreme heat is by far the deadliest type of hazard among all weather extremes in the USA.
Heat waves place considerable stress on the human body, causing heat exhaustion or heat stroke,
which could lead to death. Every year, more than 1000 heat events occur, causing hundreds of deaths
and even more heat-related illnesses. Over the past twenty years, heat resulted in an average of
131 direct deaths each year (NWS). However, extreme heat also exacerbates underlying health problems.
A National vital statistics report from National Center for Health Statistics (NCHS) [1] showed that
during 11 years from 1999 to 2009, extreme heat exposure resulted in 7233 deaths, where heat was
the underlying cause for about 70% of the fatalities and a contributing factor for remaining 30%.
Notwithstanding heat-induced illnesses and injuries, annual heat-related mortality of 658 is about
five-times larger than the reported number of deaths certified as heat illness. These figures show the
profound adverse impacts of extreme heat on people’s health and lives.

Before discussing heat waves and their impacts on people, it is important to correctly understand
the definition and related measures of heat events. Like the Fujita-scale for tornadoes, there is a heat
index measure for heat waves. The United States National Oceanic and Atmospheric Administration
National Weather Service (NOAA NWS) defines the heat index as “a subjective measure of what
it feels like to the human body when relative humidity is factored into the actual air temperature”.
This implies that heat events result from a combination of high temperatures and high humidity.
Figure 1 compares the summertime average maximum heat index (i.e., apparent temperature) and
the average daily maximum temperature. The figure clearly shows that temperature alone does not
fully explain the risk of heat across the USA regions. Compared to dry hot areas in the Western
region of the USA that includes states such as Nevada, Utah, and New Mexico, humid regions in
the Midwest and Eastern USA have relatively higher heat index values. Excessive heat or heat
events occur as reported in the NOAA Storm Events Database whenever heat index values meet or
exceed locally/regionally established excessive heat warning or heat advisory thresholds, respectively.
The definition/determination of heat and excessive heat are provided in Table A1 in the Appendix A.
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The Storm Events Database managed by NOAA’s National Centers for Environmental Information
(NCEI) is available at https://www.ncdc.noaa.gov/stormevents/ftp.jsp.
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Figure 1. Summertime average maximum heat index vs. daily maximum temperature (1998–2011).
Authors’ own illustration. Data: NLDAS Daily Air Temperatures and Heat Index, CDC [24].

Figure 2 shows the average fatality of extreme heat events by state in the contiguous USA over
the 20 years from 1996 to 2015, respectively. In general, most heat waves occur in the southern part
of the country including western regions, and the Great Plains. Areas west of the Rocky Mountains
exhibit high temperature; however, as both temperature and humidity are both factored, dry hot areas
in western states such as Wyoming, Utah, and Colorado rarely have heat events. Missouri, Illinois,
New Jersey, Georgia, and Kentucky are the top five states that experience the most extreme heat events,
whereas the top five states with the highest death tolls are Illinois, Pennsylvania, Texas, Missouri,
and Nevada. The human impacts of extreme heat are not proportionally distributed across the regions.

https://www.ncdc.noaa.gov/stormevents/ftp.jsp
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The differences as reflected in Figures 1 and 2 hint at the importance of societal and human components
in determining disaster vulnerability.
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Authors’ own illustration. Data: National Centers for Environmental Information (NCEI).

Moreover, there are mounting concerns about the risk of heat waves in the USA; climate scientists
predict that heat events will become more devastating with an increase in both magnitude and
frequency of extreme heat phenomena [2,3]. The work of [4] indicates that future heat waves in North
America will become “more intense, more frequent, and longer lasting.” Also, the fifth assessment
report of the UN Intergovernmental Panel on Climate Change (IPCC) [6] summarizes predictions
from climate models as follows: “it is ‘virtually certain’ that there will be more frequent hot and fewer
cold temperature extremes over most land areas as global mean temperatures increase and it is ‘very
likely’ that heat waves will occur with a higher frequency and duration.” The observed and anticipated
increase in the risk of heat waves and their silent yet catastrophic impacts has drawn considerable
attention from scholars in various disciplines, policy makers, and the media. In the following sections,
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we discuss state and local government efforts to mitigate the growing risk of heat hazards and briefly
review the multi-disciplinary literature on disaster vulnerability.

3. Community Heat Island Mitigation (HIM) Actions

Increasing outbreaks of weather extremes in recent decades and associated gloomy predictions
about climate change has triggered policy efforts and community actions for hazard mitigation and
adaptation. The most relevant heat-related actions currently undertaken by state and local government
in the USA are community-based “heat island” reduction activities. As of May 2018, a total of
172 statewide or community level actions are publicly available at the U.S. Environmental Protection
Agency (EPA) website https://www.epa.gov/heat-islands/heat-island-community-actions-database.
The primary goal of the community heat island mitigation measures is to lower the developed area’s
elevated surface/atmospheric temperatures, thereby reducing the risk of heat waves. Under the heat
island phenomena, annual mean air temperature of a city with one million or more people can be
1.8 to 5.4 ◦F (1 to 3 ◦C) warmer than air in surrounding areas [11]. The main causes of urban heat
islands are reduced vegetation (i.e., more dry and impervious surfaces), materials used to build urban
infrastructure (which reflect/shed less and absorb/store more of the sun’s energy), urban geometry
(which affect wind flow, energy absorption, radiation), and anthropogenic heat emission (all the energy
used for human activities). Increased temperature due to heat islands has considerable impacts on
human life such as detrimental health impacts, added risk of heat waves, impaired water quality,
and other adverse environmental impacts [11].

Growing interest and concern among communities regarding heat islands have motivated the
development and implementation of heat island reduction strategies by state and local governments in
recent decades. Heat island mitigation actions (currently active or completed) are listed by the United
States Environmental Protection Agency (EPA). Communities use four main measures to reduce the
urban heat island problem: (i) Trees and vegetation; (ii) green roofs, (iii); cool roofs; and (iv) cool
pavements. Such strategies are implemented through voluntary or policy mechanisms. Voluntary
mechanisms include demonstration projects (e.g., green roof installation), incentive programs (e.g., tax
abatement or rebate), urban forestry and community tree planting programs (e.g., Million Trees
Initiative in LA, NYC, Denver, etc.), and outreach and education programs. Policy mechanisms involve
procurement, ordinances, and standards such as building/zoning code, tree and landscape ordinances,
green building programs and standards, as well as comprehensive community plans and design
guidelines for heat island reduction.

Table 1 presents the total number of community and statewide heat island mitigation measures by
type of strategy and by year from 1985 to 2014. During this period, 229 within-county and 27 statewide
strategies have been initiated. Except for recently completed demonstration projects (e.g., green roof
installation), most efforts have been ongoing since the project was initiated. The number of heat
island mitigation adoptions substantially increased since the early 2000s as communities became
more aware of the heat island problem and the harmful effects of elevated temperatures. The trees
and vegetation measure has been the most popular strategy, followed by cool roofs. About half of
the strategies have been implemented through policy mechanisms such as building/zoning codes,
ordinances, programs, and standards. The other half have been carried out voluntarily through
incentive programs, demonstration projects, and outreach/education.

Heat island mitigation measures address the root causes of growing heat vulnerability by
modifying and reducing the long-term likelihood and prevalence of heat risk in populated areas. Heat
island mitigation strategies also help communities manage the fundamental meteorological risk of high
temperature, thus acting primarily as “heat-hazard mitigation.” For instance, it may not be possible to
prevent tornadoes or hurricanes from happening and so efforts are devoted to minimizing the harmful
consequences through anticipation, preparedness, disaster warning, and post-disaster relief, etc.,).
However, heat events can be potentially averted and thus their negative impacts can be avoided if
actions are taken to “cool down” at-risk communities. Given this context, we hypothesize and test the

https://www.epa.gov/heat-islands/heat-island-community-actions-database
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notion that communities that implement heat island mitigation strategies exhibit lower heat intensities
as measured by the heat index (i.e., apparent temperature) and in turn, become less vulnerable relative
to communities that do not. More details on the heat hazard mitigation model are presented in the
next section.

Table 1. Heat island mitigation actions list by initiation year (1985–2014).

Years Trees and Vegetation Cool Roofs Green Roofs Cool Pavements Others (HVI,
Master Plan)

Within-County Actions Total

1985–1989 2 0 0 0 0 2
1990–1994 2 1 0 0 0 3
1995–1999 4 2 3 1 1 11
2000–2004 19 9 10 8 0 46
2005–2009 35 19 18 23 1 96
2010–2014 22 19 15 15 0 71

Total 84 50 46 47 2 229

Statewide Actions Total

1995–1999 0 1 0 0 0 1
2000–2004 2 2 1 0 0 5
2005–2009 3 3 1 0 1 8
2010–2014 6 2 2 3 0 13

Total 11 8 4 3 1 27

Source: Authors’ own calculation using “Heat Island Community Actions Database” (EPA).

