Impact of Model Resolution and Initial/Boundary Conditions in Forecasting Flood-Causing Precipitations
Abstract
:1. Introduction
2. The Analysed Case Study
3. Materials and Methods
4. Results
4.1. Sensitivity to Initial Conditions and SST
4.2. Sensitivity to Lateral Boundary Conditions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dayan, U.; Nissen, K.; Ulbrich, U. Review Article: Atmospheric conditions inducing extreme precipitation over the eastern and western Mediterranean. Nat. Hazards Earth Syst. Sci. 2015, 15, 2525–2544. [Google Scholar] [CrossRef] [Green Version]
- Pontrelli, M.D.; Bryan, G.H.; Fritsch, J.M.; Estrela, M.J. The Madison County, Virginia, flash flood of 27 June 1995. Weather Forecast. 1999, 14, 384–404. [Google Scholar] [CrossRef]
- Lin, Y.L.; Chiao, S.; Wang, T.A.; Kaplan, M.L.; Weglarz, R.P. Some common ingredients for heavy orographic rainfall. Weather Forecast. 2001, 16, 633–660. [Google Scholar] [CrossRef]
- Miglietta, M.M.; Rotunno, R. Application of theory to observed cases of orographically forced convective rainfall. Mon. Weather Rev. 2012, 140, 3039–3053. [Google Scholar] [CrossRef]
- McCann, D.W. The enhanced-V: A satellite observable severe storm signature. Mon. Weather Rev. 1983, 111, 887–894. [Google Scholar] [CrossRef] [Green Version]
- Davolio, S.; Mastrangelo, D.; Miglietta, M.M.; Drofa, O.; Buzzi, A.; Malguzzi, P. High resolution simulations of a flash flood near Venice. Nat. Hazard Earth Syst. Sci. 2009, 9, 1671–1678. [Google Scholar] [CrossRef]
- Buzzi, A.; Davolio, S.; Malguzzi, P.; Drofa, O.; Mastrangelo, D. Heavy rainfall episodes over Liguria of autumn 2011: Numerical forecasting experiment. Nat. Hazards Earth Syst. Sci. Discuss. 2013, 1, 7093–7135. [Google Scholar] [CrossRef]
- Fiori, E.; Commellas, A.; Molini, L.; Rebora, N.; Siccardi, F.; Gochis, D.J.; Tanelli, S.; Parodi, A. Analysis and hindcast simulation of an extreme rainfall event in the Mediterranean area: The Genoa 2011 case. Atmos. Res. 2014, 138, 13–29. [Google Scholar] [CrossRef] [Green Version]
- Davolio, S.; Volonté, A.; Manzato, A.; Pucillo, A.; Cicogna, A.; Ferrario, M.E. Mechanisms producing different precipitation patterns over north-eastern Italy: Insights from HyMeX-SOP1 and previous events. Q. J. R. Meteorol. Soc. 2016, 142, 188–205. [Google Scholar] [CrossRef] [Green Version]
- Ricard, D.; Ducrocq, V.; Auger, V. A climatology of the mesoscale environment associated with heavily precipitating events over a Northwestern Mediterranean area. J. Appl. Meteorol. Climatol. 2012, 51, 468–488. [Google Scholar] [CrossRef]
- Drobinski, P.; Ducrocq, V.; Alpert, P.; Anagnostou, E.; Beranger, K.; Borga, M.; Braud, I.; Chanzy, A.; Davolio, S.; Delrieu, G.; et al. HyMeX: A 10-year multidisciplinary program on the Mediterranean water cycle. Bull. Am. Meteorol. Soc. 2014, 95, 1063–1082. [Google Scholar] [CrossRef]
- Booth, J.F.; Thompson, L.; Patoux, J.; Kelly, K.A. Sensitivity of Midlatitude Storm Intensification to Perturbations in the Sea Surface Temperature near the Gulf Stream. Mon. Weather Rev. 2012, 140, 1241–1256. [Google Scholar] [CrossRef]
- Katsafados, P.; Mavromatidis, E.; Papadopoulos, A.; Pytharoulis, I. Numerical simulation of a deep Mediterranean storm and its sensitivity on sea surface temperature. Nat. Hazards Earth Syst. Sci. 2011, 11, 1233–1246. [Google Scholar] [CrossRef]
- Ludwig, P.; Pinto, J.G.; Reyers, M.; Gray, S.L. The role of anomalous SST and surface fluxes over the southeastern North Atlantic in the explosive development of windstorm Xynthia. Q. J. R. Meteorol. Soc. 2014, 140, 1729–1741. [Google Scholar] [CrossRef] [Green Version]
