501 Years of Spring Precipitation History for the Semi-Arid Northern Iran Derived from Tree-Ring δ18O Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Preparation
2.3. Development of the Stable Oxygen Isotope Chronology
2.4. Climate Reconstruction and Statistical Analysis
3. Results and Discussion
3.1. Characteristics of the Tree-Ring δ18O Chronology
3.2. Climate—δ18O Response
3.3. Precipitation Reconstruction
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Dry Periods | No. of Years | Wet Periods | No. of Years |
---|---|---|---|
1515 | 1 | 1575 | 1 |
1517–1518 | 2 | 1596 | 1 |
1521–1524 | 4 | 1604 | 1 |
1527–28 | 2 | 1607–1609 | 3 |
1530–1534 | 5 | 1612 | 1 |
1538 | 1 | 1624 | 1 |
1546 | 1 | 1661–1662 | 2 |
1551–1555 | 5 | 1664–1665 | 2 |
1557 | 1 | 1671 | 1 |
1559 | 1 | 1675 | 1 |
1563 | 1 | 1682 | 1 |
1569 | 1 | 1686 | 1 |
1571–1574 | 4 | 1694 | 1 |
1583 | 1 | 1706 | 1 |
1616 | 1 | 1713–1714 | 2 |
1618 | 1 | 1722–1724 | 3 |
1642 | 1 | 1727–1728 | 2 |
1657 | 1 | 1730 | 1 |
1666 | 1 | 1736–1737 | 2 |
1669 | 1 | 1739 | 1 |
1701 | 1 | 1743 | 1 |
1707–1708 | 2 | 1747 | 1 |
1716 | 1 | 1751–1754 | 4 |
1759 | 1 | 1756 | 1 |
1844 | 1 | 1761–1762 | 2 |
1848 | 1 | 1764 | 1 |
1860 | 1 | 1769–1771 | 3 |
1864–1865 | 2 | 1776–1778 | 3 |
1867 | 1 | 1789 | 1 |
1870–1871 | 2 | 1791 | 1 |
1880 | 1 | 1799–1801 | 3 |
1882 | 1 | 1803–1804 | 2 |
1892–1893 | 2 | 1808 | 1 |
1901–1902 | 2 | 1811 | 1 |
1917–1918 | 2 | 1816 | 1 |
1921–1922 | 2 | 1818 | 1 |
1942 | 1 | 1825 | 1 |
1947 | 1 | 1831–1832 | 2 |
1954 | 1 | 1834 | 1 |
1956–1958 | 3 | 1852 | 1 |
1962 | 1 | 1855 | 1 |
1964 | 1 | 1857 | 1 |
1978 | 1 | 1868 | 1 |
1987 | 1 | 1874–1876 | 3 |
1990 | 1 | 1886 | 1 |
2000–2001 | 2 | 1899 | 1 |
2003 | 1 | 1905–1906 | 2 |
2015 | 1 | 1926 | 1 |
1933–1934 | 2 | ||
1950 | 1 | ||
1973 | 1 | ||
1992–1993 | 2 | ||
1996–1998 | 3 | ||
2005 | 1 | ||
2009 | 1 | ||
2012–2013 | 2 |
Extreme Dry Events | Extreme Wet Events |
---|---|
1515 | 1609 |
1517 | 1694 |
1523 | 1723 |
1528 | 1751 |
1534 | 1752 |
1538 | 1753 |
1554 | 1868 |
1892 | 1950 |
1917 | 2013 |
1921 | |
1958 | |
2001 |
References
- Barlow, M.; Zaitchik, B.; Paz, S.; Black, E.; Evans, J.; Hoell, A. A review of drought in the Middle East and southwest Asia. J. Clim. 2016, 29, 8547–8574. [Google Scholar] [CrossRef]
- Veldkamp, T.I.E.; Wada, Y.; Aerts, J.C.J.H.; Ward, P.J. Towards a global water scarcity risk assessment framework: Incorporation of probability distributions and hydro-climatic variability. Environ. Res. Lett. 2016, 11. [Google Scholar] [CrossRef] [Green Version]
- Modarres, R.; Sarhadi, A. Statistically-based regionalization of rainfall climates of Iran. Glob. Planet. Chang. 2011, 75, 67–75. [Google Scholar] [CrossRef]
- Madani, K. Water management in Iran: What is causing the looming crisis? J. Environ. Stud. Sci. 2014, 4, 315–328. [Google Scholar] [CrossRef]
- Arsalani, M.; Pourtahmasi, K.; Azizi, G.; Bräuning, A.; Mohammadi, H. Tree-ring based December–February precipitation reconstruction in the southern Zagros Mountains, Iran. Dendrochronologia 2018, 49, 45–56. [Google Scholar] [CrossRef]
- Tabari, H.; Willems, P. More prolonged droughts by the end of the century in the Middle East. Environ. Res. Lett. 2018, 13, 104005. [Google Scholar] [CrossRef] [Green Version]
- Evans, J.P. 21st century climate change in the Middle East. Clim. Chang. 2009, 92, 417–432. [Google Scholar] [CrossRef]
