Microbiological Air Quality in a Highschool Gym Located in an Urban Area of Southern Poland—Preliminary Research
Abstract
:1. Introduction
2. Experiments
2.1. Sampling Sites
2.2. Sampling and Analytical Methods
2.3. Bacteria Identification
2.4. Multi-Antibiotic Resistance Test (MAR)
2.5. Statistical Analysis
3. Results and Discussion
3.1. Quantity of Bacterial Aerosol (BA) in a Highschool Gym: Before Gym Classes (BGC), during Gym
3.2. Particle Size Distribution of Bacterial Aerosol (BA) in a Highschool Gym: Before Gym Classes (BGC), during Gym Classes (DGC) and Outdoor Air (OUT)
3.3. Bacterial Diversity and Antibiotic Resistance of Bacterial Aerosol (BA) in a Highschool Gym before Gym Classes (BGC) and during Gym Classes (DGC)
3.4. Multi Antibiotic Resistance Test (MAR) of Bacterial Aerosol (BA) in a Highschool Gym before Gym Classes (BGC) and during Gym Classes (DGC)
4. Conclusions
- Indoor level of bacterial aerosol (BA) is higher than outdoor.
- During gym classes (DGC) concentration of BA is >500 CFU/m3, pointing to moderate contamination.
- The sports activity shifted the peak of this size distribution into the smaller particles (1.1 to 3.3 µm), pointing to fresh human origin particles.
- Dominating bacterial species is Gram-positive cocci, which commonly occur on human skin.
- Among determined biological agents, only one strain, Corynebacterium striatum, belongs to RG2 (risk group 2), and it constituted 14% of BA before gym classes (BCG); however, this bacteria rarely causes serious diseases.
- DGC, the proportion of antibiotic resistance bacteria was higher than BGC.
- The highest antibiotic resistance revealed Staphylococcus epidermis (isolated DGC) and Pseudomonas sp. (isolated BGC).
- The most sensitive bacteria to antibiotics are Corynebacterium striatum and Corynebacterium propinquum (isolated both BGC and DGC).
Author Contributions
Funding
Conflicts of Interest
References
- Mainka, A.; Brągoszewska, E.; Kozielska, B.; Pastuszka, J.S.; Zajusz-Zubek, E. Indoor air quality in urban nursery schools in Gliwice, Poland: Analysis of the case study. Atmos. Pollut. Res. 2015, 6, 1098–1104. [Google Scholar] [CrossRef]
- Mendell, M.J.; Heath, G.A. Do indoor pollutants and thermal conditions in schools influence student performance? A critical review of the literature. Indoor Air 2005, 15, 27–52. [Google Scholar] [CrossRef]
- Blondeau, P.; Iordache, V.; Poupard, O.; Genin, D.; Allard, F. Relationship between outdoor and indoor air quality in eight French schools. Indoor Air 2005, 15, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Maslesa, E.; Jensen, P.A.; Birkved, M. Indicators for quantifying environmental building performance: A systematic literature review. J. Build. Eng. 2018, 19, 552–560. [Google Scholar] [CrossRef]
- Dimitroulopoulou, C. Ventilation in European dwellings: A review. Build. Environ. 2012, 47, 109–125. [Google Scholar] [CrossRef]
- Madsen, A.M.; Moslehi-Jenabian, S.; Islam, M.Z.; Frankel, M.; Spilak, M.; Frederiksen, M.W. Concentrations of Staphylococcus species in indoor air as associated with other bacteria, season, relative humidity, air change rate, and S. aureus-positive occupants. Environ. Res. 2018, 160, 282–291. [Google Scholar] [CrossRef]
