Detection of Extreme Phenomena in the Stable Boundary Layer over the Amazonian Forest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Methods
2.2.1. Morlet Wavelet Transform
2.2.2. Turbulence Regimes
2.2.3. Recurrence Plots for the Analysis of Turbulent Time Series
2.2.4. Early-Warning Signals
- One state variable must be selected. To verify which variable best suits as indicator, several tests were performed with the available variables (horizontal and vertical wind velocity, atmospheric pressure, mixing ratio and , among others).
- The autocorrelation at first lag (ACF1) was determined. According to [47] (p. 331), the autocorrelation function, , is defined by:
- The variance of signal was calculated. Mathematically, the unbiased estimator of variance can be given by:
- All data were submitted to the quality tests proposed by [49] to verify spurious data in the available time series.
- Nights with strong variations and sudden changes in turbulent signals of air temperature (>2 K), wind speed (>4.6 m s−1) and increases in -mixing ratio (>10 ppbv) were identified.
- Selection of nights where there was a transition between the strong to very strong turbulence regimes ().
- Selection of an appropriate state variable: a procedure consisting of tests to verify which of the available variables present the best results when submitted to the EWS tests (variables showing positive values for Kendall tau). For our study, three variables were used: wind speed, equivalent potential temperature and -mixing ratio.
- Definition of the breaking point: the place where the EP starts, using recurrence diagrams (changes in texture patterns are expected to identify this imminent transition), and phase diagrams using Morlet wavelet coefficients (emergence of a phase singularity along the scales from 8192 s to 256 s).
3. Results and Discussion
3.1. Strong Variations in the Turbulent Time Series and Early-Warning Signals
3.2. Wavelet and Recurrence Plot Analyses
3.3. Turbulence Regimes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fitzjarrald, D.R.; Moore, K.E. Mechanisms of nocturnal exchange between the rain forest and the atmosphere. J. Geophys. Res. Atmos. 1990, 95, 16839–16850. [Google Scholar] [CrossRef]
- Nogueira, D.S.; Sá, L.D.A.; Cohen, J.C.P. Rajadas noturnas e trocas de CO2 acima da floresta de Caxiuanã, PA, durante a estação seca. Rev. Bras. Meteorol. 2006, 21, 213–223. [Google Scholar]
- Dias-Júnior, C.Q.; Dias, N.L.; Fuentes, J.D.; Chamecki, M. Convective storms and non-classical low-level jets during high ozone level episodes in the Amazon region: An ARM/GOAMAZON case study. Atmos. Environ. 2017, 155, 199–209. [Google Scholar] [CrossRef] [Green Version]
- Melo, A.M.Q.; Dias-Júnior, C.Q.; Cohen, J.C.P.; Sá, L.D.A.; Cattanio, J.H.; Kuhn, P.A.F. Ozone transport and thermodynamics during the passage of squall line in Central Amazon. Atmos. Environ. 2019, 206, 132–143. [Google Scholar] [CrossRef]
- Oliveira, M.I.; Acevedo, O.C.; Sörgel, M.; Nascimento, E.L.; Manzi, A.O.; Oliveira, P.E.S.; Brondani, D.V.; Tsokankunku, A.; Andreae, M.O. Planetary boundary layer evolution over the Amazon rainforest in episodes of deep moist convection at the Amazon Tall Tower Observatory. Atmos. Chem. Phys. 2020, 20, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Sornette, D. Predictability of catastrophic events: Material rupture, earthquakes, turbulence, financial crashes, and human birth. Proc. Natl. Acad. Sci. USA 2002, 99, 2522–2529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.M.; Stevens, B.; Arakawa, A. What controls the transition from shallow to deep convection? J. Atmos. Sci. 2009, 66, 1793–1806. [Google Scholar] [CrossRef] [Green Version]
- Ghil, M.; Yiou, P.; Hallegatte, S.; Malamud, B.D.; Naveau, P.; Soloviev, A.; Friederichs, P.; Keilis-Borok, V.; Kondrashov, D.; Kossobokov, V.; et al. Extreme events: Dynamics, statistics and prediction. Nonlinear Proc. Geoph. 2011, 18, 295–350. [Google Scholar] [CrossRef]
- Siebert, J.; Thompson, J.M.T. Nonlinear softening as a predictive precursor to climate tipping. Philos. Trans. R. Soc. Lond. A 2012, 370, 1205–1227. [Google Scholar] [CrossRef]
- Ashwin, P.; Wieczorek, S.; Vitolo, R.; Cox, P. Tipping points in open systems: Bifurcation, noise-induced and rate-dependent examples in the climate system. Philos. Trans. R. Soc. Lond. A 2012, 370, 1166–1184. [Google Scholar] [CrossRef] [Green Version]
- Birkhoff, G.; Rota, G.C. Ordinary Differential Equations; Wiley: Hoboken, NJ, USA, 1978; p. 342. [Google Scholar]
- Thompson, J.M.T.; Stewart, H.B. Nonlinear Dynamics and Chaos: Geometric Methods for Engineers and Scientists; JWS: San Diego, CA, USA, 1986; Volume 1, p. 460f. [Google Scholar]
- Goldstein, J. Emergence as a construct: History and issues. Emergence 1999, 1, 49–72. [Google Scholar] [CrossRef]