- UNFCCC. Climate Change: Impacts, Vulnerabilities and Adaptation in Developing Countries; United Nations Framework Convention on Climate Change; UNFCCC Secretariat: Bonn, Germany, 2007. [Google Scholar]
- IPCC. Summary for Policymakers. In Global Warming of 1.5 °C; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty; 2018; in press. [Google Scholar]
- Rahimi, J.; Malekian, A.; Khalili, A. Climate change impacts in Iran: Assessing our current knowledge. Theor. Appl. Climatol. 2019, 135, 545–564. [Google Scholar] [CrossRef]
- Shifteh Some’e, B.; Ezani, A.; Tabari, H. Spatiotemporal trends and change point of precipitation in Iran. Atmos. Res. 2012, 113, 1–12. [Google Scholar] [CrossRef]
- Soltani, S.; Saboohi, R.; Yaghmaei, L. Rainfall and rainy days trend in Iran. Clim. Chang. 2012, 110, 187–213. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Faramarzi, M.; Ghasemi, S.S.; Yang, H. Assessing the impact of climate change on water resources in Iran. Water Resour. Res. 2009, 45, 413. [Google Scholar] [CrossRef] [Green Version]
- Tabari, H.; Aghajanloo, M.-B. Temporal pattern of aridity index in Iran with considering precipitation and evapotranspiration trends. Int. J. Climatol. 2013, 33, 396–409. [Google Scholar] [CrossRef]
- Fritts, H. Tree Rings and Climate; Elsevier Science: Oxford, UK, 1976; ISBN 9780122684500. [Google Scholar]
- Hughes, M.K. Dendrochronology in climatology—The state of the art. Dendrochronologia 2002, 20, 95–116. [Google Scholar] [CrossRef]
- Helle, G.; Schleser, G.H. Interpreting Climate Proxies from Tree-rings. In The Climate in Historical Times: Towards a Synthesis of Holocene Proxy Data and Climate Models; Fischer, H., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 129–148. ISBN 978-3-642-05826-4. [Google Scholar]
- Young, G.H.F.; Demmler, J.C.; Gunnarson, B.E.; Kirchhefer, A.J.; Loader, N.J.; McCarroll, D. Age trends in tree ring growth and isotopic archives: A case study of Pinus sylvestris L. from northwestern Norway. Glob. Biogeochem. Cycles 2011, 25. [Google Scholar] [CrossRef]
- Loader, N.J.; Young, G.H.F.; McCarroll, D.; Wilson, R.J.S. Quantifying uncertainty in isotope dendroclimatology. Holocene 2013, 23, 1221–1226. [Google Scholar] [CrossRef]
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Roden, J.S.; Lin, G.; Ehleringer, J.R. A mechanistic model for interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose. Geochim. Cosmochim. Acta 2000, 64, 21–35. [Google Scholar] [CrossRef]
- Barbour, M.M. Stable oxygen isotope composition of plant tissue: A review. Funct. Plant Biol. 2007, 34, 83. [Google Scholar] [CrossRef]
- Gessler, A.; Ferrio, J.P.; Hommel, R.; Treydte, K.; Werner, R.A.; Monson, R.K. Stable isotopes in tree rings: Towards a mechanistic understanding of isotope fractionation and mixing processes from the leaves to the wood. Tree Physiol. 2014, 34, 796–818. [Google Scholar] [CrossRef] [Green Version]
- Grießinger, J.; Bräuning, A.; Helle, G.; Hochreuther, P.; Schleser, G. Late Holocene relative humidity history on the southeastern Tibetan plateau inferred from a tree-ring δ18O record: Recent decrease and conditions during the last 1500 years. Quat. Int. 2017, 430, 52–59. [Google Scholar] [CrossRef]
- Huang, R.; Zhu, H.; Liang, E.; Asad, F.; Grießinger, J. A tree-ring–based summer (June–July) minimum temperature reconstruction for the western Kunlun Mountains since AD 1681. Theor. Appl. Climatol. 2019, 48, 3381. [Google Scholar] [CrossRef]
