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Abstract: An F1 tornado hit the village of Lekárovce in eastern Slovakia on the afternoon of
3 October 2018. The tornado, which occurred outside the main convective season in Slovakia, was not
anticipated by the meteorologists of the Slovak Hydrometeorological Institute. The models available
to the forecasters simulated an environment of marginal convective available potential energy (CAPE)
and weakening vertical wind shear. This paper addresses forecasting challenges associated with
events related to a tornado threat. To investigate conditions before tornado formation, observational
datasets, including sounding, and vertical-azimuth display (VAD) data from a radar station and
surface stations were used. Hodographs based on observational data and a higher-resolution run
of the limited-area model showed stronger lower tropospheric shear than was formerly anticipated
over the area of interest. The higher-resolution model was able to better represent the modification
of the lower tropospheric flow by a mountain chain, which was crucial to maintaining the strong
lower tropospheric shear in the early afternoon hours before the tornado’s occurrence. We discuss the
importance of using both observational datasets and higher-resolution modeling in the simulation of
lower tropospheric wind profiles, which affect the lower tropospheric storm relative helicity as one of
the key ingredients in mesocyclonic tornadogenesis.

Keywords: tornado forecasting; supercell; vertical wind shear; storm relative helicity; streamwise
vorticity; high-resolution NWP modeling

1. Introduction

Tornado forecasting has its roots in 1948, when Fawbush and Miller issued the first tornado
forecast for Tinker Airbase in Oklahoma, United States. Since then, the science of tornado forecasting
has advanced considerably, as documented by Brooks et al. (2019) [1]. Currently, tornadoes are
forecast using the knowledge of the conditions, or so-called ingredients, required for their formation.
Ingredient-based methodology is also used for forecasting of deep moist convection in general.
Sufficient lower tropospheric moisture, conditionally unstable stratification, and a lift mechanism are
required to form a convective storm [2,3].

In order to develop rotation in a storm (supercell), the presence of strong vertical wind shear in the
deep layer of the troposphere is needed. The importance of vertical wind shear for mesocyclogenesis
has been understood for decades, and it has been demonstrated both using environmental observations
made in proximity to supercells [4,5] and through idealized numerical simulations [6]. A measure of
the degree of streamwise vorticity in the inflow to the thunderstorm, storm relative helicity [7], is also
used as a supercell predictor [8].

However, the majority of supercells never produce any tornadoes [9]. Scientists have used
field experiments to gather more information on the differences between tornadic and nontornadic
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supercells [10]. Together with idealized numerical simulations [11], these field experiments showed
that tornadogenesis requires the presence of strong vertical wind shear near the ground, and downdraft
air that is not too negatively buoyant. Stronger shear near the ground is associated with enhanced
dynamic vorticity stretching, but also with stronger inflow that maintains a small horizontal distance
between the parent mesocyclone and the vorticity maximum on the ground [12]. A downdraft that is
too negatively buoyant cannot be vertically stretched, and may displace low-level circulation away
from the mesocyclone [13]. For these reasons, measurements of storm relative helicity or bulk shear in
the lowest 1 km, combined with the height of lifted condensation level, have been used to forecast
significant tornadoes [5,14,15]. In Europe, bulk shear in the lowest 3 km was found to be a better
discriminator between environments supporting no and significant tornadoes [16,17].

Further studies revealed that the degree of streamwise vorticity in the hundreds of meters above the
ground that discriminates best between tornadic and nontornadic supercells [18,19]. Using numerical
simulations of storms initiated with the composite sounding of tornadic and nontornadic supercells
collected during the VORTEX 2 field project, Coffer et al. (2017) [20] and Coffer and Parker (2018) [21]
showed that the degree of streamwise vorticity in the lowest few hundred meters determines whether
a low-level mesocyclone can provide enough dynamical stretching of vertical vorticity to achieve
tornadogenesis. Updating the composite parameters used to forecast tornadoes using this knowledge
has led to improvements in the discrimination of nontornadic and tornadic environments [22].