4. Conceptual Framework, Data, and Methodology

Studies of devastating natural disasters have revealed that disaster impacts vary significantly
across different population groups with different socio-economic and political status. Numerous
social scientists discuss the role of socio-economic characteristics such as poverty, inequalities with
regard to gender, age, or ethnicity in determining disaster vulnerability [25–30]. Over the past
decade, a body of empirical disaster impact research has emerged that demonstrate the multi-faceted
nature of disaster vulnerability and use the socio-political ecology of disasters model as a basis for
their empirical analyses [14,31–35]. Generally, this strand of literature highlights the socio-economic
conditions that exacerbate or alleviate disaster impacts, while some studies pay special attention to
political and institutional factors that play a role in determining disaster vulnerability [31,34]. In an
international context, a set of studies focus on the relationship between economic development and
disaster impacts, demonstrating that economic and institutional factors are important determinants of
disaster casualties [36–40].

Consolidating the prior findings and knowledge on disaster vulnerability from multiple
disciplines, this study applies an integrative view of the climatic, built-environmental, socio-economic,
and institutional elements of disaster vulnerability for a comprehensive perspective of heat vulnerability
and a robust identification of heat risk factors. To facilitate the understanding of the important linkages
and interactions among various the factors, a conceptual framework of our heat vulnerability model
is illustrated in Figure 3. As shown in the figure, community disaster vulnerability is multi-faceted;
it is defined and shaped not only by physical and meteorological hazard characteristics, but also
by various human components such as built-environmental conditions, population characteristics,
and socio-economic factors.
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Each of the three arrows in the figure indicates important interactions and relationships among
the components, which this study is primarily interested in and addresses empirically. The first arrow
connects the four key elements that shape “heat vulnerability” and points to “societal impact,” showing
that societal outcomes of extreme heat hazards are determined and influenced by the key elements of
heat vulnerability. Our main analysis investigates this relationship to identify the underlying societal
and environmental factors that determine heat-induced fatalities and then uses the estimation results
to predict future outcomes. The second arrow that connects “societal impact” and “hazard mitigation
and adaptation,” indicating the shorter-run societal and political pressures for public action for heat
mitigation as a reaction to the negative consequences of heat hazards. In the longer-term, public efforts
on structural hazard mitigation and adaptation, such as the abovementioned heat island reduction
strategies, will modify and ameliorate heat vulnerability by fundamentally reducing the heat hazard
risks. This linkage is indicated by the blue arrow pointing to “heat hazard”—the first element of heat
vulnerability. Each of the major heat vulnerability components and how they are incorporated in the
empirical analysis is discussed in detail in the following subsections.

4.1. Major Components of Heat Vulnerability

Based on the conceptual framework presented in Figure 3, we propose that the major components
that determine vulnerability to heat hazards include the: (i) Heat hazard profile; (ii) climatic and
environmental conditions; and (iii) demographic and socio-economic characteristics. In addition,
we consider institutional mitigation and adaptation efforts as an external factor that influences and
interacts with heat vulnerability.
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4.1.1. Heat Hazard Profile

The heat hazard profile includes event-specific physical and meteorological aspects of a heat
event. We consider factors such as the timing of the incidence (time of day, season of the year
when an event occurred), type of the heat event (excessive heat or heat), and heat index value in the
month an event occurred. Previous studies on tornadoes and floods [34,41] control for the time of
day by categorizing it into overnight (12:00–5:59 a.m.), morning (6:00–11:59 a.m.), early afternoon
(12:00–3:59 p.m.), late afternoon (4:00–7:59 p.m.), and evening (8:00–11:59 p.m.), showing that disaster
impacts differ depending on the timing of an incident. We also include indicator variables for the
seasons (spring, summer, fall, and winter) as control variables. The most critical meteorological factor
in our model is the heat index (also known as apparent temperature) that measures the intensity
of a heat hazard. Heat intensity is approximated by the average daily maximum heat index value
in the month the event occurred. Previous epidemiologic heat studies find a positive correlation
between the temperature and all-cause mortality [42]. Although our study examines the direct fatalities
resulting from a heat event (instead of all-cause mortality) as an outcome measure, it is expected that a
similar or even stronger positive relationship holds between the heat index (apparent temperature)
and heat-induced fatalities.

4.1.2. Climatic and Environmental Conditions

Heat vulnerability is also shaped by characteristics of the place exposed to the extreme heat
hazard. We take into consideration the area-specific risk factors such as climatic and meteorological
conditions of the area (annual average temperature, annual average of max. air temperature) and
built-environmental conditions (urbanization/population density). If a heat event occurs in a community
that is not accustomed to extreme high temperature and heat hazards, the impact of the heat stressor can
potentially be deadlier. In this regard, the annual average air temperature and the average maximum
air temperature are included in our model. As discussed earlier, heat island effects can magnify heat
vulnerability in urban areas because of the urban structures and land use patterns with less vegetated
surfaces relative to rural areas. Considering that urbanization is an important heat risk factor that can
exacerbate heat wave impacts, we include urban population density in our model as a measure of
urbanization. As an alternative measure of the urbanization, the percent of urban population was
also considered. However, because of the strong correlation between the percent of urban population
and population size (correlation coefficient = 0.84), we incorporate urban density by controlling for
population size in the empirical analysis.

4.1.3. Demographic and Socio-Economic Characteristics

The impacts of extreme weather events on different population segments can vary depending on
their social and economic characteristics. Those who are more vulnerable in a social context are also
more susceptible to harm in the event of extreme heat. Based on previous studies of heat or other types
of natural disasters, we stress that population composition, poverty, income, as well as housing play a
role in determining heat vulnerability.

In our heat vulnerability model, demographic composition such as the proportion of the population
who are young and elderly and the proportion of the population that is non-white are considered.
Many epidemiological studies have shown the differences in heat mortality risk by age where the
elderly and children tend to suffer greater health impacts from heat stress because of their limited
ability to thermoregulate [43,44]. Race/ethnicity is another key factor that must be taken into account
when modeling disaster vulnerability. Prior studies demonstrate that disaster impacts vary by race and
ethnicity due to factors such as language barriers, housing patterns, community isolation, and social
and economic disparities [45,46]. Our analysis sheds light on which demographic groups are most
vulnerable, which in turn can be used to target resources and provide assistance.
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We also incorporate several socio-economic factors that determine vulnerability. We consider
economic status as measured by county per capita income and the poverty rate. A core interest for
research in the economics of natural disasters literature is how the level of economic development
or wealth affects disaster impacts [36–40]. In general, these studies find a negative relationship
between income and disaster-induced fatalities; wealthier countries have a higher demand for safety
where economic resources they possess enable them to employ precautionary measures to mitigate
disaster risk. Other studies examine the vulnerability of people who are economically insecure or live
below the poverty line [33,47]. [45,48] found that greater poverty increases vulnerability to tornadoes.
Heat-episode case studies also find that the majority of the victims of the Midwest heat disaster in 1980
and the Chicago heat waves in 1995 were from low-income groups [18,48].

A last set of human components factored into our heat vulnerability model is housing-related
factors—the share of renter occupied housing units and the share of mobile homes among all housing
units. Previous studies show that living in low-cost, affordable housing tends to increase disaster
vulnerability due to the substandard housing quality [49–51]. Both housing factors we consider are
closely linked with structural and socio-economic vulnerability to natural hazards. [52] explains that
housing ownership and mobile homes are among the most important predictors of social vulnerability.
Recent disaster studies [14,33,34,41] provide empirical evidence showing that places with more mobile
homes or renter occupied homes suffer greater disaster-induced fatalities. Our empirical evaluation of
vulnerability in relation to housing can be used for target assistance during heat events.