- Bakó-Biró, Z.; Clements-Croome, D.J.; Kochhar, N.; Awbi, H.B.; Williams, M.J. Ventilation rates in schools and pupils’ performance. Build. Environ. 2012, 48, 215–223. [Google Scholar] [CrossRef]
- Brągoszewska, E.; Palmowska, A.; Biedroń, I. Investigation of indoor air quality in the ventilated ice rink arena. Atmos. Pollut. Res. 2020, 11, 903–908. [Google Scholar] [CrossRef]
- Brągoszewska, E.; Biedroń, I.; Kozielska, B.; Pastuszka, J.S. Microbiological indoor air quality in an office building in Gliwice, Poland: Analysis of the case study. Air Qual. Atmos. Health 2018, 11, 729–740. [Google Scholar] [CrossRef] [Green Version]
- Wargocki, P.; Porras-Salazar, J.A.; Contreras-Espinoza, S.; Bahnfleth, W. The relationships between classroom air quality and children’s performance in school. Build. Environ. 2020, 173, 106749. [Google Scholar] [CrossRef]
- Brągoszewska, E.; Mainka, A.; Pastuszka, J.; Lizończyk, K.; Desta, Y. Assessment of Bacterial Aerosol in a Preschool, Primary School and High School in Poland. Atmosphere 2018, 9, 87. [Google Scholar] [CrossRef] [Green Version]
- Małecka-Adamowicz, M.; Kubera, Ł.; Jankowiak, E.; Dembowska, E. Microbial diversity of bioaerosol inside sports facilities and antibiotic resistance of isolated Staphylococcus spp. Aerobiologia 2019, 35, 731–742. [Google Scholar] [CrossRef] [Green Version]
- Pośniak, M.; Jankowska, E.; Kowalska, J.; Gołofit-Szymczak, M. Kształtowanie Jakości Powietrza W Pomieszczeniach Szkolnych; CIOP: Warszawa, Poland, 2010; ISBN 978-83-7373-095-3. (In Polish) [Google Scholar]
- Central Statistical Office in Poland. Oświata I Wychowanie W Roku Szkolnym 2016/2017. Available online: https://stat.gov.pl/obszary-tematyczne/edukacja/edukacja/oswiata-i-wychowanie-w-roku-szkolnym-20162017,1,12.html (accessed on 13 May 2020). (In Polish)
- EU. Council Directive 89/391/EEC of 12 June 1989 on the Introduction of Measures to Encourage Improvements in the Safety and Health of Workers at Work. 1989. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A31989L0391 (accessed on 13 May 2020).
- Regulation of the Minister of Higher Education Dated. Available online: http://prawo.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20030060069 (accessed on 13 May 2020). (In Polish)
- Polish Journal of Laws no. 95 Position 425 Act on the Educational System. 1991. Available online: https://www.ilo.org/dyn/natlex/natlex4.detail?p_lang=en&p_isn=92248 (accessed on 13 May 2020). (In Polish).
- Ramos, C.A.; Viegas, C.; Verde, S.C.; Wolterbeek, H.T.; Almeida, S.M. Characterizing the fungal and bacterial microflora and concentrations in fitness centres. Indoor Built Environ. 2016, 25, 872–882. [Google Scholar] [CrossRef]
- Ni, X.F.; Peng, S.C.; Wang, J.Z. Is morning or evening better for outdoor exercise? An evaluation based on nationwide PM2.5 data in China. Aerosol Air Qual. Res. 2019, 19, 2093–2099. [Google Scholar] [CrossRef]
- Slezakova, K.; Peixoto, C.; Pereira, M.D.C.; Morais, S. (Ultra) Fine particle concentrations and exposure in different indoor and outdoor microenvironments during physical exercising. J. Toxicol. Environ. Health Part A Curr. Issues 2019, 82, 591–602. [Google Scholar] [CrossRef]
- Carlisle, A.J.; Sharp, N.C. Exercise and outdoor ambient air pollution. Br. J. Sports Med. 2001, 35, 214–222. [Google Scholar] [CrossRef]