Increasing the horizontal resolution of local-area models has allowed some of the characteristics
of convective storms, such as updraft helicity [23] or vertically integrated graupel content within the
updraft, to be explicitly simulated [24]. Increasing resolution has also led to increased performance of
convective-wind-gust forecasts [25], and convection-allowing models (CAMs) have produced some
very successful forecasts of severe-wind-gust-producing bow echoes, as demonstrated by Weisman
et al. (2013) [26]. Updraft helicity was found to be a good discriminator of nonsevere and severe
storms [27] and a good predictor of tornado-track length [28,29]. However, Clark et al. (2012) [28]
also noted that the performance depended on the background environment, and that updraft-helicity
tracks were better indicators of tornado activity in environments that were clearly favorable to
tornadogenesis. Indeed, combining the explicit simulation of convective-cell characteristics with the
background environment yielded the best tornado-forecasting performance [30–32]. While many of
the aforementioned studies looked at mostly high convective available potential energy (CAPE) and
strongly sheared environments, Lawson (2019) [33] noted that explicit simulations of storm intensity
exhibit large uncertainty in environments with low CAPE but strong vertical wind shear. This type
of environment, as in the present case, is notorious for both lower tornado prediction and warning
performance across the U.S. [34,35].

While considerable research and effort have been focused on tornado forecasting and damage
documentation in the U.S., tornado forecasting and post-storm field surveys are typically not a part
of a meteorologist’s job in Slovakia. To date, the climatology of tornadoes over Slovakia has not
yet been reported. Only five cases were recorded in the past 10 years (2010–2020), according to
the European Severe Weather Database [36]. Supercells, which are responsible for most strong and
violent tornadoes [37], occasionally occur in Slovakia with an average of 3–4 supercell days detected
in 2000–2012 [38]. Recently, the construction of new, higher-quality radars has led to higher rates of
supercell detection. For example, in 2017, 25 days with supercells with over 80 individual supercells
were recorded [38], but no tornadoes were reported. Thus, the percentage of supercells that succeed at
tornadogenesis is likely much lower than that in the U.S.

This paper describes the case of a tornado on 3 October 2018, which hit the village of Lekárovce in
eastern Slovakia. The event was observed by numerous eyewitnesses and became the first mesocyclonic
tornado in Slovakia that was photographically documented. The tornado was rated F1 on the basis
of the damage survey done by a local storm spotter [39]. It was not anticipated by the forecasters of
Slovak Hydrometeorological Institute. It occurred outside the standard convective season in Slovakia,
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which runs from May to September, and the numerical models used by forecasters did not simulate the
presence of strong shear in the lowest 1 km of the troposphere.

This paper had three goals:

1. Reconstruct the environment of the parent storm using observational data and compare it to
the Aire Limitée Adaptation Dynamique Développement InterNational (ALADIN) model made
available to forecasters several hours before the event.

2. Use a higher-resolution run of the ALADIN system to simulate the preconvective environment.
3. Find out whether observational data or the high-resolution run of the model would help forecasters

to recognize favorable conditions for tornadogenesis using the most recent knowledge on the topic.

2. Methodology

To investigate synoptic-scale weather conditions, we used the European Center for Medium-Range
Weather Forecast (ECMWF) operational global hydrostatic numerical weather prediction (NWP)
model with a horizontal grid spacing of 0.1◦. For smaller scales, we used local-area NWP models:
operational model ALADIN of the Slovenský Hydrometeorologický Ústav (SHMU) (OPM) and
experimental local-area model ALADIN/ELAM (ELAM). OPM is a hydrostatic model with convection
parametrization, and ELAM is a nonhydrostatic high-resolution model computed as dynamic
downscaling from OPM on smaller domains. The 3MT scheme [40] was used for the parameterization
of deep convection in the cases of both OPM and ELAM. This scheme proved to work well with partially
resolved deep convection in 1–2.5 km grid spacing [41]. We did not experiment with changes in any
parameterization schemes when switching between OPM and ELAM. ELAM has higher horizontal and
vertical resolution, which results in better topographical descriptions. Both models were utilized with
high-performance computers (HPC) at the Slovak Hydrometeorological Institute [42]. The technical
settings of the NWP models are summarized in the Table 1, and their domains are shown in Figure 1a.
More detailed descriptions can be found in Termonia et al. (2018) [43]. Forecasters did not have the
ELAM output available.
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Table 1. Description of numerical weather prediction (NWP) operational model Aire Limitée Adaptation
Dynamique Développement InterNational (ALADIN) of the Slovenský Hydrometeorologický Ústav
(SHMU) (OPM) and ALADIN Experimental Local-Area Model (ELAM).