- Meredith, E.P.; Semenov, V.A.; Maraun, D.; Park, W.; Chernokulsky, A.V. Crucial role of Black Sea warming in amplifying the 2012 Krymsk precipitation extreme. Nat. Geosci. 2015, 8, 615–619. [Google Scholar] [CrossRef]
- Iizuka, S.; Nakamura, H. Sensitivity of Midlatitude Heavy Precipitation to SST: A Case Study in the Sea of Japan Area on 9 August 2013. J. Geophys. Res. Atmos. 2019, 124, 4365–4381. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, M. Ensemble simulations of the influence of regionally warm sea surface on moisture and rainfall in Tsushima Strait during August 2013. Atmos. Res. 2020, 238, 104876. [Google Scholar] [CrossRef]
- Ducrocq, V.; Nuissier, O.; Ricard, D.; Lebeaupin, C.; Thouvenin, T. A numerical study of three catastrophic precipitating events over southern France. II: Mesoscale triggering and stationarity factors. Q. J. R. Meteorol. Soc. 2008, 134, 131–145. [Google Scholar] [CrossRef]
- Nuissier, O.; Ducrocq, V.; Ricard, D.; Lebeaupin, C.; Anquetin, S. A numerical study of three catastrophic precipitating events over southern France, I: Numerical framework and synoptic ingredients. Q. J. R. Meteorol. Soc. 2008, 134, 111–130. [Google Scholar] [CrossRef]
- Silvestro, F.; Gabellani, S.; Giannoni, F.; Parodi, A.; Rebora, N.; Rudari, R.; Siccardi, F. A hydrological analysis of the 4 November 2011 event in Genoa. Nat. Hazards Earth Syst. Sci. 2012, 12, 2743–2752. [Google Scholar] [CrossRef]
- Silvestro, F.; Rebora, N.; Giannoni, F.; Cavallo, A.; Ferraris, L. The flash flood of the Bisagno Creek on 9th October 2014: An “unfortunate” combination of spatial and temporal scales. J. Hydrol. 2016, 541, 50–62. [Google Scholar] [CrossRef] [Green Version]
- Lagasio, M.; Parodi, A.; Procopio, R.; Rachidi, F.; Fiori, E. Lightning Potential Index performances in multimicrophysical cloud-resolving simulations of a back-building mesoscale convective system: The Genoa 2014 event. J. Geophys. Res. Atmos. 2017, 122, 4238–4257. [Google Scholar] [CrossRef]
- Pastor, F.; Estrela, M.J.; Peñarrocha, D.; Millán, M.M. Torrential Rains on the Spanish Mediterranean Coast: Modeling the Effects of the Sea Surface Temperature. J. Appl. Meteorol. 2001, 40, 1180–1195. [Google Scholar] [CrossRef]
- Lebeaupin, C.; Ducrocq, V.; Giordani, H. Sensitivity of torrential rain events to the sea surface temperature based on high-resolution numerical forecasts. J. Geophys. Res. Atmos. 2006, 111, D12. [Google Scholar] [CrossRef] [Green Version]
- Berthou, S.; Mailler, S.; Drobinski, P.; Arsouze, T.; Bastin, S.; Beranger, K.; Lebeaupin-Brossier, C. Sensitivity of an intense rain event between atmosphere-only and atmosphere-ocean regional coupled models: 19 September 1996. Q. J. R. Meteorol. Soc. 2015, 141, 258–271. [Google Scholar] [CrossRef]
- Pastor, F.; Valiente, J.A.; Estrela, M.J. Sea surface temperature and torrential rains in the Valencia region: Modelling the role of recharge areas. Nat. Hazards Earth Syst. Sci. 2015, 15, 1677–1693. [Google Scholar] [CrossRef] [Green Version]
- Cassola, F.; Ferrari, F.; Mazzino, A.; Miglietta, M.M. The role of the sea on the flash floods events over Liguria (northwestern Italy). Geophys. Res. Lett. 2016, 43, 3534–3542. [Google Scholar] [CrossRef]
- Meroni, A.N.; Parodi, A.; Pasquero, C. Role of SST Patterns on Surface Wind Modulation of a Heavy Midlatitude Precipitation Event. J. Geophys. Res. Atmos. 2018, 123, 9081–9096. [Google Scholar] [CrossRef]