- Qin, F.; Yang, Y.; Wang, S.T.; Dong, Y.N.; Xu, M.X.; Wang, Z.W.; Zhao, J.X. Exercise and air pollutants exposure: A systematic review and meta-analysis. Life Sci. 2019, 218, 153–164. [Google Scholar] [CrossRef]
- Daisey, J.M.; Angell, W.J.; Apte, M.G. Indoor air quality, ventilation and health symptoms in schools: An analysis of existing information. Indoor Air 2003, 13, 53–64. [Google Scholar] [CrossRef]
- Ross, M.A.; Curtis, L.; Scheff, P.A.; Hryhorczuk, D.O.; Ramakrishnan, V.; Wadden, R.A.; Persky, V.W. Association of asthma symptoms and severity with indoor bioaerosols. Allergy 2000, 55, 705–711. [Google Scholar] [CrossRef]
- Andualem, Z.; Gizaw, Z.; Bogale, L.; Dagne, H. Indoor bacterial load and its correlation to physical indoor air quality parameters in public primary schools. Multidiscip. Respir. Med. 2019, 14, 2. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Sohn, J.; Kim, J.; Son, B.; Park, J. Indoor air quality investigation according to age of the school buildings in Korea. J. Environ. Manag. 2009, 90, 348–354. [Google Scholar] [CrossRef]
- Dacarro, C.; Picco, A.M.; Grisoli, P.; Rodolfi, M. Determination of aerial microbiological contamination in scholastic sports environments. J. Appl. Microbiol. 2003, 95, 904–912. [Google Scholar] [CrossRef] [Green Version]
- Grisoli, P.; Albertoni, M.; Rodolfi, M. Application of Airborne Microorganism Indexes in Offices, Gyms, and Libraries. Appl. Sci. 2019, 9, 1101. [Google Scholar] [CrossRef] [Green Version]
- Canha, N.; Almeida, S.M.; Freitas, M.D.C.; Wolterbeek, H.T. Assessment of bioaerosols in urban and rural primary schools using passive and active sampling methodologies. Arch. Environ. Prot. 2015, 41, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Asaduzzaman, M.; Hossain, M.I.; Saha, S.R.; Islam, R.; Ahmed, N.; Islam, M.A. Quantification of airborne resistant organisms with temporal and spatial diversity in Bangladesh: Protocol for a cross-sectional study. J. Med. Internet Res. 2019, 8, e14574. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations; Review on Antimicrobial Resistance; Wellcome Trust and HM Government: London, UK, 2016; pp. 1–84. [Google Scholar]
- Andrade, A.; Dominski, F.H.; Coimbra, D.R. Scientific production on indoor air quality of environments used for physical exercise and sports practice: Bibliometric analysis. J. Environ. Manag. 2017, 196, 188–200. [Google Scholar] [CrossRef]
- Brągoszewska, E.; Biedroń, I. Indoor Air Quality and Potential Health Risk Impacts of Exposure to Antibiotic Resistant Bacteria in an Office Rooms in Southern Poland. Int. J. Environ. Res. Public Health 2018, 15, 2604. [Google Scholar] [CrossRef] [Green Version]
- Nevalainen, A.; Pastuszka, J.; Liebhaber, F.; Willeke, K. Performance of bioaerosol samplers: Collection characteristics and sampler design considerations. Atmos. Environ. Part A Gen. Top. 1992, 26, 531–540. [Google Scholar] [CrossRef]
- Hudzicki, J. Kirby-Bauer Disk Diffusion Susceptibility Test Protocol-2009; ASM MicrobeLibrary, American Society for Microbiology: New York, NY, USA, 2016; pp. 1–23. Available online: https://www.asm.org/getattachment/2594ce26-bd44-47f6-8287-0657aa9185ad/Kirby-Bauer-Disk-Diffusion-Susceptibility-Test-Protocol-pdf.pdf (accessed on 12 May 2020).