Description ALADIN/SHMU (OPM) ALADIN/ELAM (ELAM)

Horizontal resolution 4.5 km 1 km
Number of grid points 625 × 576 1000 × 720

Spectral resolution 312 × 278 (linear truncation) 499 × 359 (linear truncation)
Number of vertical levels 63 73

Dynamics Hydrostatic Nonhydrostatic

Physics ALARO-1vB ALARO-1vB
Microphysics Lopez [44] Lopez [44]

Deep convection 3MT [40] 3MT [40]

Time step 180 s 60 s

Coupling model ARPEGE ALADIN/SHMU

Coupling frequency 3 h 1 h

Assimilation Upper-air spectral blending with
CANARI surface assimilation Dynamical downscaling

Run 3 October 2018, 06:00 Coordinated
Universal Time (UTC) 3 October 2018, 06:00 UTC

Forecast range 72 h 12 h

In order to reconstruct the hodograph for the time of tornadogenesis, we used observational
data from synoptic stations, the radar station from Kojšovská hol’a mountain [45], and the sounding
station from Gánovce (Figure 1b). Local solar time in eastern Slovakia is approximately +1 h compared
to Coordinated Universal Time (UTC).

3. Results

3.1. Prestorm Environment According to Numerical Models Available to Forecasters

Environmental conditions are discussed on the basis of NWP model data available to the morning
shift at the local hydrometeorological service, namely, the 00 UTC run of ECMWF and the 06 UTC run
of the local-area NWP OPM.

Slovakia was on the southeastern edge of a low-pressure system (Figure 2) that moved from the
Baltic Sea towards Belarus. In the prevailing northwesterly flow, polar maritime airmass was advected
over central Europe. The airmass was characterized by a lapse rate of 6 to 7 ◦C·km−1 and surface dew
point of 7–10 ◦C (Figure 3a). This allowed for marginal CAPE values of up to 500 J·kg−1 (Figure 3b)
and a chance for deep moist convection to develop, as the lift was provided by a convergence zone
in a surface-pressure trough. The best overlap of conditionally unstable lapse rates and sufficient
lower tropospheric moisture, along with the highest CAPE values, was simulated in the afternoon
hours over eastern Slovakia. Vertical wind shear decreased over the morning and into the afternoon
hours, and 500 hPa surface-layer bulk values (deep-layer shear, DLS) dropped from 40 to 20 m·s−1,
which would still be sufficient for well-organized convection, including supercells [5].

Forecast soundings over eastern Slovakia at 10:00 and 12:00 UTC on Figure 4 showed that the
steepest lapse rates were in the lowest 3 km, strengthening at noon with an equilibrium level of 5.5 km,
suggesting low-topped convection. While DLS remained strong throughout the day, storm relative
helicity in the 0–1 km layer decreased from 60–100 m2s−2 in the morning to 10–50 m2s−2 in this
timeframe. The decrease was due to the veering of surface-wind change from the southern to the
western direction (Figure 5). This would suggest that the environment had become less conducive to
tornadogenesis [46]. Meteorologists considered the overall severe convective storm threat to be low,
given the marginal values of CAPE and only weak vertical wind shear in the lower troposphere.
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Figure 3. (a) NWP OPM forecast on 3 October 2018 06:00 UTC of 12:00 UTC. (a) Average lapse rate
in 900–600 hPa layer (black isolines) (◦C·km−1) and dew-point temperature at 2 m (color scale) (◦C);
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in italics; tornado location highlighted by blue star.
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Figure 5. NWP OPM forecast of surface winds on 3 October 2018 06:00 UTC (m·s−1) over eastern
Slovakia at (a) 08:00 and (b) 12:00 UTC. Real topography shown as background; polygons: locations of
larger towns in Slovakia. Country names shown in italics; tornado location highlighted by blue star;
tephigram location from Figure 4 highlighted by blue rhombus.

3.2. Observational Data

Different observational datasets that could be used to infer the degree of vertical wind shear were
available to the forecasters before the time of the tornado. These included radar data, surface-wind
observations, and radiosonde data from the Gánovce station.