4.1.4. Institutional Efforts for Mitigation and Adaptation

We also consider government-initiated mitigation and adaptation efforts as external factors that
influence and interact with heat vulnerability. Many scientific simulation or experimental studies
have been carried out to assess the microclimate cooling benefits of the heat island measures such as
cool roofs [53,54], trees and vegetation [55,56], and cool pavements [54,57]. However, there has been
no prior heat study that evaluates the extent to which government-initiated heat island mitigation
(HIM) measures reduce heat vulnerability. To fill this significant gap in the literature, we construct a
two-phase model in which the first-phase estimates whether communities that implement heat island
mitigation measures exhibit lower heat index values (as a measure of heat intensities) than communities
that do not. Using the heat index measure as an intermediary variable, we combine the result from the
first-phase heat index estimates with the second-phase heat fatality analysis. We also conduct a direct
estimation of the life-saving benefit of the heat island mitigation measures on heat-induced fatalities.
Our analyses enable us to evaluate the role of heat island mitigation efforts in reducing extreme heat
risk and to identify a mediated effect of heat island mitigation measures on heat-induced fatalities.
Our empirical analysis involves modeling two phases of heat vulnerability dynamics. Each model is
discussed in detail in the following subsections.

4.2. First-Phase: Heat Hazard Mitigation

Heat hazards can be exacerbated by human activities, but they can be also weakened and
ameliorated by human efforts. The first-phase model evaluates the role of heat island reduction
measures in mitigating heat hazards using data collected at the scale of USA counties. Factors that
are known to increase heat hazards include anthropogenic heat emissions, urbanization, climatic
conditions, and geographic locations [11]. Considering these contributing factors, we conceptualize
the first-phase heat hazard regression model in the following equation:

Heat Hazardit
= f(Anthropogenic Heat it, Urbanizationit, Climatic conditionsit, Mitigationit−2

∣∣∣ci, git,λt)
(1)

where ci = unobserved county fixed effects, gi = county specific linear trend, λt = time effects.
For the dependent variable of the first-phase estimation, the heat index (also known as apparent

temperature) is used as a measure of the intensity of heat hazards. Specifically, we use the maximum
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for monthly average of daily maximum. Attention is given to the heat index because it measures
the most severe summertime heat events that pose the greatest threat to people. We hypothesize
that community efforts for heat hazard mitigation through various “cooling” strategies reduce the
impacts of the deadly heatwaves. We also explore alternative specifications using different heat hazard
measures. The number of heat wave days are computed at the county level; the totals show the number
of heat wave days per county per year. When the geographic area affected by the heatwave spans more
than one county, an extreme heat event is counted for each county where measurable observations
that met the heat event definition occurred [58]. The number of heat wave days based on (i) the daily
maximum heat index and (ii) the net daily heat stress (NDHS) are also used as alternative measures of
heat hazard intensity.

Considering the long-lasting effects of heat mitigation strategies (planting trees and vegetation,
use of cool materials for roofs and pavements), we construct a county-year heat island mitigation (HIM)
actions variable that indicates a cumulative number of the heat island reduction strategies that have
been implemented in a county for every year. We then group counties by the number of mitigation
measures that have been implemented. Importantly, as the realization of the heat-hazard-lowering
effects of the HIM measures may not be immediate, we use 2-year lagged values of the HIM actions
variables. To explicitly control for the most important underlying factor that influences the community
HIM adoption decisions, we include previous extreme heat risk measured by the sum of heat wave
days during the 3-year period prior to any HIM adoption (i.e., heat wave days in t − 3, t − 4, and t − 5).
In the regressions, three types of heat island mitigation actions variables are incorporated in each of
the three specifications: (a) An indicator variable that represents whether one or more heat island
mitigation action has been adopted (=1) or not, (b) a continuous variable for the total number of actions,
c) multiple group indicator variables that are constructed based on the number of mitigation actions
taken (0, 1, 2–3, 4+). The number of measures of 0, 1, 2–3, 4+ are specifically used to group counties in
order to have a sufficient number of observations within each of the group indicators in the regression.
In the earlier years of the analysis, there were very limited number of counties that adopted any HIM
measures. For example, prior to 2006, counties with two HIM measures make up less than 1% of the
total observations.

We use county-year panel structured data to estimate the heat-hazard-reducing effect of heat island
mitigation measures using the random trend model while controlling for time effects. The random
trend model (RTM) explicitly allows for two sources of heterogeneity—the level effect, ci, and the
county-specific linear trend, gi [59]. In the fixed effects estimation, the unobserved effect is set to have
the same partial effect on the heat hazard in all time periods. However, the length of the time dimension
of our panel data (1998–2011) is relatively long, during which each county could presumably have its
own specific time trend. Allowing for this possibility, we estimate the random trend model, we first
difference the Equation (2) to eliminate the level effect, ci, and then apply the fixed effects model to the
first-differenced Equation (3) to remove a trend effect, gi.

By employing the random trend model, we control for the geographic location and many other
area-specific physical factors that may be related to heat hazards, such as proximity to large water
bodies and mountainous terrain but rarely change over time (i.e., time-invariant county traits and
characteristics, ci) as well as county-specific trends that could affect the intensity of heat hazards (gi).
A well-known contributing factor of the urban heat island effect, urban growth, is expected to be
captured by the county trend effects. A continuing urbanization trend is found nationwide, but the
rate of the urban growth may vary across the counties. However, the county level urban population
data are only available decennially. The interpolation method is commonly used with decennial
data to obtain a monotonic interpolation of the data, i.e., a linear trend. We include the urbanization
measure in the fixed effects specification but not in the RTM specification, as the trend effect gi in the
RTM captures county-specific urbanization trends that influence heat hazard intensities. In addition,
naturally occurring meteorological temporal variations over time that are common to all counties are
absorbed by the vector of time effects, λt. Thus, any global or macro-scale trend of heat intensity,
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such as global warming, would be captured by the year effects while a meso-scale heat trend would be
controlled for by the county-specific time trends.

HIit = ci + git + β1Mit−2 + β·Xit + λt + uit t = 3, . . . , T (2)

∆HIit = gi + β1∆Mit−2 + β·∆Xit + ∆λt + ∆uit, t = 4, . . . , T (3)

Annual air temperatures and monthly heat index data for years 1998–2011 are collected from
North America Land Data Assimilation System (NLDAS) at the CDC WONDER online database [24].
Heat wave days data are from National Climate Assessment (NCA) at CDC WONDER. The statewide
or community-level heat island mitigation actions data are collected from Environmental Protection
Agency (EPA). Table 2 shows a list of the dependent variable and explanatory and control variables
included in the heat hazard mitigation model.

Table 2. List of variables in the heat hazard mitigation model.

Dependent Variable Source

Max. for Monthly Average Heat Index Value (◦F) of year t (t = 1998–2011)
HIit

NLDAS

Heat Wave Days Based on Daily Max. Heat Index or Net Daily Heat Stress NCA

Explanatory/Control Variables

Heat Island Mitigation Actions

Lagged Heat Island Mitigation Status (Yes = 1, No = 0)

Mit−2

EPA

Lagged Total No. of Heat Island Mitigation Actions EPA

Group Indicators (Lagged No. of actions: 0, 1, 2–3, 4+) EPA

Climatic Conditions

Total Heat Wave Days During the Previous 3 Years

Xit

NCA

Annual Average of Max. Daily Air Temperature (◦F) NLDAS

Annual Average of Min. Daily Air Temperature (◦F) NLDAS

Population County Population Size Census

County FE Time-invariant County Traits and Characteristics. ci

Fixed Effects Trend County-specific Linear Trend gi

Time FE A set of Year Indicators (1998–2011) λt

Notes: NLDAS (North America Land Data Assimilation System), NCA (National Climate Assessment), EPA (USA
Environmental Protection Agency).

To understand how heat island mitigation (HIM) Actions adoption depends on prior extreme
heat events, we present in Table 3 the average heat fatalities by heat island mitigation actions adoption
status (binary; adopted or not) and by county metropolitan categories (metro, metro and micro, and all).
Differences in adoption status as shown Table 3 suggest that counties that experience more heat-related
fatalities are more likely to adopt heat mitigation strategies. For example, over the 1996–2010 period
the yearly average of heat fatalities in HIM adoption counties was 0.094, while that of non-adoption
counties was 0.031. This difference suggests that there are societal and political pressures for public
mitigation actions as a reaction to the negative consequences in communities at greater heat risk.
These data show the interrelationship depicted in the red arrow in our heat vulnerability framework
diagram (Figure 3) that connects “Societal Impact” and “Hazard Mitigation & Adaptation,” pointing to
the latter. Table 3 offers a comparison of heat mitigation adoption status (‘%’ column) and average heat
fatalities (“Avg.” column) by county metropolitan categories, showing that more urbanized counties
suffer greater societal impacts from heat exposure, and thus they are more likely to invest in heat
mitigation. As indicated in the first “%” column, the nationwide average HIM adoption rate over the
15 years from 1996–2010 was 16%; however, the average adoption rate for metropolitan counties was
20% as shown in the third “%” column.