- R Studio, RS Team. Integrated Development for R; RStudio: Boston, MA, USA, 2015. [Google Scholar]
- Gołofit-Szymczak, M.; Górny, R.L. Bacterial and fungal aerosols in air-Conditioned office buildings in Warsaw, Poland—The winter season. Int. J. Occup. Saf. Ergon. 2010, 16, 465–476. [Google Scholar] [CrossRef] [Green Version]
- Górny, R.; Cyprowski, M.; Ławniczek-Wałczyk, A.; Gołofit-Szymczak, M.; Zapór, L. Biohazards in the indoor environment—A role for threshold limit values in exposure assessment. In Management of Indoor Air Quality; Dudzińska, M.R., Ed.; Taylor&Francis Group CRC Press: London, UK, 2011; pp. 1–20. [Google Scholar]
- Górny, R.L.; Dutkiewicz, J. Bacterial and Fungal Aerosols in Indoor Environment in Central and Eastern European Countries. Ann. Agric. Environ. Med. 2002, 17–23. [Google Scholar]
- European Collaborative Action (ECA) of the Commison of the European Communities Report No.12 Biological Particles in Indoor Environment; Commison of the European Communities: Luxembourg, 1994.
- Ki-Hyun, K.; Ehsanul, K.; Jahan, S.A. Airborne bioaerosols and their impact on human health. J. Environ. Sci. 2018, 67, 23–35. [Google Scholar]
- Nevalainen, A. Bacterial Aerosols in Indoor Air. Ph.D. Thesis, University of Kuopio, Kuopio, Finland, 1989. [Google Scholar]
- WHO. Guidelines for Indoor Air Quality: Dampness and Mould; WHO Regional Office for Europe: Copenhagen, Denmark, 2009; ISBN 7989289041683. [Google Scholar]
- Pastuszka, J.S.; Wlazło, A.; Łudzeń-Izbińska, B.; Pastuszka, K. Bacterial and fungal aerosol in the school sport hall. Ochrona Powietrza I Problemy Odpadów 2004, 38, 62–66. (In Polish) [Google Scholar]
- Flannigan, B.; Samson, R.A.; Miller, J.D. Microorganisms in Home and Indoor Work Environments: Diversity, Health Impacts, Investigation and Control, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Brągoszewska, E.; Pastuszka, J.S. Influence of meteorological factors on the level and characteristics of culturable bacteria in the air in Gliwice, Upper Silesia (Poland). Aerobiologia 2018, 34, 241–255. [Google Scholar] [CrossRef] [Green Version]
- McEldowney, S.; Fletcher, M. The effect of temperature and relative humidity on the survival of bacteria attached to dry solid surfaces. Lett. Appl. Microbiol. 1988, 7, 83–86. [Google Scholar] [CrossRef]
- American Society of Heating, Refrigerating and Air Conditioning Engineers (Atlanta, Georgia). ANSI/ASHRAE Standar 55-1992: Thermal Environmental Conditions for Human Occupancy; ASHRAE: New York, NY, USA, 1992. [Google Scholar]
- US EPA Indoor Air Quality Tools For Schools; Environmental Protection Agency: Washington, DC, USA, 2012.