Before the tornado, a parent storm evolved from a small cluster of showers that formed shortly
after 12 UTC. The storm attained supercell characteristics at 13:40 UTC, marked by the presence of a
mesocyclone, deviant movement to the right, and the presence of both a bounded weak echo region
(BWER) and a hook echo (Figure 6). Supercell characteristics persisted till 15:00 UTC. The tornado
occurred at 14:30 UTC in the Lekárovce village on the Slovak–Ukrainian border and lasted for around
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10 min [38]. As the storm strengthened after 13:00 UTC, the present paper focuses on the available
observations from around this period.

Surface observations available from the early afternoon hours showed a discrepancy between
model simulation and reality. While the model predicted a westerly wind over southeastern Slovakia
and western Ukraine at 12:00 UTC (Figure 5b), surface observations revealed the presence of an easterly
flow, reaching up to 5 m·s−1 ahead of a shallow trough (Figures 7 and 8). Furthermore, a southerly
wind, instead of a westerly wind as simulated by the models, was observed over the northern part
of eastern Slovakia. On the basis of this information, a forecaster could have expected stronger
vertical wind shear than what was forecast, given the easterly flow veering to strong westerlies in the
mid-to-upper troposphere.

In order to obtain information about the wind above the surface and to recreate a hodograph of
the vertical wind profile before the tornado, we also investigated sounding observations from Ganovce
at 12:00 UTC (Figure 9), and the vertical-azimuth display (VAD) from the radar station located at
Kojšovská hol’a (not shown).Atmosphere 2020, 11, x FOR PEER REVIEW 7 of 16 
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Figure 6. Radar supercell features near Michalovce on 3 October 2018 13:50 UTC, observed from
the radar station Kojšovská hol’a, (a) CAPPI 2 km (dBZ). (b) Radial velocity at 1.5◦ elevation (m·s−1);
blue arrow points towards the radar location, black arrows indicate mesocyclone. (c,d) Vertical
cross-sections (dBZ), purple arrow points to bounded weak echo region (BWER). Cross-section locations
indicated by AB and CD segments.

Radiosounding, like the model forecast (Figure 4), measured a strong westerly flow, increasing to
50 m·s−1 at 400 hPa. While the wind at the mid-to-upper troposphere may be representative
of the environment in which the tornado occurred, about 120 km southeast of the sounding site,
its representativeness in the lower altitudes is questionable. First, sounding was launched in the rear side of
the trough, with surface flow already having veered to being westerly forecast (Figure 4). Second, the site
is located at a higher altitude (706 m) than the tornado location (108 m). Therefore, a wind profile from
the lower levels from sounding was not useful for the investigation of the vertical wind profile in the
tornado location.
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and western Ukraine at 12:00 UTC (Figure 5b), surface observations revealed the presence of an 
easterly flow, reaching up to 5 m.s–1 ahead of a shallow trough (Figures 7 and 8). Furthermore, a 
southerly wind, instead of a westerly wind as simulated by the models, was observed over the 
northern part of eastern Slovakia. On the basis of this information, a forecaster could have expected 
stronger vertical wind shear than what was forecast, given the easterly flow veering to strong 
westerlies in the mid-to-upper troposphere. 

 
Figure 7. (a) Surface weather-station observations on 3 October 2018 12:00 UTC based on synoptic 
reports and analysis of mean sea-level pressure (hPa). Surface-station plots: T, air temperature (°C); 
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1 hPa); cloudiness represented by circles, and wind by wind barbs. Triangles, automatic weather 