Atmosphere 2020, 11, 558 13 of 28

Table 3. Heat vulnerability and heat island mitigation (HIM) actions by metropolitan status.

Heat Island
Mitigation Actions

Adoption Status

Direct Fatalities Resulted from Heat Events (1996–2010)

Metro + Micro + Rural Metro + Micro Metropolitan only

Avg. Obs. % Avg. Obs. % Avg. Obs. %

No Actions taken 0.031 39,128 84% 0.050 22,190 82% 0.074 13,879 80%
1 or more Actions 0.094 7447 16% 0.146 4705 18% 0.196 3461 20%

Total 0.041 46,575 100% 0.067 26,895 100% 0.098 17,340 100%

Notes: 3015 county observations for 15 years from 1996–2010 consist of 46,575 total observations. Source: Authors’
own calculation using data from EPA Heat Island Community Actions Database and NCEI Storm Events Database.

4.3. Second-Phase: Heat Fatality

Based on the heat vulnerability framework discussed in Section 5, we examine all heat and
excessive heat events that occurred over the 1996 and 2011 period in the contiguous USA using county
level data in the second-phase heat fatality analysis. Data on heat events in the U. S. are drawn from
NOAA National Centers for Environmental Information (NCEI, Data source: www.ncdc.noaa.gov/

data-access/severe-weather). In the NCEI Storm Events Database, each individual heat event entry has
detailed information on time, dates, locations of the events, as well as (direct and indirect) fatalities.
Each heat event is matched with the county meteorological characteristics. Annual air temperatures
and monthly heat index data for years 1996–2011 from North America Land Data Assimilation System
(NLDAS) [24] are used. County demographic, socio-economic, and housing data are collected from
United States Bureau of the Census. Decennial census data for years 1990 and 2000, and American
Community Survey data for year 2015 are used for demographic and housing variables. They are
interpolated to obtain yearly data over the study period 1996–2011.

Note that the unit of observation of the second-phase analysis is the individual heat event at
the scale of counties. Thus, some counties may appear in the data set multiple times in a certain
year but may not in a different year (the data are structured as time-series-cross-sectional event data).
The dependent variable in the second-phase analysis is the number of fatalities directly resulting
from individual heat events. Among total 12,779 heat events during our study period 1998–2011,
only 849 events resulted in fatalities; for more than 90% of observations the dependent variable is
zero. Considering the nature of the non-panel structured disaster event data which contains detailed
information on heat incidents, we employ zero-inflated negative binomial (ZINB) estimator for this
portion of the econometric analysis of the individual heat events and resulting fatalities. The ZINB
model is used for modelling the non-negative count variables with the over-dispersion problem [60].
The ZINB model is often employed in disaster studies (e.g., [34–36] to deal with the excess zeros issue
of disaster incidence and casualty data. In the ZINB model, the excess zeros in a response variable
are modeled independently using a binary Logit model, and the negative binomial model is used for
modelling count values. The ZINB regression analysis is characterized by Equations (4) and (5):

Log Likelihood:

lnL =
∑
j∈S

ln
[
F
(
zjγ

)
+

{
1− F

(
zjγ

)}
p

1
α
j

]
+

∑
j<S

[
ln

{
1− F

(
zjγ

)}
+ ln Γ

(
1
α + y j

)
− ln Γ

(
y j + 1

)
− ln Γ

(
1
α

)
+ 1

α ln p j + y j ln
(
1− p j

)] (4)

p j =
1[

1 + α exp
(
xjδ

)] (5)

F: the inverse of the logit link
S: the set of heat observations that result in zero deaths (y j: death = 0)
zj: Inflation variables for the binary Logit model predicting whether an observation is in the always-zero
group where Pr

(
y j = 0

)
= 1

www.ncdc.noaa.gov/data-access/severe-weather
www.ncdc.noaa.gov/data-access/severe-weather
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xj: Covariates for counts model

In the empirical analysis, the covariates xj include the following variables: Cj, a vector of
demographic, socio-economic, and housing characteristics of the county that influence fatalities of
heat j; Kj, meteorological disaster-specific characteristics of individual heat event j; Ej, and a vector
of climatic and environmental characteristics of the county where the disaster j occurred. Our data
set is in a time-series-cross-section structure, and thus our estimation exploits both cross-sectional
and cross-temporal variations. We include state-fixed effects and use cluster-adjusted robust standard
errors by county to account for spatial heterogeneity where panel data methods such as county fixed
effects are not allowed. To control for any physical or socio-economic nationwide variations over
time, year effects are included. For the inflation variables in the ZINB model, which determine
the probability of being in the always-zero group, four variables are used: Annual average daily air
temperature, annual average of max daily air temperature, metropolitan status, and per capita income.
Each of these variables represent the affected area’s normal climate conditions, degree of urbanization,
and socio-economic status. A detailed list of all variables included in the analysis is provided in Table 4.

Table 4. List of variables in the heat fatality model.

Dependent Variable Source

Direct Deaths from Heat Event yj NCEI

Explanatory/Control Variables

Heat Hazard
Profile

Begin Time of the event: Overnight, Morning,
Early Afternoon, Late Afternoon, Evening

Kj

NCEI

Season: Spring, Summer, Fall, Winter NCEI

Event Type: Heat, Excess Heat NCEI

Monthly Average of Daily Maximum Heat Index (◦F) NLDAS

Climatic &
Environmental

Conditions

Annual Average of Daily Air Temperature (◦F)

Ej

NLDAS

Annual Average of Max. Daily Air Temperature (◦F) NLDAS

Population Size Census

Urban Population Density (per 1000 m2) Census

Demographic
Composition

Percent of Non-White

Cj

Census

Percent of the Young (under 18) Census

Percent of the Elderly (over 65) Census

Percent of the Elderly Living Alone Census

Economic Factors

Poverty Rate among Elderly Census

Poverty Rate Census

Per Capita Income Census

Housing Factors
Percent of Renter Occupied Housing Units Census

Percent of Mobile Homes in Total Housing Units Census

Time FE Year Indicator Variables Tt

State FE Indicator Variables for USA States Sj

Inflation Variables of ZINB logit model

Climate
Annual Average of Daily Air Temperature (◦F)

zj

NLDAS

Annual Average of Max. Daily Air Temperature (◦F) NLDAS

Urbanization Metropolitan Status (Metro = 1, Micro = 0, Rural = −1) Census

Economic
Status Per capita Income Census

Notes: NCEI (National Centers for Environmental Information), NLDAS (North America Land Data
Assimilation System).
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Using the same notation specified in Tables 2 and 4, we summarize two regression equations as
follows:

(i) Heat Hazard Mitigation Model

E(HIit
∣∣∣M, X, c, g,λ) = ci + git + β1Mit−2 + β·Xit + λt (6)

(ii) Heat Vulnerability–Fatality Model

E
(

y jt
∣∣∣x) = exp

(
xjtδ

)
·[1− Pr(y = 0)] = exp

(
xjtδ

)
·

1− exp
(
zjtγ

)
1 + exp

(
zjtγ

)  (7)

where exp
(
xjtδ

)
= exp

(
δ0 + δ1HI jt + δ·xjt + Tt + Sj

)
As an exploratory two-phased analysis of the life-saving effect of HIM measures, we combine

the first-phase heat hazard mitigation model estimates from Equation (6) with the second-phase heat
vulnerability–fatality model estimates from Equation (7), using the Heat Index (HIit) as the intermediary
variable. The mediated effect of heat mitigation actions (Mit−2) (as explained in Section 4.3, 2-year
lagged values of the HIM Actions variable is used, taking into consideration that heat-hazard-lowering
effects of the measures may not be immediate) on heat fatalities (yit) is derived from the product of
two estimates, δ1·β1. Given the sign of coefficient β1 is expected to be negative and δ1 is expected to be
positive, a one unit increase in variable Mit−2, is expected to reduce heat fatalities by (1− exp(δ1·β1))%
on average, holding all other variables constant.

4.4. Heat Island Mitigation(HIM) Actions and Heat Fatality: A Direct Estimation

As the mediated effects estimation using this method does not fully address the county
fixed effects and potential serial correlation, we estimate the direct effect of HIM measures on
heat fatalities, using the Poisson Fixed Effects estimator with cluster-robust standard errors while
controlling for the time-invariant unobserved heterogeneity of counties that might be correlated
with the area’s susceptibility to heat. For the application of the panel method, we transform the
cross-sectional-time-series heat event data into county-year panel structured data. The dependent
variable is now the number of fatalities per heat event, which is no longer integer valued. However,
the dependent variable still has an overdispersion problem due to excess zeros (In the Poisson regression,
only observation with non-zero dependent variable (i.e., at least one fatality in a year) contribute
to the estimates.). However, the Poisson fixed effects (quasi-MLE) estimator is fully robust to any
distributional failure and serial correlation [61].