- Opała-Owczarek, M. Warm-season temperature reconstruction from high-elevation juniper tree rings over the past millennium in the Pamir region. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 532, 109248. [Google Scholar] [CrossRef]
- Pourtahmasi, K.; Parsapajouh, D.; Bräuning, A.; Esper, J.; Schweingruber, F.H. Climatic analysis of pointer years in tree-ring chronologies from Northern Iran and neighboring high mountain areas. Geokodynamik 2007, 28, 27–42. [Google Scholar]
- Pourtahmasi, K.; Bräuning, A.; Poursartip, L.; Burchardt, I. Growth-climate responses of oak and juniper trees in different exposures of the Alborz Mountains, northern Iran. Trace 2012, 10, 49–53. [Google Scholar]
- Foroozan, Z.; Pourtahmasi, K.; Bräuning, A. Stable oxygen isotopes in juniper and oak tree rings from northern Iran as indicators for site-specific and season-specific moisture variations. Dendrochronologia 2015, 36, 33–39. [Google Scholar] [CrossRef]
- Foroozan, Z.; Pourtahmasi, K.; Bräuning, A. Climatic signals in stable carbon isotope ratios of Juniper and Oak tree rings from northern Iran. Glob. Planet. Chang. 2018, 165, 90–99. [Google Scholar] [CrossRef]
- Gholami, V.; Ahmadi Jolandan, M.; Torkaman, J. Evaluation of climate change in northern Iran during the last four centuries by using dendroclimatology. Nat. Hazards 2017, 85, 1835–1850. [Google Scholar] [CrossRef]
- Khaleghi, M.R. Application of dendroclimatology in evaluation of climatic changes. J. For. Sci. 2018, 64, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Arsalani, M.; Bräuning, A.; Pourtahmasi, K.; Azizi, G.; Mohammadi, H. Multiple tree-ring parameters of Quercus brantii Lindel in SW Iran show a strong potential for intra-annual climate reconstruction. Trees 2018, 32, 1531–1546. [Google Scholar] [CrossRef]
- Azizi, G.; Arsalani, M.; Bräuning, A.; Moghimi, E. Precipitation variations in the central Zagros Mountains (Iran) since A.D. 1840 based on oak tree rings. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 386, 96–103. [Google Scholar] [CrossRef]
- Arsalani, M.; Azizi, G.; Bräuning, A. Dendroclimatic reconstruction of May-June maximum temperatures in the central Zagros Mountains, western Iran. Int. J. Climatol. 2015, 35, 408–416. [Google Scholar] [CrossRef]
- Bayramzadeh, V.; Zhu, H.; Lu, X.; Attarod, P.; Zhang, H.; Li, X.; Asad, F.; Liang, E. Temperature variability in northern Iran during the past 700 years. Sci. Bull. 2018, 63, 462–464. [Google Scholar] [CrossRef] [Green Version]
- Fallah, A.; Balapour, S.A.; Yekekhani, M.; Jalilvand, H. Dendrochronological studies of Juniperus polycarpos in alborz mountains: (Case study: Shahkuh of shahrood). Iran. J. Wood Paper Sci. Res. 2014, 29, 94–105. [Google Scholar]
- Sagheb-Talebi, K.; Sajedi, T.; Pourhashemi, M. Forests of Iran. A Treasure from the Past, a Hope for the Future; Springer: Dordrecht, The Netherlands, 2014; ISBN 9400773714. [Google Scholar]
- Fatemi, S.S.; Rahimi, M.; Tarkesh, M.; Ravanbakhsh, H. Predicting the impacts of climate change on the distribution of Juniperus excelsa M. Bieb. In the central and eastern Alborz Mountains, Iran. iForest 2018, 11, 643–650. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Liu, Y.; Nakatsuka, T.; Zhang, Q.-B.; Ohnishi, K.; Sakai, A.; Kobayashi, O.; Pan, Y.; Song, H.; Liu, R.; et al. Oxygen stable isotopes of a network of shrubs and trees as high-resolution plaeoclimatic proxies in Northwestern China. Agric. For. Meteorol. 2020, 285–286, 107929. [Google Scholar] [CrossRef]