- Stocchi, P.; Davolio, S. Intense air-sea exchanges and heavy orographic precipitation over Italy: The role of Adriatic sea surface temperature uncertainty. Atmos. Res. 2017, 196, 62–82. [Google Scholar] [CrossRef]
- Miglietta, M.M.; Mazon, J.; Motola, V.; Pasini, A. Effect of a positive Sea Surface Temperature anomaly on a Mediterranean tornadic supercell. Sci. Rep. 2017, 7, 12828. [Google Scholar] [CrossRef] [Green Version]
- Miglietta, M.M.; Moscatello, A.; Conte, D.; Mannarini, G.; Lacorata, G.; Rotunno, R. Numerical analysis of a Mediterranean ‘hurricane’ over south-eastern Italy: Sensitivity experiments to sea surface temperature. Atmos. Res. 2011, 101, 412–426. [Google Scholar] [CrossRef]
- Ricchi, A.; Miglietta, M.M.; Barbariol, F.; Benetazzo, A.; Bergamasco, A.; Bonaldo, D.; Cassardo, C.; Falcieri, F.M.; Modugno, G.; Russo, A.; et al. Sensitivity of a Mediterranean Tropical-Like Cyclone to Different Model Configurations and Coupling Strategies. Atmosphere 2017, 8, 92. [Google Scholar] [CrossRef] [Green Version]
- Cassola, F.; Ferrari, F.; Mazzino, A. Numerical simulations of Mediterranean heavy precipitation events with the WRF model: A verification exercise using different approaches. Atmos. Res. 2015, 164–165, 3–18. [Google Scholar] [CrossRef]
- Goulet, L. The Catastrophic Event of October 3rd 2015 in Cannes. Eur. Forecast. 2016, 21, 12–22. [Google Scholar]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gil, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF. Version 3; Technical Report. National Center for Atmospheric Research, 2008. Available online: https://opensky.ucar.edu/islandora/object/technotes:500 (accessed on 30 April 2020).
- Bove, M.C.; Brotto, P.; Cassola, F.; Cuccia, E.; Massabò, D.; Mazzino, A.; Piazzalunga, A.; Prati, P. An integrated PM2.5 source apportionment study: Positive Matrix Factorization vs. the chemical transport model CAMx. Atmos. Environ. 2014, 94, 274–286. [Google Scholar] [CrossRef]
- Chou, M.D.; Suarez, M.J. An Efficient Thermal Infrared Radiation Parameterization for Use In General Circulation Models. Technical Report; NASA/Goddard Space Flight Center, 1994. Available online: https://ntrs.nasa.gov/search.jsp?R=19950009331 (accessed on 30 April 2020).
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated k-model for the long-wave. J. Geophys. Res. 1997, 102, 663–682. [Google Scholar] [CrossRef] [Green Version]
- Kain, J.S. The Kain-Fritsch convective parameterization: An update. J. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar] [CrossRef] [Green Version]
- Janjic, Z.I. Non Singular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso Model. Technical Report 437. NOAA Science Center, 2002. Available online: https://pdfs.semanticscholar.org/08a1/48851340d682d16aab9257889be824eb8812.pdf?$_$ga=2.82424336.78943031.1591095320-1205471210.1591095320 (accessed on 30 April 2020).
- Chen, F.; Dudhia, J. Coupling an advanced land-surface/hydrology model with the Penn state/NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Weather Rev. 2001, 12, 569–585. [Google Scholar] [CrossRef] [Green Version]
- Milbrandt, J.A.; Yau, M.K. A Multimoment Bulk Microphysics Parameterization. Part II: A Proposed Three-Moment Closure and Scheme Description. J. Atmos. Sci. 2005, 62, 3065–3081. [Google Scholar] [CrossRef]
- Environmental Modeling Center. The GFS Atmospheric Model; NCEP Office Note 442; National Oceanic and Atmospheric Administration, 2003. Available online: http://nws.noaa.gov/ost/climate/STIP/AGFS$_$DOC$_$1103.pdf (accessed on 30 April 2020).