- Angelon-Gaetz, K.A.; Richardson, D.B.; Marshall, S.W.; Hernandez, M.L. Exploration of the effects of classroom humidity levels on teachers’ respiratory symptoms. Int. Arch. Occup. Environ. Health 2016, 89, 729–737. [Google Scholar] [CrossRef] [Green Version]
- Batterman, S.A. Characterization of particulate emissions from occupant activities in offices. Indoor Air 2001, 11, 35–48. [Google Scholar]
- Raunemaa, T.; Kulmala, M.; Saari, H.; Olin, M.; Kulmala, M.H. Indoor air aerosol model: Transport indoors and deposition of fine and coarse particles. Aerosol Sci. Technol. 1989, 11, 11–25. [Google Scholar] [CrossRef]
- Pastuszka, J.S.; Paw, U.K.T.; Lis, D.O.; Wlazło, A.; Ulfig, K. Bacterial and fungal aerosol in indoor environment in Upper Silesia, Poland. Atmos. Environ. 2000, 34, 3833–3842. [Google Scholar] [CrossRef]
- Kim, K.Y.; Kim, C.N. Airborne microbiological characteristics in public buildings of Korea. Build. Environ. 2007, 42, 2188–2196. [Google Scholar] [CrossRef]
- Kumari, H.; Chakraborti, T.; Singh, M.; Chakrawarti, M.K.; Mukhopadhyay, K. Prevalence and antibiogram of coagulase negative Staphylococci in bioaerosols from different indoors of a university in India. BMC Microbiol. 2020, 20, 211. [Google Scholar] [CrossRef]
- Wilson, C.; Brigmon, R.L.; Knox, A.; Seaman, J.; Smith, G. Effects of microbial and phosphate amendments on the bioavailability of lead (Pb) in shooting range soil. Bull. Environ. Contam. Toxicol. 2006, 76, 392–399. [Google Scholar] [CrossRef] [Green Version]
- Directive 2000/54/EC of the European Parliament and of the Council of 18 September 2000 on the Protection of Workers from Risks Related to Exposure to Biological Agents at Work. Off. J. Eur. Communities 2000, L 262, 21–45.
- Aslam, B.; Wang, W.; Arshad, M.I.; Khurshid, M.; Muzammil, S.; Rasool, M.H.; Nisar, M.A.; Alvi, R.F.; Aslam, M.A.; Qamar, M.U.; et al. Antibiotic resistance: A rundown of a global crisis. Infect. Drug Resist. 2018, 10, 1645–1658. [Google Scholar] [CrossRef] [Green Version]
- Schaefler, S. Staphylococcus epidermidis BV: Antibiotic resistance patterns, physiological characteristics, and bacteriophage susceptibility. Appl. Microbiol. 1971, 22, 693–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowden, M.G.; Chen, W.; Singvall, J.; Xu, Y.; Peacock, S.J.; Valtulina, V.; Speziale, P.; Höök, M. Identification and preliminary characterization of cell-wall-anchored proteins of Staphylococcus epidermidis. Microbiology 2005, 151, 1453–1464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grice, E.A.; Segre, J.A. The skin microbiome. Nat. Rev. Microbiol. 2011, 9, 244–253. [Google Scholar] [CrossRef]
- Otto, M. Staphylococcus epidermidis—The ‘accidental’ pathogen. Nat. Rev. Microbiol. 2009, 7, 555–567. [Google Scholar] [CrossRef] [Green Version]
- Uçkay, I.; Pittet, D.; Vaudaux, P.; Sax, H.; Lew, D.; Waldvogel, F. Foreign body infections due to Staphylococcus epidermidis. Ann. Med. 2009, 41, 109–119. [Google Scholar] [CrossRef]
- Mohanty, S.S.; Kay, P.R. Infection in total joint replacements.Why we screen MRSA when MRSE is the problem? J. Bone Jt. Surg. 2004, 86, 2668. [Google Scholar]
- Arciola, C.R.; Campoccia, D.; Gamberini, S.; Donati, M.E.; Pirini, V.; Visai, L.; Speziale, P.; Montanaro, L. Antibiotic resistance in exopolysaccharide-forming Staphylococcus epidermidis clinical isolates from orthopaedic implant infections. Biomaterials 2005, 26, 6530–6535. [Google Scholar] [CrossRef]