- Leonelli, G.; Battipaglia, G.; Cherubini, P.; Saurer, M.; Siegwolf, R.T.W.; Maugeri, M.; Stenni, B.; Fusco, S.; Maggi, V.; Pelfini, M. Larix decidua δ18O tree-ring cellulose mainly reflects the isotopic signature of winter snow in a high-altitude glacial valley of the European Alps. Sci. Total Environ. 2017, 579, 230–237. [Google Scholar] [CrossRef]
- Lorrey, A.M.; Brookman, T.H.; Evans, M.N.; Fauchereau, N.C.; Macinnis-Ng, C.; Barbour, M.M.; Criscitiello, A.; Eischeid, G.; Fowler, A.M.; Horton, T.W.; et al. Stable oxygen isotope signatures of early season wood in New Zealand kauri (Agathis australis) tree rings: Prospects for palaeoclimate reconstruction. Dendrochronologia 2016, 40, 50–63. [Google Scholar] [CrossRef]
- Olson, E.J.; Dodd, J.P.; Rivera, M.A. Prosopis sp. tree-ring oxygen and carbon isotope record of regional-scale hydroclimate variability during the last 9500 years in the Atacama Desert. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2020, 538. [Google Scholar] [CrossRef]
- Grießinger, J.; Langhamer, L.; Schneider, C.; Saß, B.-L.; Steger, D.; Skvarca, P.; Braun, M.H.; Meier, W.J.-H.; Srur, A.M.; Hochreuther, P. Imprints of Climate Signals in a 204 Year δ18O Tree-Ring Record of Nothofagus pumilio From Perito Moreno Glacier, Southern Patagonia (50°S). Front. Earth Sci. 2018, 6, 564. [Google Scholar] [CrossRef]
- Cai, Q.; Liu, Y.; Duan, B.; Li, Q.; Sun, C.; Wang, L. Tree-ring δ18O, a tool to crack the paleo-hydroclimatic code in subtropical China. Quat. Int. 2018, 487, 3–11. [Google Scholar] [CrossRef]
- Wernicke, J.; Grießinger, J.; Hochreuther, P.; Bräuning, A. Variability of summer humidity during the past 800 years on the eastern Tibetan Plateau inferred from δ18O of tree-ring cellulose. Clim. Past 2015, 11, 327–337. [Google Scholar] [CrossRef] [Green Version]
- Wernicke, J.; Hochreuther, P.; Grießinger, J.; Zhu, H.; Wang, L.; Bräuning, A. Multi-century humidity reconstructions from the southeastern Tibetan Plateau inferred from tree-ring δ18O. Glob. Planet. Chang. 2017, 149, 26–35. [Google Scholar] [CrossRef]
- Wang, H.; Shao, X.; Li, M. A 2917-year tree-ring-based reconstruction of precipitation for the Buerhanbuda Mts., Southeastern Qaidam Basin, China. Dendrochronologia 2019, 55, 80–92. [Google Scholar] [CrossRef]
- Pourtahmasi, K.; Poursartip, L.; Bräuning, A.; Parsapajouh, D. Comparison between the radial growth of Juniper (Juniperus polycarpos) and Oak (Quercus macranthera) in two sides of the Alborz Mountains in the Chaharbagh region of Gorgan. Iran J. For. Wood Prod. 2009, 62, 159–169. [Google Scholar]
- Noroozi, J.; Körner, C. A bioclimatic characterization of high elevation habitats in the Alborz mountains of Iran. Alp. Bot. 2018, 128, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Moameni, A. Production Capacity of Land Resources of Iran; Soil and Water Research Institute: Tehran, Iran, 2000. [Google Scholar]
- Mesgaran, M.; Madani, K.; Hashemi, H.; Azadi, P. Evaluation of Land and Precipitation for Agriculture in Iran; Working Paper 2, Stanford Iran 2040 Project; Stanford University: Stanford, CA, USA, 2016; Available online: http://purl.stanford.edu/vf990qz0340 (accessed on 24 June 2020).