Figure 7. (a) Surface weather-station observations on 3 October 2018 12:00 UTC based on synoptic
reports and analysis of mean sea-level pressure (hPa). Surface-station plots: T, air temperature (◦C); Td,
dew-point temperature (◦C); MSLP, mean sea-level pressure (hPa); PT, 3-h pressure tendency (10−1

hPa); cloudiness represented by circles, and wind by wind barbs. Triangles, automatic weather stations;
yellow rhombus, highlighted sounding location from Figure 9. (b) NWP OPM analysis of geopotential
heights on 3 October 2018 12:00 UTC at 1000 (red), 950 (yellow), and 900 hPa (white) (gpm). Country
names shown in italics; tornado location highlighted by blue star.
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VAD measurements were available from the Kojšovská hol’a radar site, starting at an altitude
of 1.2 km a.s.l. and about 85 km west–northwest of the tornado location, thus being closer than the
sounding measurement. The only complete measurement for the altitude of 1.2 to 4 km was available
at 12:50 UTC, with a marked increase in westerly wind, though the increase was not as significant
as in the case of the Ganovce sounding station. Data above 4 km were not available from VAD.
To decide whether to use sounding or VAD to represent the vertical wind profile between 1.2 and
4 km, we compared the right-moving storm-motion vector calculation using both datasets with the
real observed storm motion (Figure 10). To consider the low-topped nature of the storm on the basis
of the forecast (Figure 4) and observed height (Figure 6c,d and Figure 9) of the equilibrium level,
which was close to 5.5 km, we used a 0–4 km mean wind and 0–4 km shear vector when applying
the Bunkers et al. (2000) method [47]. Using VAD instead of the sounding data in the aforementioned
layer yielded a more precise calculation of a storm-motion vector (Figure 10). VAD measurements
were also closer to the tornado location than the sounding. Thus, we considered the VAD to be more
representative of the wind profile over the tornado location than sounding. Sounding data were used
to infer the vertical wind profile for the altitude above 4 km, where VAD data were not available.

Using either sounding or VAD still left us without any knowledge regarding the wind profile
in the crucial layer of the bottom 1 km. To fill this gap, we used the measurements from the stations
of Michalovce, Vysoká and Uhom, and Zlatá Baňa and Kojšovská hol’a (their locations are shown
in Figure 1b), which represented altitudes from 100 to 1200 m. These observations were used to
represent the wind field at various heights as if these wind observations were taken over the tornado
location. In order to reconstruct the conditions that would be the most conducive to tornadogenesis,
we took into consideration the maximal observed wind speeds within 1 h of the change in wind
direction associated with the passage of the surface trough. Thus, a 13:27 measurement was taken
from Michalovce, 14:14 from Vysoká and Uhom, and 11:22 UTC from Zlatá Baňa. The VAD profile
from Kojšovská hol’a was considered only for the time at which a complete wind profile was available
to 4 km, which was at 12:50 UTC. While this may be the most accurate way to infer the wind profile on
the basis of the limited availability of observational datasets, it is still likely an imperfect representation
of the true wind profile near the tornado location. One of the primary limitations is the effect of friction
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on wind in the surface stations that were used to represent the wind vector that would be hundreds of
meters above ground at the tornado location.
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Figure 10. Hodographs representing the Michalovce area before tornadogenesis based on observations
from weather stations, Gánovce sounding, and vertical-azimuth display (VAD) Kojšovská hol’a (red)
simulation of 3 October 2018, 06:00 UTC NWP OPM run (black), and 3 October 2018, 06:00 UTC ELAM
run (blue). Crossed circles: storm-motion vectors (SMVs); orange: real SMV derived from track of
weak-echo region in radar data. Other SMVs computed by Bunkers method on basis of wind data in
0–4 km layer and for wind profiles from respective datasets. Values of observed simulated low-level
wind shear (LLS) and storm relative helicity (SRH) in 0–1 and 0–3 km layers shown in top-right corner.

Because of the distances between individual weather stations to the tornado site, and the fact
that they represent the wind field under the influence of friction, a reconstructed wind profile offers
only a rough estimation of reality. Nevertheless, comparing the forecast hodograph using OPM to
the reconstructed hodograph clearly showed that the model underestimated the lower tropospheric
wind shear (Figure 10). The forecast wind profile would result in about 6 m·s−1 of bulk shear and
40 m2s−2 of storm relative helicity (SRH) in the 0–1 km layer, compared to 12 m·s−1 and 175 m2s−2 in the
reconstructed profile. Shear in the 0–3 km layer was also substantially stronger in the reconstructed wind
profile, with SRH reaching 285 m2s−2, in contrast to 110 m2s−2 based on the forecast profile. Such values
have been associated with tornadoes both in the U.S. [5,46,48] and Europe [16,17,49]. “Kink” in the
lowest 500 m of the reconstructed hodograph also suggested almost purely streamwise vorticity in the
inflow to the storm in that layer, a condition that was deemed favorable for tornadogenesis by Coffer
et al. (2017) [20]. Using an observational dataset in lieu of model simulation in this case would allow
forecasters to recognize a higher-than-expected tornado threat.