- Kittinger, C.; Lipp, M.; Baumert, R.; Folli, B.; Koraimann, G.; Toplitsch, D.; Liebmann, A.; Grisold, A.J.; Farnleitner, A.H.; Kirschner, A.; et al. Antibiotic resistance patterns of Pseudomonas spp. isolated from the river Danube. Front. Microbiol. 2016, 7, 586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liew, S.M.; Rajasekaram, G.; Puthucheary, S.A.; Chua, K.H. Antimicrobial susceptibility and virulence genes of clinical and environmental isolates of Pseudomonas aeruginosa. PeerJ 2019, 7, e6217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alibi, S.; Ferjani, A.; Boukadida, J.; Cano, M.E.; Fernández-Martínez, M.; Martínez-Martínez, L.; Navas, J. Occurrence of Corynebacterium striatum as an emerging antibiotic-resistant nosocomial pathogen in a Tunisian hospital. Sci. Rep. 2017, 7, 9704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krause, K.M.; Serio, A.W.; Kane, T.R.; Connolly, L.E. Aminoglycosides: An overview. Cold Spring Harb. Perspect. Med. 2016, 6, a027029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
School Localization | In the City Center, Near a Busy Street |
---|---|
Building, built in | 1900’s |
Ventilation system | natural |
Volume, m3 | 320 |
Number of children | 15–17 |
Age of students | 16–18 |
Floor covered with | PVC (polyvinyl chloride) |
Indoor temperature (°C) | 19.1 ± 4.6 |
Outdoor temperature (°C) | 16.2 ± 3.1 |
Indoor relative humidity (%) | 28.1 ± 5.4 |
Outdoor relative humidity (%) | 36.2 ± 7.1 |
Group of Antibiotics | Antibiotic | Symbol/Dose (µg) |
---|---|---|
Penicillins | Amoxycillin | AML (25) |
Ampicillin | AMP (25) | |
Cephalosporines | Ceftazidime | CAZ (30) |
Cephalothin | KF (30) | |
Cefuroxime | CXM (30) | |
Quinolones | Nalidic acid | NA (30) |
Aminoglycosides | Amikacin | AK (30) |
Doxycycline | DO (30) | |
Erythromycin | E (30) | |
Gentamicin | CN (30) | |
Kanamycin | K (30) | |
Neomycin | N (30) | |
Streptomycin | S (25) | |
Tobramycin | TOB (10) | |
Tetracyclines | Tetracycline | TE (30) |
Sulfonamides | Trimethoprim | W (5) |
Rifampicins | Rifampicin | RD (30) |
Other | Chloramphenicol | C (30) |
Nitrofurantoin | F (200) | |
Novobiocin | NV (30) |
Stage 1 | Stage 2 | Stage 3 | ||||||
OUT | BGC | OUT | BGC | OUT | BGC | |||
BGC | 0.579 | - | BGC | 0.001 | - | BGC | 0.018 | - |
DGC | 0.015 | 0.144 | DGC | 0.177 | 0.022 | DGC | 0.718 | 0.134 |
Stage 4 | Stage 5 | Stage 6 | ||||||
OUT | BGC | OUT | BGC | OUT | BGC | |||
BGC | 0.007 | - | BGC | 1 | - | BGC | 0.056 | - |
DGC | 0.001 | 0.001 | DGC | 4.3 × 10−8 | 6.9 × 10−8 | DGC | 2.1 × 10−7 | 1.2 × 10−6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brągoszewska, E.; Biedroń, I.; Mainka, A. Microbiological Air Quality in a Highschool Gym Located in an Urban Area of Southern Poland—Preliminary Research. Atmosphere 2020, 11, 797. https://doi.org/10.3390/atmos11080797
Brągoszewska E, Biedroń I, Mainka A. Microbiological Air Quality in a Highschool Gym Located in an Urban Area of Southern Poland—Preliminary Research. Atmosphere. 2020; 11(8):797. https://doi.org/10.3390/atmos11080797
Chicago/Turabian StyleBrągoszewska, Ewa, Izabela Biedroń, and Anna Mainka. 2020. "Microbiological Air Quality in a Highschool Gym Located in an Urban Area of Southern Poland—Preliminary Research" Atmosphere 11, no. 8: 797. https://doi.org/10.3390/atmos11080797
APA StyleBrągoszewska, E., Biedroń, I., & Mainka, A. (2020). Microbiological Air Quality in a Highschool Gym Located in an Urban Area of Southern Poland—Preliminary Research. Atmosphere, 11(8), 797. https://doi.org/10.3390/atmos11080797