A Quantitative Method to Measure and Speciate Amines in Ambient Aerosol Samples
Abstract
:1. Introduction
- In ambient air, the most common amines are sets of methylamines and ethylamines.
- The four principal emission sources are likely industrial combustion, biomass burning, animal husbandry, and the ocean. Many amines have been observed in the emissions from more than one of these sources.
- There are, consequently, specific regions where ambient amines could be important, especially environments that are downwind of and impacted by agricultural sources.
2. Experimental Methods
2.1. Ion Chromatography Method for Measuring Amines
2.2. Aerosol Samples
3. Results and Discussion
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yu, X.-Y.; Lee, T.; Ayres, B.; Kreidenweis, S.M.; Malm, W.; Collett, J.L., Jr. Loss of fine particle ammonium from denuded nylon filters. Atmos. Environ. 2006, 40, 4797–4807. [Google Scholar] [CrossRef]
- Lee, T.; Yu, X.-Y.; Kreidenweis, S.M.; Malm, W.C.; Collett, J.L., Jr. Semi-continuous measurements of PM2.5 ionic composition at several rural locations in the United States. Atmos. Environ. 2008, 42, 6655–6669. [Google Scholar] [CrossRef]
- Benedict, K.B.; Day, D.; Schwandner, F.M.; Kreidenweis, S.M.; Schichtel, B.; Malm, W.C.; Collett, J.L., Jr. Observations of atmospheric reactive nitrogen species in Rocky Mountain National Park and across northern Colorado. Atmos. Environ. 2013, 64, 66–76. [Google Scholar] [CrossRef]
- Ge, X.; Wexler, A.S.; Clegg, S.L. Atmospheric amines—Part I. A review. Atmos. Environ. 2011, 45, 524–546. [Google Scholar] [CrossRef]
- Gorzelska, K.; Galloway, J.N. Amine nitrogen in the atmospheric environment over the North Atlantic Ocean. Global Biogeochem. Cy. 1990, 4, 309–333. [Google Scholar] [CrossRef]
- Gorzelska, K.; Galloway, J.N.; Watterson, K.; Keene, W.C. Water-soluble primary amine compounds in rural continental precipitation. Atmos. Environ. 1992, 26, 1005–1018. [Google Scholar] [CrossRef]
- Herckes, P.; Leenheer, J.A.; Collett, J., Jr. Comprehensive characterization of atmospheric organic matter in Fresno, California fog water. Environ. Sci. Technol. 2007, 41, 393–399. [Google Scholar] [CrossRef]
- Murphy, S.M.; Sorooshian, A.; Kroll, J.H.; Ng, N.L.; Chhabra, J.; Tong, C.; Surratt, J.D.; Knipping, E.; Flagan, R.C.; Seinfeld, J.H. Secondary aerosol formation from atmospheric reactions of aliphatic amines. Atmos. Chem. Phys. 2007, 7, 2313–2337. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Price, D.; Praske, E.; Lee, S.A.; Shattuck, M.A.; Purvis-Roberts, K.; Silva, P.J.; Asa-Awuku, A.; Cocker, D.R., III. NO3 radical, OH radical and O3-initiated secondary aerosol formation from aliphatic amines. Atmos. Environ. 2013, 72, 105–112. [Google Scholar] [CrossRef]
- Tan, P.V.; Evans, G.J.; Tsai, J.; Owega, S.; Fila, M.S.; Malpica, O. On-line analysis of urban particulate matter focusing on elevated wintertime aerosol concentrations. Environ. Sci. Technol. 2002, 36, 3512–3518. [Google Scholar] [CrossRef]
- Mace, K.A.; Duce, R.A.; Tindale, N.W. Organic nitrogen in rain and aerosol at Cape Grim, Tasmania, Australia. J. Geophys. Res. 2003, 108, 4338. [Google Scholar] [CrossRef] [Green Version]