- Ravanbakhsh, H.; HamzeH’Ee, B.; Etemad, V.; Marvie Mohadjer, M.R.; Assadi, M. Phytosociology of Juniperus excelsa M.Bieb. Forests in Alborz mountain range in the north of Iran. Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 2015, 150, 987–1000. [Google Scholar] [CrossRef]
- Nezhad, M.M.; Shataee, S.; Habashi, H.; Babanezhad, M. Spatial and statistical analysis of quantitative characteristics of Juniperus stands in Chahar-bagh of Gorgan regarding to topographic and soil features. Iran. J. For. 2013, 5, 195–206. [Google Scholar]
- Stokes, M.A.; Smiley, T.L. An Introduction to Tree-Ring Dating; University of Chicago Press: Chicago, IL, USA; London, UK, 1968. [Google Scholar]
- Rinn, F. TSAP-WIN. Time Series Analysis and Presentation Dendrochonology and Related Applications; Rinntech: Heidelberg, Germany, 2013. [Google Scholar]
- McCarroll, D.; Loader, N.J. Stable isotopes in tree rings. Quat. Sci. Rev. 2004, 23, 771–801. [Google Scholar] [CrossRef]
- Leavitt, S.W. Tree-ring C-H-O isotope variability and sampling. Sci. Total Environ. 2010, 408, 5244–5253. [Google Scholar] [CrossRef]
- Foroozan, Z.; Grießinger, J.; Pourtahmasi, K.; Bräuning, A. Evaluation of Different Pooling Methods to Establish a Multi-Century δ18O Chronology for Paleoclimate Reconstruction. Geosciences 2019, 9, 270. [Google Scholar] [CrossRef] [Green Version]
- Wigley, T.M.L.; Briffa, K.R.; Jones, P.D. On the Average Value of Correlated Time Series, with Applications in Dendroclimatology and Hydrometeorology. J. Clim. Appl. Meteorol. 1984, 23, 201–213. [Google Scholar] [CrossRef]
- Wieloch, T.; Helle, G.; Heinrich, I.; Voigt, M.; Schyma, P. A novel device for batch-wise isolation of α-cellulose from small-amount wholewood samples. Dendrochronologia 2011, 29, 115–117. [Google Scholar] [CrossRef] [Green Version]
- University of East Anglia Climatic Research Unit; Harris, I.C.; Jones, P.D. CRU TS4.03: Climatic Research Unit (CRU) Time-Series (TS) Version 4.03 of High-Resolution Gridded Data of Month-by-Month Variation in Climate (January 1901–December 2018); CEDA: Didcot, UK, 2019. [Google Scholar]
- Michaelsen, J. Cross-Validation in Statistical Climate Forecast Models. J. Clim. Appl. Meteorol. 1987, 26, 1589–1600. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2019; Available online: http://www.R-project.org/ (accessed on 24 June 2020).
- Liu, Y.; Ta, W.; Li, Q.; Song, H.; Sun, C.; Cai, Q.; Liu, H.; Wang, L.; Hu, S.; Sun, J.; et al. Tree-ring stable carbon isotope-based April–June relative humidity reconstruction since ad 1648 in Mt. Tianmu, China. Clim. Dyn. 2018, 50, 1733–1745. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A Practical Guide to Wavelet Analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Bunn, A.G. A dendrochronology program library in R (dplR). Dendrochronologia 2008, 26, 115–124. [Google Scholar] [CrossRef]
- Melville, C. Meteorological Hazards and Disasters in Iran: A Preliminary Survey to 1950. Iran 1984, 22, 113–150. [Google Scholar] [CrossRef]
- Okazaki, S. The great Persian famine of 1870–71. Bull. Sch. Orient. Afr. Stud. 1986, 49, 183–192. [Google Scholar] [CrossRef]
- Melville, C. The persian famine of 1870-1872: Prices and politics. Disasters 1988, 12, 309–325. [Google Scholar] [CrossRef]
- Majd, M.G. The Great Famine & Genocide in Iran. 1917-1919/Mohammad Gholi Majd, 2nd ed.; University Press of America: Lanham, MD, USA, 2013; ISBN 9780761861683. [Google Scholar]