- Buongiorno-Nardelli, B.; Tronconi, C.; Pisano, A.; Santoleri, R. High and Ultra-High resolution processing of satellite Sea Surface Temperature data over Southern European Seas in the framework of MyOcean project. Remote Sens. Environ. 2013, 129, 1–16. [Google Scholar] [CrossRef]
- Ricchi, A.; Miglietta, M.M.; Falco, P.P.; Benetazzo, A.; Bonaldo, D.; Bergamasco, A.; Sclavo, M.; Carniel, S. On the use of a coupled ocean–atmosphere–wave model during an extreme cold air outbreak over the Adriatic Sea. Atmos. Res. 2016, 172–173, 48–65. [Google Scholar] [CrossRef]
- Bonavita, M.; Holm, E.; Isaksen, L.; Fisher, M. The evolution of the ECMWF hybrid data assimilation system. Q. J. R. Meteorol.Soc. 2016, 142, 287–303. [Google Scholar] [CrossRef]
- Szunyogh, I.; Kostelich, J.E.; Gyarmati, G.; Kalnay, E.; Hunt, B.R.; Ott, E.; Satterfield, E.; Yorke, J.A. A local ensemble transform Kalman filter data assimilation system for the NCEP global model. Tellus A Dyn. Meteorol. Oceanogr. 2008, 60, 113–130. [Google Scholar] [CrossRef]
- Wang, X.; Parrish, D.; Kleist, D.; Whitaker, J. GSI 3DVar-Based Ensemble–Variational Hybrid Data Assimilation for NCEP Global Forecast System: Single-Resolution Experiments. Mon. Weather Rev. 2013, 141, 4098–4117. [Google Scholar] [CrossRef]
- Palmer, T. The ECMWF ensemble prediction system: Looking back more than 25 years and projecting forward 25 years. Q. J. R. Meteorol. Soc. 2019, 145, 12–24. [Google Scholar] [CrossRef] [Green Version]
- Wei, M.; Toth, Z.; Wobus, R.; Zhu, Y.; Bishop, C.H.; Wang, X. Ensemble Transform Kalman Filter-based ensemble perturbations in an operational global prediction system at NCEP. Tellus A Dyn. Meteorol. Oceanogr. 2006, 58, 28–44. [Google Scholar] [CrossRef]
- Wei, M.; Toth, Z.; Wobus, R.; Zhu, Y. Initial perturbations based on the ensemble transform (ET) technique in the NCEP global operational forecast system. Tellus A Dyn. Meteorol. Oceanogr. 2008, 60, 62–79. [Google Scholar] [CrossRef] [Green Version]
- Hohenegger, C.; Schaer, C. Atmospheric predictability at synoptic versus cloud-resolving scales. Bull. Am. Meteorol. Soc. 2007, 88, 1783–1793. [Google Scholar] [CrossRef]
- Corazza, M.; Sacchetti, D.; Antonelli, M.; Drofa, O. The ARPAL operational high resolution Poor Man’s Ensemble, description and validation. Atmos. Res. 2018, 203, 1–15. [Google Scholar] [CrossRef]
Simulation | Acronym |
---|---|
GFS | W_GFS |
GFS + satellite SST | W_GFS_SST |
ECMWF | W_ECM |
ECMWF + satellite SST | W_ECM_SST |
GFS analysis | W_GFSANL |
GFS analysis + satellite SST | W_GFSANL_SST |
Simulation | 6 h Cumulated Precipitation mm |
---|---|
W_GFS | 105.6 |
W_GFS_SST | 115.4 |
W_ECM | 120.4 |
W_ECM_SST | 89.0 |
W_GFSANL | 116.4 |
W_GFSANL_SST | 147.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrari, F.; Cassola, F.; Tuju, P.E.; Stocchino, A.; Brotto, P.; Mazzino, A. Impact of Model Resolution and Initial/Boundary Conditions in Forecasting Flood-Causing Precipitations. Atmosphere 2020, 11, 592. https://doi.org/10.3390/atmos11060592
Ferrari F, Cassola F, Tuju PE, Stocchino A, Brotto P, Mazzino A. Impact of Model Resolution and Initial/Boundary Conditions in Forecasting Flood-Causing Precipitations. Atmosphere. 2020; 11(6):592. https://doi.org/10.3390/atmos11060592
Chicago/Turabian StyleFerrari, Francesco, Federico Cassola, Peter Enos Tuju, Alessandro Stocchino, Paolo Brotto, and Andrea Mazzino. 2020. "Impact of Model Resolution and Initial/Boundary Conditions in Forecasting Flood-Causing Precipitations" Atmosphere 11, no. 6: 592. https://doi.org/10.3390/atmos11060592
APA StyleFerrari, F., Cassola, F., Tuju, P. E., Stocchino, A., Brotto, P., & Mazzino, A. (2020). Impact of Model Resolution and Initial/Boundary Conditions in Forecasting Flood-Causing Precipitations. Atmosphere, 11(6), 592. https://doi.org/10.3390/atmos11060592