- Mace, K.A.; Kubilay, N.; Duce, R.A. Organic nitrogen in rain and aerosol in the eastern Mediterranean atmosphere: An association with atmospheric dust. J. Geophys. Res. 2003, 108, 4320. [Google Scholar] [CrossRef] [Green Version]
- Mace, K.A.; Artaxo, P.; Duce, R.A. Water-soluble organic nitrogen in Amazon basin aerosols during the dry (biomass burning) and wet seasons. J. Geophys. Res. 2003, 108, 4512. [Google Scholar] [CrossRef]
- Beddows, D.C.S.; Donovan, R.J.; Harrison, R.M.; Heal, M.R.; Kinnersley, R.P.; King, M.D.; Nicholson, D.H.; Thompson, K.C. Correlations in the chemical composition of rural background atmospheric aerosol in the UK determined in real time using time-of-flight mass spectrometry. J. Environ. Monit. 2004, 6, 124–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pratt, K.A.; Hatch, L.E.; Prather, K.A. Seasonal volatility dependence of ambient particle phase amines. Environ. Sci. Technol. 2009, 43, 5276–5281. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.N.; Dunn, M.J.; VanReken, T.M.; Iida, K.; Stolzenburg, M.R.; McMurry, P.H.; Huey, L.G. Chemical composition of atmospheric nanoparticles during nucleation events in Tecamac, Mexico: Evidence for an important role for organic species in nanoparticle growth. Geophys. Res. Lett. 2008, 35, L04808. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.N.; Barsanti, K.C.; Friedli, H.R.; Ehn, M.; Kulmala, M.; Collins, D.R.; Scheckman, J.H.; Williams, B.J.; McMurry, P.H. Observations of aminium salts in atmospheric nanoparticles and possible climatic implications. Proc. Natl. Acad. Sci. USA 2010, 107, 66434–66439. [Google Scholar] [CrossRef] [Green Version]
- Sorooshian, A.; Murphy, S.M.; Hersey, S.; Gates, H.; Padró, L.T.; Nenes, A.; Brechtel, F.J.; Jonsson, H.; Flagan, R.C.; Seinfeld, J.H. Comprehensive airborne characterization of aerosol from a major bovine source. Atmos. Chem. Phys. 2008, 8, 5489–5520. [Google Scholar] [CrossRef] [Green Version]
- Pratt, K.A.; Mayer, J.E.; Holecek, J.C.; Moffet, R.C.; Sanchez, R.O.; Rebotier, T.P.; Furutani, H.; Gonin, M.; Fuhrer, K.; Su, X.X.; et al. Development and characterization of an aircraft aerosol time-of-flight mass spectrometer. Anal. Chem. 2009, 81, 1792–1800. [Google Scholar] [CrossRef]
- Pratt, K.A.; Prather, K.A. Real-time, single-particle volatility, size, and chemical composition measurements of aged urban aerosols. Environ. Sci. Technol. 2009, 43, 8276–8282. [Google Scholar] [CrossRef]
- Akyüz, M. Simultaneous determination of aliphatic and aromatic amines in ambient air and airborne particulate matters by gas-chromatography-mass spectrometry. Atmos. Environ. 2008, 42, 3809–3819. [Google Scholar] [CrossRef]
- Huang, G.; Hou, J.; Zhou, X.L. A measurement method for atmospheric ammonia and primary amines based on aqueous sampling, OPA derivatization, and HPLC analysis. Environ. Sci. Technol. 2009, 43, 5851–5856. [Google Scholar] [CrossRef] [PubMed]
- Müller, C.; Iinuma, Y.; Karstensen, J.; Van Pinxteren, D.; Lehmann, S.; Gnauk, T.; Herrmann, H. Seasonal variation of aliphatic amines in marine submicrometer particles at the Cape Verde islands. Atmos. Chem. Phys. 2009, 9, 9587–9597. [Google Scholar] [CrossRef] [Green Version]