- Majd, M.G. A Victorian Holocaust. Iran in the Great Famine of 1869-1873/Mohammad Gholi Majd; Hamilton Books: Lanham, MD, USA, 2017; ISBN 9780761870159. [Google Scholar]
- Marshall, J.D.; Monserud, R.A. Co-occurring species differ in tree-ring δ18O trends. Tree Physiol. 2006, 26, 1055–1066. [Google Scholar] [CrossRef]
- Loader, N.J.; McCarroll, D.; Gagen, M.; Robertson, I.; Jalkanen, R. Extracting Climatic Information from Stable Isotopes in Tree Rings. In Stable Isotopes as Indicators of Ecological Change; Dawson, T.E., Siegwolf, R.T.W., Eds.; Academic: Oxford, UK, 2007; pp. 25–48. ISBN 9780123736277. [Google Scholar]
- Saurer, M.; Cherubini, P.; Reynolds-Henne, C.E.; Treydte, K.S.; Anderson, W.T.; Siegwolf, R.T.W. An investigation of the common signal in tree ring stable isotope chronologies at temperate sites. J. Geophys. Res. 2008, 113, 31625. [Google Scholar] [CrossRef]
- Liu, X.; Zeng, X.; Leavitt, S.W.; Wang, W.; An, W.; Xu, G.; Sun, W.; Wang, Y.; Qin, D.; Ren, J. A 400-year tree-ring δ18O chronology for the southeastern Tibetan Plateau: Implications for inferring variations of the regional hydroclimate. Glob. Planet. Chang. 2013, 104, 23–33. [Google Scholar] [CrossRef]
- Qin, C.; Yang, B.; Bräuning, A.; Grießinger, J.; Wernicke, J. Drought signals in tree-ring stable oxygen isotope series of Qilian juniper from the arid northeastern Tibetan Plateau. Glob. Planet. Chang. 2015, 125, 48–59. [Google Scholar] [CrossRef]
- Xu, G.; Wu, G.; Liu, X.; Chen, T.; Wang, B.; Hudson, A.; Trouet, V. Age-related climate response of tree-ring δ 13 C and δ18O from spruce in northwestern China, with implications for relative humidity reconstructions. J. Geophys. Res. Biogeosci. 2020. [Google Scholar] [CrossRef]
- Ehleringer, J.R.; Dawson, T.E. Water uptake by plants: Perspectives from stable isotope composition. Plant Cell Environ. 1992, 15, 1073–1082. [Google Scholar] [CrossRef]
- Ferrio, J.P.; Voltas, J. Carbon and oxygen isotope ratios in wood constituents of Pinus halepensis as indicators of precipitation, temperature and vapour pressure deficit. Tellus B 2005, 57, 164–173. [Google Scholar] [CrossRef]
- Rozanski, K.; Araguás-Araguás, L.; Gonfiantini, R. Isotopic Patterns in Modern Global Precipitation. In Climate Change in Continental Isotopic Records; Swart, P.K., Lohmann, K.C., Mckenzie, J., Savin, S., Eds.; American Geophysical Union: Washington, DC, USA, 1993; pp. 1–36. ISBN 9781118664025. [Google Scholar]
- Baldini, L.M.; McDermott, F.; Foley, A.M.; Baldini, J.U.L. Spatial variability in the European winter precipitation δ18O-NAO relationship: Implications for reconstructing NAO-mode climate variability in the Holocene. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Field, R.D. Observed and modeled controls on precipitation δ18O over Europe: From local temperature to the Northern Annular Mode. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Wingate, L.; Seibt, U.; Maseyk, K.; Ogée, J.; Almeida, P.; Yakir, D.A.N.; Pereira, J.S.; Mencuccini, M. Evaporation and carbonic anhydrase activity recorded in oxygen isotope signatures of net CO2 fluxes from a Mediterranean soil. Glob. Chang. Biol. 2008, 14, 2178–2193. [Google Scholar] [CrossRef] [Green Version]
- Sarris, D.; Siegwolf, R.; Körner, C. Inter- and intra-annual stable carbon and oxygen isotope signals in response to drought in Mediterranean pines. Agric. For. Meteorol. 2013, 168, 59–68. [Google Scholar] [CrossRef]
- Saurer, M.; Kirdyanov, A.V.; Prokushkin, A.S.; Rinne, K.T.; Siegwolf, R.T.W. The impact of an inverse climate-isotope relationship in soil water on the oxygen-isotope composition of Larix gmelinii in Siberia. New Phytol. 2016, 209, 955–964. [Google Scholar] [CrossRef]