3.3. High-Resolution Experimental Local-Area Model (ELAM)

A nonhydrostatic, 1 km grid-spaced run of an ELAM-simulated environment was considerably
more conducive to tornadogenesis than the OPM 4.5 km run. The spatial distribution of SRH 0–1 km
(Figure 11) showed local maxima in the vicinity of the town of Michalovce with values up to 230 m2s−2,
compared to 10–40 m2s−2 from the OPM run and 175 m2s−2 from the reconstructed hodograph
(Figure 10). The 0–1 km bulk shear was also much stronger in the ELAM run (16 m·s−1 compared to
6 m·s−1 in the OPM run). However, the simulated SRH maximum was not precisely collocated with
the town of Lekárovce, where the ELAM simulated around 80 m2s−2 compared to 50 m2s−2 in OPM.
Differences in the SRH and 0–1 bulk shear between OPM and ELAM runs were due to the treatment of
the lower tropospheric wind field. OPM simulated a straight hodograph with a westerly wind at the
surface, veering to a northwesterly direction with height. ELAM simulated a curved hodograph with
east–southeasterly flow at the surface, veering through southerly directions to a west–southwesterly
flow in the bottom 1 km.
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Figure 11. Forecast on 3 October 2018 06:00 UTC of 12:00 UTC storm relative helicity in 0–1 km layer
(m2s−2) over eastern Slovakia based on (a) NWP OPM and (b) ELAM. Country names shown in italics;
tornado location highlighted by blue star.

The reconstructed hodograph resembled the one simulated by ELAM in the bottom 500 m, but did
not show southerly wind directions between 500 m and 1.2 km (Figure 10). Instead, the wind immediately
turned to the west–southwest. This may have been because there was a large gap in observational
data between 585 m and 1.2 km. It is likely that if such data had been available, the reconstructed
hodograph would have involved more curvature and a higher SRH. Furthermore, weather-station data
were representative of wind 10 m above the ground, strongly affected by surface friction. In reality,
altitudes of 585 m and 1.2 km would be hundreds of meters above ground at the tornado location,
which was at an altitude of 108 m a.s.l.

Differences in the wind field in the lower troposphere between OPM and ELAM forecasts can
be attributed to differences in the simulation of the surface trough, and its shape and movement
(Figure 12). ELAM simulated the slower movement of the surface trough, as it was located more to
the west at both 11:00 and 14:00 UTC than in the OPM simulation. At 14:00 UTC, Lekárovce was
located north of the small-scale low in the ELAM run, yielding a southeasterly flow, but west of the
small-scale low in the OPM run, yielding a westerly flow at the surface. Besides the difference in the
trough movement speed, its shape was also distinctive. Smaller-scale troughs and ridges were better
identifiable in the ELAM run. These features were also identifiable near the tornado location, with a
trough over the lowland and a ridge over the Vihorlat mountain chain. OPM had already forecast a
change in the surface-wind direction between 11:00 and 12:00 UTC, while ELAM predicted the change
to happen between 13:00 and 14:00 UTC (Figure 13).

ELAM’s predicted change of wind shift between 13:00 and 14:00 UTC was better than that of OPM,
but also not completely accurate. Surface observations showed an easterly flow persisting till 15:00 UTC
over the tornado area and covering a larger area (Figure 8) than that simulated by the model. Directly
over Lekárovce, ELAM simulated a southwesterly surface flow, in contrast to the easterly flow in the
surface observations. Thus, it is likely that the SRH bullseye, simulated only to the immediate south
of Vihorlat, expanded further to the southeast, covering Lekárovce as well. Nevertheless, the ELAM
prediction better represented an environment supportive of tornadoes compared to that of OPM. In the
case of operational usage, forecasters could be more aware of the significant lower tropospheric shear
over the Slovakia/Ukraine border.
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4. Discussion and Conclusions

On 10 October 2018, a tornado hit Lekárovce village in eastern Slovakia, causing F1 damage to
numerous structures. While tornadoes are rare in Slovakia, they do occur, as demonstrated by this
and some previous cases [36,50–53]. Therefore, operational forecasters need to be able to identify
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environments conducive to tornadogenesis using both NWP models and observational datasets.
This paper concentrated on discussing the possibility of identifying such an environment for the
Lekárovce case using the NWP models and observational datasets available to forecasters at the time
of the tornado, as well as using a higher-resolution run of the NWP model.