- VandenBoer, T.C.; Petroff, A.; Markovic, M.Z.; Murphy, J.C. Size distribution of alkyl amines in continental particulate matter and their online detection in the gas and particle phase. Atmos. Chem. Phys. 2011, 11, 4319–4332. [Google Scholar] [CrossRef] [Green Version]
- VandenBoer, T.C.; Markovic, M.Z.; Petroff, A.; Czar, M.F.; Borduas, N.; Murphy, J.G. Ion chromatographic separation and quantification of alkyl methylamines and ethylamines in atmospheric gas and particulate matter using preconcentration and suppressed conductivity detection. J. Chromatogr. A 2012, 1252, 74–83. [Google Scholar] [CrossRef]
- Huang, R.-J.; Li, W.-B.; Wang, Y.-R.; Wang, Q.Y.; Jia, W.T.; Ho, K.-F.; Cao, J.J.; Wang, G.H.; Chen, X.; EI Haddad, I.; et al. Determination of alkylamines in atmospheric aerosol particles: A comparison of gas-chromatography-mass spectrometry and ion chromatography approaches. Atmos. Meas. Tech. 2014, 7, 2027–2035. [Google Scholar] [CrossRef] [Green Version]
- Place, B.K.; Quilty, A.T.; Di Lorenzo, R.A.; Ziegler, S.E.; VandenBoer, T.C. Quantitation of 11 alkylamines in atmospheric samples: Separating structural isomers by ion chromatography. Atmos. Meas. Tech. 2017, 10, 1061–1078. [Google Scholar] [CrossRef] [Green Version]
- Walker, J.T.; Beachley, G.M.; Amos, H.M.; Baron, J.S.; Bash, J.; Baumgardner, R.; Bell, M.D.; Benedict, K.B.; Chen, X.; Clow, D.W.; et al. Science Needs for Continued Development of Total Nitrogen Deposition Budgets in the United States; U.S. Environmental Protection Agency: Washington, DC, USA, 2019. [Google Scholar]
- Benedict, K.B.; Chen, X.; Sullivan, A.P.; Li, Y.; Day, D.; Prenni, A.J.; Levin, E.J.T.; Kreidenweis, S.M.; Malm, W.C.; Schichtel, B.A.; et al. Atmospheric Concentrations and Deposition of Reactive Nitrogen in Grand Teton National Park. J. Geophys. Res. 2013, 118, 11875–11887. [Google Scholar] [CrossRef]
- Yu, X.-Y.; Lee, T.; Ayres, B.; Kreidenweis, S.M.; Collett Jr., J.L.; Malm, W. Particulate Nitrate Measurement Using Nylon Filters. J. Air Waste Manage. Assoc. 2005, 55, 1100–1110. [Google Scholar] [CrossRef]
- Gomez, S.L.; Carrico, C.M.; Allen, C.; Lam, J.; Dabli, S.; Sullivan, A.P.; Aiken, A.C.; Rahn, T.; Romonosky, D.; Chylek, P.; et al. Southwestern, U.S. Biomass Burning Smoke Hygroscopicity: The Role of Plant Phenology, Chemical Composition, and Combustion Properties. J. Geophys. Res. 2018, 123, 5416–5432. [Google Scholar] [CrossRef]
- Baumann, K.; Ift, F.; Zhao, J.Z.; Chameides, W.L. Discrete measurements of reactive gases and fine particle mass and composition during the 1999 Atlanta Supersite Experiment. J. Geophys. Res. 2003, 108, 8416. [Google Scholar] [CrossRef]
- Guo, H.; Sullivan, A.P.; Campuzano-Jost, P.; Schroder, J.C.; Lopez-Hilfiker, F.D.; Dibb, J.E.; Jimenez, J.L.; Thornton, J.A.; Brown, S.S.; Nenes, A.; et al. Fine particle pH and the partitioning of nitric acid during winter in the northeastern United States. J. Geophys. Res. 2016, 121, 10355–10376. [Google Scholar] [CrossRef]