- Szymczak, S.; Barth, J.; Bendix, J.; Huneau, F.; Garel, E.; Häusser, M.; Juhlke, T.; Knerr, I.; Santoni, S.; Trachte, K.; et al. Tracking the oxygen isotope composition from source to sink in pine trees along an elevation gradient in a Mediterranean ecosystem. Chem. Geol. 2020, 549, 119695. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Lloyd, J. Carbon and Oxygen Isotope Effects in the Exchange of Carbon Dioxide between Terrestrial Plants and the Atmosphere. In Stables Isotopes and Plant Carbon: Water Relations; Ehleringer, J.R., Hall, A.E., Farquhar, G.D., Eds.; Academic Press: San Diego, CA, USA; Toronto, ON, Canada, 1993; pp. 47–70. ISBN 9780122333804. [Google Scholar]
- Farquhar, G.D.; Cernusak, L.A.; Barnes, B. Heavy water fractionation during transpiration. Plant Physiol. 2007, 143, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Dongmann, G.; Nürnberg, H.W.; Förstel, H.; Wagener, K. On the enrichment of H2 18-O in the leaves of transpiring plants. Radiat. Environ. Biophys. 1974, 11, 41–52. [Google Scholar] [CrossRef]
- Cernusak, L.A.; Barbour, M.M.; Arndt, S.K.; Cheesman, A.W.; English, N.B.; Feild, T.S.; Helliker, B.R.; Holloway-Phillips, M.M.; Holtum, J.A.M.; Kahmen, A.; et al. Stable isotopes in leaf water of terrestrial plants. Plant Cell Environ. 2016, 39, 1087–1102. [Google Scholar] [CrossRef]
- Sheshshayee, M.S.; Bindumadhava, H.; Ramesh, R.; Prasad, T.G.; Lakshminarayana, M.R.; Udayakumar, M. Oxygen isotope enrichment (delta18O) as a measure of time-averaged transpiration rate. J. Exp. Bot. 2005, 56, 3033–3039. [Google Scholar] [CrossRef]
- Barbour, M.M.; Roden, J.S.; Farquhar, G.D.; Ehleringer, J.R. Expressing leaf water and cellulose oxygen isotope ratios as enrichment above source water reveals evidence of a Péclet effect. Oecologia 2004, 138, 426–435. [Google Scholar] [CrossRef]
- Roden, J.; Kahmen, A.; Buchmann, N.; Siegwolf, R. The enigma of effective path length for (18) O enrichment in leaf water of conifers. Plant Cell Environ. 2015, 38, 2551–2565. [Google Scholar] [CrossRef]
- Song, X.; Simonin, K.A.; Loucos, K.E.; Barbour, M.M. Modelling non-steady-state isotope enrichment of leaf water in a gas-exchange cuvette environment. Plant Cell Environ. 2015, 38, 2618–2628. [Google Scholar] [CrossRef]
- Song, X.; Clark, K.S.; Helliker, B.R. Interpreting species-specific variation in tree-ring oxygen isotope ratios among three temperate forest trees. Plant Cell Environ. 2014, 37, 2169–2182. [Google Scholar] [CrossRef]
- Sternberg, L.; Pinzon, M.C.; Anderson, W.T.; Jahren, A.H. Variation in oxygen isotope fractionation during cellulose synthesis: Intramolecular and biosynthetic effects. Plant Cell Environ. 2006, 29, 1881–1889. [Google Scholar] [CrossRef] [PubMed]
- DeNiro, M.J.; Epstein, S. Isotopic composition of cellulose from aquatic organisms. Geochim. Cosmochim. Acta 1981, 45, 1885–1894. [Google Scholar] [CrossRef]
- Sternberg, L.d.S.; Deniro, M.J.; Savidge, R.A. Oxygen Isotope Exchange between Metabolites and Water during Biochemical Reactions Leading to Cellulose Synthesis. Plant Physiol. 1986, 82, 423–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sternberg, L.S.L. Oxygen and Hydrogen Isotope Ratios in Plant Cellulose: Mechanisms and Applications. In Stable Isotopes in Ecological Research; Rundel, P.W., Ehleringer, J.R., Nagy, K.A., Eds.; Springer: New York, NY, USA, 1989; pp. 124–141. ISBN 978-1-4612-3498-2. [Google Scholar]