In this analysis, we primarily focus on the effect of the heat island mitigation measures on heat
fatalities, controlling for the meteorological factors, demographic characteristics, per capita income of
counties, along with county fixed effects and time effects. As in the first-phase model, we take into
consideration the past heat risk experiences in counties by including total heat wave days during
the previous 3 years variable to control for the most important determinant of the community HIM
adoption decisions (as shown in Table 2). Summary statistics for all variables included in the first-phase,
second-phase, and the direct effect analysis are presented in Table 5.

Table 5. Summary statistics.

Variables Mean Standard Deviation Min Max Obs. No.
First-Phase Random Trend Model

Max. for Monthly Avg. Max. Heat Index (◦F) 94.45 6.09 78.40 111.02 40,168
(◦C) 34.69 −14.39 25.78 43.90

Heat Island Mitigation Status (=1 if yes) 0.164 0.37 0 1 40,168
Total No. of Heat Island Mitigation Actions 0.218 0.60 0 11 40,168

No. of Mitigation Actions: 0 (=1 if yes) 0.836 0.37 0 1 40,168
No. of Mitigation Actions: 1 (=1 if yes) 0.132 0.34 0 1 40,168

No. of Mitigation Actions: 2–3 (=1 if yes) 0.028 0.16 0 1 40,168
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Table 5. Cont.

Variables Mean Standard Deviation Min Max Obs. No.

No. of Mitigation Actions: 4+ (=1 if yes) 0.004 0.06 0 1 40,168
Total Heat Wave Days during the previous 3 years 20.29 10.18 0 81 40,168

Annual Avg. of Max. Daily Temperature (◦F) 65.31 8.99 40.84 89.79 40,168
(◦C) 18.51 −12.78 4.91 32.11

Annual Avg. of Min. Daily Temperature (◦F) 47.11 7.66 22.71 72.01 40,168
(◦C) 8.39 −13.52 −5.16 22.23

Population (in thousands) 91.73 295.33 0.055 9818.61 40,168
Heat Wave Days Based on Daily Max Heat Index 7.36 6.75 0 52 43,414
Heat Wave Days Based on Net Daily Heat Stress 6.62 6.93 0 51 43,414

Second-Phase ZINB Model
Direct Heat Fatalities 0.13 1.30 0 93 15,050

Monthly Avg. of Max. Heat Index (◦F) 96.91 6.16 78.80 111.02 15,050
(◦C) 36.06 −14.36 26.00 43.90

Annual Avg. of Max. Daily Temperature (◦F) 67.00 7.02 44.36 89.04 15,050
(◦C) 19.44 −13.88 6.87 31.69

Annual Avg. of Daily Temperature (◦F) 57.65 6.21 36.07 77.41 15,050
(◦C) 14.25 −14.33 2.26 25.23

Ln (Population) 10.69 1.54 5.70 16.09 15,050
Urban Population Density per 1000 m2 1.63 1.92 0 69.47 15,050

Metro Status (Metro = 1, Micro = 0, Rural = −1) 0.12 0.91 −1 1 15,050
Ln (Per capita Income) 10.01 0.23 9.23 11.03 15,050

Poverty Rate 14.75 6.60 2.56 46.09 15,050
Percent of the Young (under 18) 24.38 2.66 13.88 41.66 15,050
Percent of the Elderly (over 65) 14.94 3.68 1.95 34.03 15,050

Percent of the Elderly Living Alone 4.31 1.29 0.36 11.08 15,050
Poverty Rate among Elderly 11.02 4.86 0 40.87 15,050

Percent of Non-White 16.96 16.35 0.47 89.22 15,050
Percent of Renter Occupied Housing 27.59 8.13 10.16 80.09 15,050

Percent of Mobile Homes 11.46 8.58 0 59.36 15,050
Excessive Heat 0.25 0.44 0 1 15,050

Heat 0.75 0.44 0 1 15,050
Overnight 0.20 0.40 0 1 15,050
Morning 0.42 0.49 0 1 15,050

Early Afternoon 0.04 0.19 0 1 15,050
Late Afternoon 0.01 0.07 0 1 15,050

Evening 0.20 0.40 0 1 15,050
Spring 0.04 0.20 0 1 15,050

Summer 0.91 0.29 0 1 15,050
Fall 0.05 0.21 0 1 15,050

Winter 0.00 0.04 0 1 15,050
Poisson Fixed Effects Heat Fatality Model

Annual Heat Fatalities per Heat Event 0.47 1.92 0 35 1585
No. of Heat Island Mitigation Actions_All 0.22 0.83 0 11 1585

No. of Heat Island Mitigation Actions_Local 0.08 0.59 0 11 1585
Total Heat Wave Days During the Previous 3 Years 18.27 7.98 0 48 1585

Heat Wave Days Based on Daily Max Temp. 11.40 11.20 0 65 1585
Annual Avg. of Max. Daily Temperature (◦F) 67.12 6.72 49.93 84.95 1585

(◦C) 19.51 −14.04 9.96 29.42
Annual Avg. of Min. Daily Temperature (◦F) 49.11 5.20 35.63 68.91 1585

(◦C) 9.51 −14.89 2.02 20.51
Population (in thousands) 395.20 833.40 2.20 9737.96 1585
Percent Urban Population 67.01 28.98 0 100 1585

Percent of the Elderly (over 65) 12.68 3.29 3.64 22.24 1585
Ln (Per Capita Income) 10.08 0.24 9.35 10.92 1585

5. Results and Discussion

5.1. First-Phase: Heat Hazard Mitigation

Table 6 presents the estimates from the random trend model (RTM) (we also estimate alternative
specifications using the fixed effects approach that allows only a level effect, but not a county-specific
time trend. The estimates are consistent with those presented here and are available from the authors
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upon request. However, the Wooldridge Test [59] indicates that these fixed effects models suffer from
the presence of serial correlation, supporting the choice of the random trend model with cluster-robust
standard errors) for the first phase heat hazard mitigation analysis. Here, we examine the degree
to which community heat mitigation efforts through the adoption of various heat island mitigation
(HIM) measures reduce the risk of the deadly heatwaves. Two measures of heat hazard intensity are
used—the heat index measure (i.e., the maximum for monthly average of daily max. Heat Index) in
columns (1–3) and the number of heat wave days in columns (4) and (5). In particular, the number
of heat wave days based on daily maximum heat index (column 4) and net daily heat stress (NDHS)
(column 5) are examined as alternative measures to the heat index.

Table 6. Heat hazard model—the role of heat island mitigation actions random trend model results.

(1) (2) (3) (4) (5)

RTM_HI 1 RTM_HI 2 RTM_HI 3 RTM_HD 1 RTM_HD 2

Dependent Variable Heat Index Heat Index Heat Index Heat Days by
Heat Index

Heat Days by
Heat Stress

HIM Status_lag −0.710 ***
(0.102)

No. of HIM Actions_lag −0.261 ***
(0.063)

1 HIM Action Group_lag −0.698 *** −1.710 *** −1.992 ***
(0.106) (0.248) (0.255)

2–3 HIM Actions Group_lag −0.903 *** −2.843 *** −2.658 ***
(0.186) (0.444) (0.382)

4+ HIM Actions Group_lag −1.930 *** −4.068 *** −3.999 ***
(0.296) (1.499) (1.317)

Previous-3yrs_HeatWaveDays −0.019 *** −0.019 *** −0.019 *** −0.029 *** −0.022 ***
(0.001) (0.001) (0.001) (0.005) (0.004)

Population (in thousands) 0.018 *** 0.017 *** 0.018 *** 0.006 0.012
(0.005) (0.005) (0.005) (0.011) (0.010)

Annual Avg of Max Daily Temp 0.540 *** 0.541 *** 0.540 *** 1.946 *** 1.709 ***
(0.012) (0.011) (0.011) (0.035) (0.037)

Annual Avg of Min Daily Temp 0.041 ** 0.039 ** 0.039 ** −1.205 *** −1.170 ***
(0.018) (0.018) (0.018) (0.045) (0.042)

County Fixed Effects Yes Yes Yes Yes Yes
County-Specific Time Trend Yes Yes Yes Yes Yes

Time Effects Yes Yes Yes Yes Yes

R-squared (within) 0.436 0.435 0.436 0.406 0.397
Number of Counties 3093 3093 3093 3101 3101

Observations 40,168 40,168 40,168 43,414 43,414

Notes: 1. Cluster (County)-adjusted Robust standard errors in parentheses, *** p < 0.01, ** p < 0.05; 2. The omitted
category for the group indicators in columns (1), (3), (4), and (5) is “Non-adoption group;” 3. The estimates of the
constant term, time effects, county fixed effects, and county-specific time trends are not reported here.