The operational NWP ALADIN/SHMU model forecast a collocation of favorable ingredients for
deep-moist convection in the afternoon hours over eastern Slovakia at the time, when the degree of lower
tropospheric shear was supposed to markedly decrease since the morning hours. However, the reconstructed
hodograph from the available observational data showed stronger lower tropospheric shear, approaching
magnitudes commonly found with tornadoes in the literature. Thus, it is crucial for the forecasters to
utilize these observational datasets in conjunction with NWP models in order to identify tornado threats
associated with storms forming over eastern Slovakia.

Experimental NWP ALADIN/ELAM yielded even stronger vertical wind shear than from the
reconstructed hodograph in the lower troposphere over the area of interest. The main difference with
respect to the OPM was the slower eastward progression of the surface trough through eastern Slovakia.
Lekárovce remained on the forward flank of the trough, with southerly–easterly lower tropospheric flow
until the early afternoon hours, when the storms formed and utilized the highly sheared environment.
Furthermore, ELAM was able to better resolve smaller-scale troughs and ridges. The easterly direction
of the surface wind can be explained by a ridge to the north and a trough to the south of the Vihorlat
mountain chain that were not present in the OPM run. The easterly wind’s changing to southerly
and then northwesterly with height yielded a long and curved hodograph with large amounts of
streamwise vorticity in the ELAM run, in contrast to the shorter and straight hodograph with pure
crosswise vorticity in the OPM run. This could have been caused by orography differences between the
4.5 km OPM and 1 km ELAM (Figure 14). Using both the higher-resolution model and the observational
data would have provided forecasters with enough clues regarding the environment that was prone
to tornadoes on the given day. The importance of using observational datasets and high-resolution
runs of NWP models for addressing flow modifications and subsequent shear enhancement by local
topography was realized in other works, such as Bosart et al. (2006), Peyraud (2013), Tang et al. (2016),
Lyza and Knupp (2018), and Lyza at al. (2020) [54–58]. Pilguj et al. (2019) [59] reported overall
improvement in the model forecast of tornadic supercells over Poland with both increasing horizontal
resolution and the assimilation of surface observations and sounding data.

Atmosphere 2020, 11, x FOR PEER REVIEW 13 of 16 

 

wind’s changing to southerly and then northwesterly with height yielded a long and curved 
hodograph with large amounts of streamwise vorticity in the ELAM run, in contrast to the shorter 
and straight hodograph with pure crosswise vorticity in the OPM run. This could have been caused 
by orography differences between the 4.5 km OPM and 1 km ELAM (Figure 14). Using both the 
higher-resolution model and the observational data would have provided forecasters with enough 
clues regarding the environment that was prone to tornadoes on the given day. The importance of 
using observational datasets and high-resolution runs of NWP models for addressing flow 
modifications and subsequent shear enhancement by local topography was realized in other works, 
such as Bosart et al. (2006), Peyraud (2013), Tang et al. (2016), Lyza and Knupp (2018), and Lyza at al. 
(2020) [54–58]. Pilguj et al. (2019) [59] reported overall improvement in the model forecast of tornadic 
supercells over Poland with both increasing horizontal resolution and the assimilation of surface 
observations and sounding data. 

Analysis of more cases of severe convection in the area is necessary to draw general conclusions 
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situations where environments conducive to severe weather are confined to a rather small area and 
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where environments conducive to severe weather are confined to a rather small area and possibly
influenced by topography.

In addition to the operational model discussed in the publication, a convection-allowing model
was operationally implemented in the Slovak Hydrometeorological Institute with the same settings
as were used for the ELAM (Table 1), but with grid spacing of 2 km. With the purchase of a new
supercomputer, it is planned that the model resolution and the size of its forecast domain will be
further increased.
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