- Sullivan, A.P.; Frank, N.; Onstad, G.; Simpson, C.D.; Collett, J.L., Jr. Application of High-Performance Anion-Exchange Chromatography—Pulsed Amperometric Detection for Measuring Carbohydrates in Routine Daily Filter Samples Collected by a National Network: 1. Determination of the Impact of Biomass Burning in the Upper Midwest. J. Geophys. Res. 2011, 116, D08302. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, A.P.; May, A.A.; Lee, T.; McMeeking, G.R.; Kreidenweis, S.M.; Akagi, S.K.; Yokelson, R.J.; Urbanski, S.P.; Collett, J.L., Jr. Airborne-Based Source Smoke Marker Ratios from Prescribed Burning. Atmos. Chem. Phys. 2014, 14, 10535–10545. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, A.P.; Guo, H.; Schroder, J.C.; Campuzano-Jost, P.; Jimenez, J.L.; Campos, T.; Shah, V.; Jaeglé, L.; Lee, B.H.; Lopez-Hilfiker, F.D.; et al. Biomass Burning Markers and Residential Burning in the WINTER Aircraft Campaign. J. Geophys. Res. 2019, 124, 1846–1861. [Google Scholar] [CrossRef]
- Simoneit, B.R.T.; Schauer, J.J.; Nolte, C.G.; Oros, D.R.; Elias, V.O.; Fraser, M.P.; Rogge, W.F.; Cass, G.R. Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmos. Environ. 1999, 33, 173–182. [Google Scholar] [CrossRef]
- Jen, C.N.; McMurry, P.H.; Hanson, D.R. Stabilization of sulfuric acid dimers by ammonia, methylamine, dimethylamine, and trimethylamine. J. Geophys. Res. 2014, 119, 7502–7514. [Google Scholar] [CrossRef]
- Jen, C.N.; Bachman, R.; Zhao, J.; McMurry, P.H.; Hanson, D.R. Diamine-sulfuric acid reactions are a potent source of new particle formation. Geophys. Res. Lett. 2016, 43, 867–873. [Google Scholar] [CrossRef] [Green Version]
Amine | Retention Time (min) |
---|---|
Ethanolamine | 47.2 |
Methylamine | 50.2 |
Diethanolamine | 54.0 |
Ethylamine | 58.2 |
Dimethylamine | 63.0 |
Allylamine | 67.6 |
Propylamine | 74.3 |
Tert-butylamine | 74.6 |
Trimethylamine | 75.8 |
Diethylamine | 76.2 |
Sec-Butylamine | 77.8 |
Iso-Butylamine | 79.0 |
Butylamine | 81.0 |
Triethylamine | 84.4 |
Dipropylamine | 85.9 |
Amylamine | 89.1 |
1,4-Diaminobutane | 112.3 |
1,5-Diaminopentane | 118.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sullivan, A.P.; Benedict, K.B.; Carrico, C.M.; Dubey, M.K.; Schichtel, B.A.; Collett, J.L. A Quantitative Method to Measure and Speciate Amines in Ambient Aerosol Samples. Atmosphere 2020, 11, 808. https://doi.org/10.3390/atmos11080808
Sullivan AP, Benedict KB, Carrico CM, Dubey MK, Schichtel BA, Collett JL. A Quantitative Method to Measure and Speciate Amines in Ambient Aerosol Samples. Atmosphere. 2020; 11(8):808. https://doi.org/10.3390/atmos11080808
Chicago/Turabian StyleSullivan, Amy P., Katherine B. Benedict, Christian M. Carrico, Manvendra K. Dubey, Bret A. Schichtel, and Jeffrey L. Collett. 2020. "A Quantitative Method to Measure and Speciate Amines in Ambient Aerosol Samples" Atmosphere 11, no. 8: 808. https://doi.org/10.3390/atmos11080808
APA StyleSullivan, A. P., Benedict, K. B., Carrico, C. M., Dubey, M. K., Schichtel, B. A., & Collett, J. L. (2020). A Quantitative Method to Measure and Speciate Amines in Ambient Aerosol Samples. Atmosphere, 11(8), 808. https://doi.org/10.3390/atmos11080808