Three specifications are estimated to investigate the role of community heat island mitigation
(HIM) actions on the heat index. In column (1), an indicator variable for heat island mitigation adoption
status is included in the specification to identify the change in heat hazard intensity by comparing the
heat index values (apparent temperature) pre- and post- adoption. The result shows that counties that
initiated any mitigation strategies experience 0.71 ◦F (0.39 ◦C) lower apparent temperature, on average,
compared to the period they had not implemented any HIM. In column (2), we estimate a slope
relationship between the number of heat island mitigation measures and the heat index values. Here a
one unit increase in the number of actions taken for heat hazard reduction is estimated to lower the
heat index values by 0.261 ◦F (0.15 ◦C).

The specification RTM_HI 3 in column (3) includes multiple group indicator variables to capture
the different levels of heat mitigation efforts. The results imply that the temperature lowering effects
of mitigation measures are non-linear; adopting additional mitigation activities have an increasingly
beneficial effect on lowering apparent temperatures. To illustrate, the estimated effect of implementing
mitigation measures is substantial; a county can lower the apparent temperature by 1.93 ◦F (1.07 ◦C),
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on average, by implementing four or more HIM measures. However, the HI-lowering effect of 4+ HIM
actions implied by the linear relationship in column (2) is approximately 1.38 ◦F (0.77 ◦C), given that
the average number of HIM actions among counties in 4+ actions group is 5.27. Also, the difference in
the temperature lowering effects between 1 action group and 2–3 actions group is −0.21 ◦F (−0.12 ◦C),
meaning that a county is expected to have a further decrease in heat intensity by an average of 0.21 ◦F
(0.12 ◦C) by adopting one or two extra HIM measures (i.e., moving from 1 actions group to 2–3 actions
group). The difference further increases to −1.03 ◦F (−0.57 ◦C) if a county’s adoption status changes
from 2–3 actions group to 4+ actions group. The estimated relationship confirms the long-lasting
and sustainable nature of the heat mitigation measures that enables the environmental benefits to
accumulate and synergistic effects to arise.

We find consistent results using a set of alternative specifications where the measure of heat
hazard intensity used as an outcome variable is the number of heat wave days. The random trend
model specification as described in Equation (3) with the alternative dependent variables is estimated.
As shown in column (4) and (5), the estimation results suggest that counties with more heat island
mitigation actions experience fewer heat wave days. For example, the Heat Wave Days decrease by
1.71 or 1.99 days on average (depending on the measure used to define the heat wave days) if a county
initiates HIM activities by adopting a mitigation measure. The heat wave days further decrease as a
county implements more HIM strategies; the difference between coefficients on 1 action group and
2-3 actions group dummies indicates that the reduction in heat wave days for additional measure is
0.67–1.13 days. The estimates suggest that the first HIM measure implemented in a county has the
largest marginal effect (1.66–1.96), and the marginal effects of additional measures decrease, but still
having a significant hazard-reduction effect. Figure 4 illustrates the heat-hazard lowering effect of heat
island mitigation strategies using the results of specifications RTM_HI 3, RTM_HD 1 and 2.
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Figure 4. The heat-hazard-lowering effects of heat island mitigation strategies.

5.2. Second-Phase: Heat Vulnerability–Fatality Model

Table 7 presents the estimates from the zero-inflated negative binomial models using heat events
recorded at the scale of counties during the 1998–2011 period. The dependent variable is direct fatalities
from each heat event. Because of the high correlation among the socio-economic variables, we estimate
specification 1 as a base model and then introduce the poverty rate variable in specification 2, elderly
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poverty rate in specification 3 and percent elderly living alone in specification 4. Specifications 2 and 3
connect the issue of poverty and the resulting increase in heat vulnerability, whereas specifications 3
and 4 offer insight in the context of an aging society. The results from the first-stage inflation model
(Logit) are available from the authors upon request.

Table 7. Heat vulnerability—fatalities model zero-inflated negative binomial regression results.

Zero Inflated Negative Binomial Model (ZINB)

Dependent Variable (1) (2) (3) (4)

Direct Heat Fatalities Specification 1 Specification 2 Specification 3 Specification 4

Monthly Avg. Max Heat Index (◦F) 0.110 *** 0.110 *** 0.115 *** 0.110 ***
(0.017) (0.017) (0.017) (0.017)

Annual Avg. of Daily Temp. (◦F) −0.319 *** −0.333 *** −0.351 *** −0.307 ***
(0.104) (0.098) (0.108) (0.098)

Annual Avg. of Max. Daily Temp. (◦F) 0.220 ** 0.230 *** 0.245 *** 0.206 **
(0.087) (0.084) (0.090) (0.083)

Ln (Population) 0.932 *** 0.927 *** 0.946 *** 0.953 ***
(0.083) (0.082) (0.083) (0.084)

Urban Population Density (per 1000 m2) 0.072 *** 0.067 *** 0.050 ** 0.069 ***
(0.022) (0.021) (0.020) (0.020)

Percent Young 0.086 ** 0.087 *** 0.074 ** 0.083 **
(0.034) (0.033) (0.033) (0.033)

Percent Elderly 0.103 *** 0.094 *** 0.092 ***
(0.027) (0.028) (0.028)

Percent Elderly Living Alone 0.292 ***
(0.068)

Poverty Rate among Elderly 0.065 ***
(0.021)

Poverty Rate 0.038 *
(0.021)

Ln (Per Capita Income) −1.003 * −0.290 −0.146 −0.899
(0.537) (0.644) (0.607) (0.551)

Percent Non-White 0.016 *** 0.012 ** 0.010 * 0.014 ***
(0.005) (0.006) (0.006) (0.005)

Percent Renter Occupied Housing 0.021 * 0.013 0.019 0.013
(0.012) (0.013) (0.012) (0.012)

Percent Mobile Homes 0.029 * 0.028 * 0.027 0.032 *
(0.017) (0.016) (0.016) (0.018)

Excessive Heat 0.001 0.012 0.007 −0.002
(0.141) (0.141) (0.141) (0.141)

State Fixed Effects Yes Yes Yes Yes
Time Effects Yes Yes Yes Yes

Observations 15,050 15,050 15,050 15,050

Notes: 1. Cluster (County)-adjusted Robust standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.10;
2. The omitted category for the begin time is “Early Afternoon”; 3. The omitted category for the season is “Summer”;
4. The omitted category for event type is “Heat”; 5. The estimates of the constant term, state fixed effects, year effects,
time of day indicator variables, and seasonal indicator variables are not reported here.

5.2.1. Heat Hazard Profile

Consider now the results of the heat hazard profile variables. A measure of the intensity of a heat
event, the heat index level, is found to be one of the most crucial meteorological elements of heat hazard
that determines the level of societal impacts. The results from all four specifications demonstrate that a
significant positive relationship holds between the heat index and heat-induced fatalities. An increase
in the maximum daily heat index value by one degree (F) leads to 12% more heat fatalities, on average.
The variables that signify the timing of the event are also estimated to affect the degree of heat impacts.
The adverse impact of a heat event is greater when it begins to occur during late afternoon hours
(4:00–7:59 p.m.), perhaps because higher temperatures at night in urban areas (because of the impeded
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release of heat absorbed during daytime in urban areas) may further increase nighttime atmospheric
temperatures and exacerbate extreme heat impacts on human health.

5.2.2. Climatic and Environmental Conditions

Our estimates confirm that climatic and environmental characteristics of the place are also
important determinants of heat vulnerability. The negative coefficient of the average daily air
temperature suggests that counties in warmer climates tend to be less sensitive to heat as they are
more likely accustomed to high temperatures. However, among counties with the same average
temperature, those with the higher maximum daily temperatures may suffer greater heat-related
fatalities. This result shows that susceptibility to heat hazards not only depends on an area’s normal
climate conditions, but also on the meteorological variability (e.g., daily temperature range). Consistent
with the previous heat study findings, the level of urbanization is an important heat risk factor. We find
that more populated counties experience higher risk of life-threatening extreme heat. Also, urban
concentration magnifies the risk aggravating heat island effects. The estimates imply that with a one
standard deviation (SD) increase (≈2) in urban density (per 1000 m2), heat fatalities rise by 15%.