- Offermann, C.; Ferrio, J.P.; Holst, J.; Grote, R.; Siegwolf, R.; Kayler, Z.; Gessler, A. The long way down--are carbon and oxygen isotope signals in the tree ring uncoupled from canopy physiological processes? Tree Physiol. 2011, 31, 1088–1102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, E.R.; Kairiukstis, L.A. Methods of Dendrochronology; Springer: Dordrecht, The Netherlands, 1990; ISBN 978-90-481-4060-2. [Google Scholar]
- Cook, E.R.; Briffa, K.R.; Jones, P.D. Spatial regression methods in dendroclimatology: A review and comparison of two techniques. Int. J. Climatol. 1994, 14, 379–402. [Google Scholar] [CrossRef]
- NDWMC. Yearbook-2019 of the National Center for Drought and Crisis Management; NDWMC: Tehran, Iran, 2019. [Google Scholar]
- Brugsch, H. Reise der K. Preussischen Gesandtschaft Nach Persien, 1860 und 1861, Geschildert; J.C. Hinrichs: Leipzig, Germany, 1862. [Google Scholar]
- Kazemi, R. The Black Winter of 1860–61. Comp. Stud. South Asia Afr. Middle East 2017, 37, 24–48. [Google Scholar] [CrossRef] [Green Version]
- Touchan, R.; Meko, D.; Hughes, M.K. A 396-year reconstruction of precipitation in southern Jordan. J. Am. Water Resour. Assoc. 1999, 35, 49–59. [Google Scholar] [CrossRef]
- Majd, M.G. Iran under Allied Occupation in World War II. The Bridge to Victory & a Land of Famine/Mohammad Gholi Majd; University Press of America: Lanham, MD, USA, 2016; ISBN 9780761867395. [Google Scholar]
- Agrawala, S.; Barlow, M.; Cullen, H.; Lyon, B. The drought and humanitarian crisis in central and southwest Asia: A climate perspective. IRI Rep. 2001, 1–11. [Google Scholar] [CrossRef]
Statistical Parameters | 1515–2015 |
---|---|
Mean (‰) | 30.94 |
Minimum (‰) | 28.51 |
Maximum (‰) | 33.64 |
Range (‰) | 5.13 |
Std. deviation | 0.91 |
Variance | 0.82 |
Standard error of mean (‰) | 0.04 |
AC1 | 0.41 |
Skewness | 0.08 |
Kurtosis | −0.02 |
py AMJ + AMJ | MAM | JFMAMJ | py AM + AM | |
---|---|---|---|---|
r | −0.72 | −0.64 | −0.63 | −0.71 |
R2 | 0.52 | 0.41 | 0.40 | 0.50 |
Period | R2 | R2adj | F | RE | ST | DW | PMT |
---|---|---|---|---|---|---|---|
1983–2015 | 0.52 | 0.50 | 33.90 | 0.45 | 21+/12− | 1.14 | 4.19 |
Dry/Wet Year Classification | Century (No. of Years Observed) | |||||
---|---|---|---|---|---|---|
16th | 17th | 18th | 19th | 20th | 21st (2000–2015) | |
Dry | 30 | 6 | 5 | 12 | 17 | 4 |
Wet | 2 | 15 | 31 | 21 | 12 | 4 |
Extremely dry | 7 | - | - | 1 | 3 | 1 |
Extremely wet | - | 2 | 4 | 1 | 1 | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foroozan, Z.; Grießinger, J.; Pourtahmasi, K.; Bräuning, A. 501 Years of Spring Precipitation History for the Semi-Arid Northern Iran Derived from Tree-Ring δ18O Data. Atmosphere 2020, 11, 889. https://doi.org/10.3390/atmos11090889
Foroozan Z, Grießinger J, Pourtahmasi K, Bräuning A. 501 Years of Spring Precipitation History for the Semi-Arid Northern Iran Derived from Tree-Ring δ18O Data. Atmosphere. 2020; 11(9):889. https://doi.org/10.3390/atmos11090889
Chicago/Turabian StyleForoozan, Zeynab, Jussi Grießinger, Kambiz Pourtahmasi, and Achim Bräuning. 2020. "501 Years of Spring Precipitation History for the Semi-Arid Northern Iran Derived from Tree-Ring δ18O Data" Atmosphere 11, no. 9: 889. https://doi.org/10.3390/atmos11090889
APA StyleForoozan, Z., Grießinger, J., Pourtahmasi, K., & Bräuning, A. (2020). 501 Years of Spring Precipitation History for the Semi-Arid Northern Iran Derived from Tree-Ring δ18O Data. Atmosphere, 11(9), 889. https://doi.org/10.3390/atmos11090889