5.2.3. Demographic and Socio-Economic Characteristics

Our analysis provides statistically significant evidence of meaningful magnitudes in support of
the “socio-political nature of disasters” framework—those who are more vulnerable in society are also
more susceptible to harm from disaster events. First, we ascertain that demographic composition,
such as the proportions of young and elderly population, and the proportion of non-white as essential
factors that play a role in heat vulnerability. Of interest, age is a key factor where elderly people are
more vulnerable to heat waves. Our heat vulnerability model estimates that a one percentage point
increase in the share of the elderly population is associated with an 11% increase in heat fatalities
(specification 1).

The relationship between heat vulnerability and the socially isolated elderly is also notable,
as isolation increases physiological and societal vulnerabilities. The estimate in specification 4 indicates
that a one-point increase in the proportion of the population that is elderly and isolated is associated
with a 34% increase in heat-related fatalities. Greater heat vulnerability resulting from a growing share
of socially isolated elderly is attributable to both the individual vulnerability of the elderly and the
population characteristics of an aging society.

Estimates also show that racial groups experience differential heat impacts. Counties with a
greater non-white population tend to have more heat-induced fatalities; a one standard deviation
increase (≈16) in the share of the non-white population is correlated with 17–30% more heat fatalities,
depending on the model specifications. Because vulnerability of certain race/ethnicity groups are
highly linked with their socio-economic status [46], the estimated effect of the percent non-white
variable decreases once we include poverty measures in specifications 2 and 3.

Overall, the results suggest that socio-economic factors are among several factors contributing
to heat vulnerability. First, our estimates support the idea that higher economic status reduces
vulnerability to extreme weather events, which has been echoed by other studies on disaster
vulnerability. This relationship holds in the case of extreme heat, as well. Those with greater
economic resources can utilize their wealth to prevent the worst consequences of and better respond
to heat hazards. People living below the poverty line, on the other hand, are at a greater risk as
they possess limited financial, physical, and social assets, which limits their coping capacity. A one
percentage point increase in the poverty rate is associated with a 4% increase in fatalities, whereas a
one standard deviation increase (≈7) is associated with 30% increase in fatalities.

A combination of two vulnerability factors—aging coupled with poverty—is considered in
specification 3. For a one percentage point increase in senior poverty rates, heat fatalities are estimated
to be 7% greater. Comparing with the estimated effect of a one-unit change in the overall poverty
rate—4% increase in fatalities, we infer that among those who live in poverty, the elderly are much
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more susceptible to heat. Note that this is a partial effect because other variables—including the share
of elderly population—are held constant.

To further investigate growing heat vulnerability resulting from an aging population, using the
model estimate of specification 3 we calculate the future increase in heat fatalities. Before discussing
the forecast further, we acknowledge that one should be cautious in interpreting the predicted increase
in fatalities in Table 8 as a causal effect considering the estimates from ZINB model (non-panel method;
county heterogeneity not fully controlled for) may not necessarily reflect a causal relationship. We carry
out this post-estimation exercise to provide a rough approximation of growing heat vulnerability in
an aging society based on the projected growth of the elderly population and elderly poverty rates:
(i) The national share of elderly in the population during our study period is 12.3% (12.3% is the
national level statistic while our sample mean of 14.94% in Table 5 is the mean of county level Pct
Elderly, where some counties are included multiple times for the computation of the mean value.)
(a 14-year average) and is projected to rise to 20.6% by 2030 and 22.6% by 2050 [62]; and (ii) 1 out of
10 elderly lived in poverty during 1990–2014 (10.34%, 25 year average) [63]. The population projections
indicate that the share of elderly will rise by 8.3 percentage points by 2030 and 10.3 percentage points
by 2050. Using these statistics, the predicted increase in heat fatalities for years 2030 and 2050 are
calculated using the coefficient estimates from specification 3 as reported in Table 7, assuming the
poverty rates among elderly will remain the same at the average rate of 10.34% in 2030 and 2050.
We are primarily interested in the projected increase in heat fatalities in relation with the growth in
elderly in this calculation while considering the poverty rates among the elderly. However, because
of the assumption of ceteris paribus of multiple regression analysis, the coefficient of Pct Elderly in
specification 3 is a partial effect of the increase in Pct Elderly, holding other variables including the
elderly poverty rate constant. Assuming the poverty rates among the elderly will remain the same,
we estimate the predicted increase in heat fatalities as a result of the aging population using the
estimates from specification 3.

Table 8. Increase in heat fatalities given the projected growth of the elderly population in 2030 and 2040.

Population aged 65+ 65+ Population Growth Yearly Heat Fatalities 2

Year Share Number 1 ∆ Share ∆ Number 1 Pct ∆ Avg. Deaths/year ∆ Deaths

1998–2011 12.3% 35,945 142
2030 20.6% 73,138 8.3% 37,193 215% 305 163
2050 22.6% 85,675 10.3% 49,730 258% 366 224

Notes: 1 Numbers in thousands; 2 The predicted heat fatalities are calculated using the estimation result of the
specification 3 in Table 7. Note that the predicted changes are average partial effects of the percent elderly variable,
with all other variables being held constant.

As shown in Table 8, we find that the heightened heat vulnerability due to the growth of the
elderly population may result in a two-fold increase in heat fatalities by 2030 and about 2.6-fold increase
by 2040, relative to the average fatalities during our study period (1998–2011). Heat vulnerability in
the USA is predicted to increase substantially in the coming decades as the most heat-vulnerable group
of people (the elderly) is a growing share of the population.

Consider next the housing-related factors where the results show that housing ownership is
closely related with heat vulnerability. A one standard deviation increase (≈8) in the share of renter
occupied housing is associated with a 16% increase in heat fatalities (specification 3). Also, consistent
with the previous findings on the vulnerability of those living in mobile homes [33,34,41], our analysis
shows that living in mobile homes are a significant heat risk factor. For a one standard deviation
increase (≈9) in the share of mobile homes in the total housing stock, heat fatalities are estimated to be
26% larger. It may be that increased vulnerability of those living in mobile homes (particularly older
mobile homes) is the result of lower quality relative to traditional homes in terms of cooling systems
and/or insufficient insulation and windows. These results also further highlight greater vulnerability
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of those who have limited financial resources and may have no other choice but to live in lower cost
rental housing or mobile homes.

5.3. Heat Island Mitigation Actions and Heat Fatality

5.3.1. First and Second Phase Models Combined: A Mediated Effect

As illustrated in Section 4, we combine the results from the first-phase heat index model
(Equation (4)) with the second-phase estimation results of the heat fatality analysis (Equation (5)) to
derive a mediated effect of heat mitigation actions on heat fatalities. Using the estimated coefficients
from three specifications (columns 1, 2, 3) in Table 6 and the coefficient on the heat index variable from
specification 2 in Table 7, we compute the mediated effects on heat fatalities as presented in Table 9.

Table 9. The mediated effect of heat mitigation measures on heat fatalities.

Model Variables Estimates Effects on Heat Fatalities

Heat Fatality Model Monthly Avg. Max Heat Index (◦F) δ̂1 = +0.110 *** (1− exp(δ̂1·β̂1)) %

Heat Hazard Model

1 Heat Island Mitigation (HIM)
Adoption Status 1 β̂1d = −0.710 *** 7.51% Reduction 1

2 No. of HIM Measures β̂1n = −0.261 ***
2.83% Reduction

(for one additional action)

3
1 Mitigation Actions Group 1 β̂11 = −0.698 *** 7.39% Reduction 1

2–3 Mitigation Actions Group 1 β̂12 = −0.903 *** 9.46% Reduction 1

+4 Mitigation Actions Group 1 β̂13 = −1.930 *** 19.13% Reduction 1

Notes: 1 The reference group for these group indicator variables is non-adoption (zero-actions) group; 2 *** means
p-values <0.01.

Before discussing the findings, on caveat is in order: Even though our findings provide evidence
on the negative causality between the heat mitigation measures and the heat fatalities, one should
be cautious in interpreting the magnitude of the effects. The estimates indicate that counties in the
heat island mitigation adoption group experience an average of 7.51% fewer heat fatalities than
those in non-adoption group. Also, one additional heat reduction measure reduces heat fatalities by
2.8%, on average. However, because of the long-lasting and synergistic effects of the heat mitigation
measures, the temperature lowering benefit of such measures accumulate and thus, counties with
more mitigation actions are progressively less vulnerable to extreme heat than counties with fewer
actions. As shown in the lowest panel of Table 9, counties in the 1 action group suffer 7.39% fewer
heat fatalities, compared to the non-adoption counties, whereas counties in that 2–3 actions group
experience 9.46% fewer heat fatalities. The fatality reducing effects increase progressively as a county
adopts 4 or more heat mitigation actions. The mediated effect analysis shows that counties in 4+ actions
group avoid many heat event fatalities as result of their mitigation efforts. This evaluation suggests
that heat fatalities are reduced by 19% as compared to the non-adoption group.

5.3.2. A Direct Estimation of the Effect

We also perform a direct estimation of the effect of heat island mitigation (HIM) measures on
heat fatalities, using the Poisson fixed effects estimator, controlling for the unobserved heterogeneity
of counties as well as year effects. We use county-year panel structured data with deaths per heat
event as the dependent variable. In Section 5.1, the HIM measures are found to have significant heat
lowering effects. In Section 5.2, using the heat index as an intermediary variable, we show that HIM
measures influence the heat outcomes. Focusing on the identification of the effect of heat mitigation
efforts on fatalities, we only include the HIM variables as a regressor along with controls, excluding the
intermediary variable—the heat index measure. However, it is still important to capture the changes
in heat fatalities due to the naturally occurring variation in heat over the period that might not be
explained by other climatic variables nor by the HIM variable. Thus, we include the days in which the
county max air temperature (the heat days measure is closely related with the heat index, but it only
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accounts for the temperature component of extreme heat and not the humidity component) reached or
exceeded the 95th percentile of daily max temperature during the May–September period, along with
other meteorological conditions.

The results of the direct estimation of the effects of HIM actions on heat fatalities using the Poisson
fixed effects estimation method are presented in columns (1)–(2) of Table 10. The random effects
model results are provided in columns (3)–(4) as a robustness check. We find a statistically significant
evidence that the more HIM measures a county has implemented, the smaller the heat fatalities in that
county. However, the difference between the estimated effects of the number of all HIM measures
shown in column (2) and the effects of the number of locally implemented measures (i.e., non-statewide
activities) in column (3) implies that the heat-vulnerability reducing benefits of HIM activities can
differ depending on the spatial-scale and the main agents of HIM implementation. The results indicate
that community-based local government initiated HIM actions have larger fatality reducing effects.
This result suggests adaptation plans and interventions that are tailored to each targeted area and
established with knowledge on unique circumstances of localities is important. An additional heat
island mitigation measure that is locally implemented in a county is estimated to reduce the annual
deaths rate (deaths per heat event) by 14.87%. However, note that the estimated direct effect is much
larger than the mediated effect that is identified in Table 9. This might be partly due to the differences
in estimators—cross-sectional method (ZINB) vs. within-estimator (FE) where the latter is preferable
in causal inferences. Also, the incongruent data structures of the first- and second-phase models and
the different measures for the heat intensity variable in the two phases—annual max. HI vs. monthly
max. HI—likely contribute to the difference in the mediated versus direct effects.

Table 10. A direct estimation of the effect of heat island mitigation (HIM) actions on heat
fatalities–Poisson fixed (FE) and random (RE) effects model key results.

Dependent Variable (1) (2) (3) (4)

Direct Heat Fatalities Poisson FE Poisson RE Poisson FE Poisson RE

No. of HIM Actions_lag (All) −0.052 −0.107 *
(0.068) (0.064)

No. of HIM
Actions_lag_(Non-Statewide) −0.161 *** −0.169 **

(0.060) (0.066)
Previous-3yrs_HeatWaveDays −0.057 *** −0.047 *** −0.057 *** −0.047 ***

(0.018) (0.016) (0.018) (0.016)
Heat Wave Days (based on Max Temp) 0.017 * 0.009 0.017 * 0.010

(0.010) (0.008) (0.009) (0.008)
Population (in thousands) 0.001 0.001 *** 0.001 0.001 ***

(0.001) (0.000) (0.002) (0.000)
Pct Urban Population 0.041 0.028 *** 0.030 0.028 ***

(0.051) (0.006) (0.050) (0.006)
Ln (Per Capita Income) −2.202 −1.477 ** −3.195 −1.491 **

(3.025) (0.587) (2.971) (0.590)
Number of Counties 260 1906 260 1906

Observations 1519 6635 1519 6635

Notes: 1. Cluster (County)-adjusted Robust standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.10;
2. The estimates of meteorological, demographic control variables, the constant term, and time fixed effects are
not reported here; 3. The number of counties with any heat occurrence during the study period is 1906 (random
effect estimation). However, the number of counties with any heat fatality during the period is 260 (fixed effects
estimation).

5.4. Falsification Tests

We also perform falsification tests on the significant effects of HIM measures estimated in the
first-phase heat hazard mitigation model and in the direct estimation of fatality-reducing effect of
the HIM measures. Our falsification tests use the baseline specifications, except that we include the
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2-year-lead heat island mitigation variables instead of the 2-year lagged variables in the baseline
regressions. This test is performed to verify that the estimated effects are not driven by characteristics
common to counties that are about to employ heat mitigation measures.

The falsification test results of the first-phase heat hazard model are available from the authors
upon request. Once the 2-year-lead HIM variables are used, the cooling-effects of HIM measures
disappear. Test results of other specifications with different heat intensity measures, such as annual
heat wave days by maximum heat index or heat wave days by net daily heat stress are also consistent.
The positive coefficients may be capturing the inverse relationship between heat hazard (=heat
intensities) and the proactive adaptation measures to mitigate the risk of heat (=HIM). The higher
the heat intensity within a community is, the more likely it is for a community to take heat risk
mitigation actions.

Similarly, the falsification test results of the direct estimation of the effects of HIM actions on
heat fatalities, which are also available from the authors upon request, rule out the possibility that
our results are spurious. Compared to the statistically significant, negative estimates of lagged HIM
measures from the baseline regressions in Table 10, lead variables reverse the previous results, losing
statistical significance in all specifications.

6. Conclusions

Under ongoing climate change, the frequency and intensity of extreme heat events are predicted
to increase. Given the devastating consequences of heat events and the growing risk of extreme heat,
it is critical to identify the major determinants of heat vulnerability to minimize potential human losses.
Our analysis reveals the multi-faceted nature of the heat vulnerability; event-specific heat hazard
profiles, meteorological, climatic, and environmental conditions, as well as various socio-economic and
housing factors all play a role in determining heat vulnerability. Findings suggest that current societal
issues such as the aging population, continuing urbanization, and deepening poverty and inequality
that seem to be unrelated to natural disasters, are contributing factors to the growing extreme heat
vulnerability in the USA Of special interest is the aging population combined with the projected increase
in heat risks, which is expected to aggravate the adverse consequences of extreme heat. According to
our estimates, increasing heat vulnerability due to the growth of the elderly population is predicted to
generate a two-fold increase in heat-induced fatalities by 2030; public heat island mitigation efforts
are more important than ever. This study provides evidence of the benefits of community heat island
mitigation measures in reducing heat risk and associated fatalities. Our findings underscore the need
for more proactive and precautionary public measures to counteract the harmful effects of heat hazards.
In this regard, a key area of additional research is to conduct further analyses to examine which of the
heat island mitigation strategies are most effective and which have the highest net societal benefits.
Further study along these lines would provide useful information for community decisions regarding
heat island mitigation measures. Overall, findings of this study inform targeting efforts designed to
protect and assist the most vulnerable population subgroups and guide future policies and mitigation
efforts to counteract the growing risk of heat waves at the local, state and national levels.
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Appendix A

Table A1. Determination of heat and excess heat.

Determination of a Heat Category Event in NWS Storm Data

Heat

A period of heat results from the combination of high temperatures (above normal) and relative humidity.
A heat event occurs and is reported in Storm Data whenever heat index values meet or exceed

locally/regionally established heat advisory thresholds. Fatalities or major impacts on human health occurring
when ambient weather conditions meet heat advisory criteria are reported using the heat event. If the ambient
weather conditions are below heat advisory criteria, a heat event entry is permissible only if a directly related

fatality occurred due to unseasonably warm weather, and not man-made environments.

Excess Heat

Excessive heat results from a combination of high temperatures (well above normal) and high humidity.
An Excessive heat event occurs and is reported in Storm Data whenever heat index values meet or exceed

locally/regionally established excessive heat warning thresholds. Fatalities (directly related) or major impacts
to human health that occur during excessive heat warning conditions are reported using this event category.
If the event that occurred is considered significant, even though it affected a small area, it should be entered

into Storm Data.

Source: National Weather Service Instruction 10-1605 (MARCH 23, 2016) Operations and Services Performance,
Storm Data Preparation. (http://www.nws.noaa.gov/directives/).
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