- Lenton, T.M.; Held, H.; Kriegler, E.; Hall, J.W.; Lucht, W.; Rahmstorf, S.; Schellnhuber, H.J. Tipping elements in the Earth’s climate system. Proc. Natl. Acad. Sci. USA 2008, 105, 1786–1793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenton, T.M. Early warning of climate tipping points. Nat. Clim. Chang. 2011, 1, 201–209. [Google Scholar] [CrossRef]
- Muller, C.J.; Romps, D.M. Acceleration of tropical cyclogenesis by self-aggregation feedbacks. Proc. Natl. Acad. Sci. USA 2018, 115, 2930–2935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weng, H.; Lau, K.M. Wavelets, period doubling, and time–frequency localization with application to organization of convection over the tropical western Pacific. J. Atmos. Sci. 1994, 51, 2523–2541. [Google Scholar] [CrossRef] [Green Version]
- Lau, K.M.; Weng, H. Climate signal detection using wavelet transform: How to make a time series sing. Bull. Am. Meteorol. Soc. 1995, 76, 2391–2402. [Google Scholar] [CrossRef] [Green Version]
- Trulla, L.L.; Giuliani, A.; Zbilut, J.P.; Webber, C.L., Jr. Recurrence quantification analysis of the logistic equation with transients. Phys. Lett. A 1996, 223, 255–260. [Google Scholar] [CrossRef]
- Marwan, N.; Romano, M.C.; Thiel, M.; Kurths, J. Recurrence plots for the analysis of complex systems. Phys. Rep. 2007, 438, 237–329. [Google Scholar] [CrossRef]
- Farias, F.O.M. Detecção de Fenômenos Extremos na Camada Limite Atmosférica Noturna Acima da Floresta Amazônica a Partir da Análise de Sinais Precursores; INPA: Manaus, Brazil, 2017; Volume 1, p. 233f. [Google Scholar]
- Martins, H.S.; Sá, L.D.A.; Moraes, O.L.L. Low level jets in the Pantanal wetland nocturnal boundary layer—Case studies. Am. J. Environ. Eng. 2013, 3, 32–47. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Mahrt, L.; Nappo, C.; Lenschow, D.H. Wind and temperature oscillations generated by wave–turbulence interactions in the stably stratified boundary layer. J. Atmos. Sci. 2015, 72, 1484–1503. [Google Scholar] [CrossRef]
- Dias-Júnior, C.Q.; Sá, L.D.A.; Marques Filho, E.P.; Santana, R.A.; Mauder, M.; Manzi, A.O. Turbulence regimes in the stable boundary layer above and within the Amazon forest. Agric. For. Meteorol. 2017, 233, 122–132. [Google Scholar] [CrossRef]
- Sun, J.; Mahrt, L.; Banta, R.M.; Pichugina, Y.L. Turbulence regimes and turbulence intermittency in the stable boundary layer during CASES-99. J. Atmos. Sci. 2012, 69, 338–351. [Google Scholar] [CrossRef] [Green Version]
- Gerken, T.; Wei, D.; Chase, R.J.; Fuentes, J.D.; Schumacher, C.; Machado, L.A.T.; Andreoli, R.V.; Chamecki, M.; de Souza RAFerreira Freire, L.S. Downward transport of ozone rich air and implications for atmospheric chemistry in the Amazon rainforest. Atmos. Environ. 2016, 124, 64–76. [Google Scholar] [CrossRef] [Green Version]
- Betts, A.K.; Gatti, L.V.; Cordova, A.M.; Dias Maria AFSilva Fuentes, J.D. Transport of ozone to the surface by convective downdrafts at night. J. Geophys. Res. 2002, 107, LBA 13-1–LBA 13-6. [Google Scholar] [CrossRef]
- Mafra, A.C.B.; de Araújo, A.C.; Sá, L.D.A.; dos Santos, R.M.N.; Trebs, I.; Sorgel, M. Variability of the mean concentration of CO2 above the amazonian forest during nighttime associated with distinct turbulence regimes. Ciência Nat. 2016, 38, 429–433. [Google Scholar]
- Acevedo, O.C.; Mahrt, L.; Puhales, F.S.; Costa, F.D.; Medeiros, L.E.; Degrazia, G.A. Contrasting structures between the decoupled and coupled states of the stable boundary layer. Q. J. R. Meteorol. Soc. 2015, 142, 693–702. [Google Scholar] [CrossRef]
- van Hooijdonk, I.G.S.; Moene, A.F.; Scheffer, M.; Clercx, H.J.H.; Van de Wiel, B.J.H. Early warning signals for regime transition in the stable boundary layer: A model study. Bound. Layer Meteorol. 2017, 162, 283–306. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, A.; Faranda, D.; Krumscheid, S.; Belušić, D.; Vercauteren, N. Detecting regime transitions of the nocturnal and Polar boundary layer. arXiv 2019, arXiv:1911.06533. [Google Scholar]
- Fuentes, J.D.; Chamecki, M.; Nascimento dos Santos, R.M.; Von Randow, C.; Stoy, P.C.; Katul, G.; Fitzjarrald, D.; Manzi, A.O.; Gerken, T.; Trowbridge, A. Linking meteorology, turbulence, and air chemistry in the Amazon rain forest. Bull. Am. Meteorol. Soc. 2016, 97, 2329–2342. [Google Scholar] [CrossRef]
- Dakos, V.; Carpenter, S.R.; Brock, W.A.; Ellison, A.M.; Guttal, V.; Ives, A.R.; Kefi, S.; Livina, V.; Seekell, D.A.; van Nes, E.H. Methods for detecting early warnings of critical transitions in time series illustrated using simulated ecological data. PLoS ONE 2012, 7, e41010. [Google Scholar] [CrossRef] [Green Version]
- Daubechies, I. Ten lectures on wavelets. Siam 1992, 61, 1–357f. [Google Scholar]
- Farge, M. Wavelet transforms and their applications to turbulence. Annu. Rev. Fluid Mech. 1992, 24, 395–458. [Google Scholar] [CrossRef]
- Sun, J.; Lenschow, D.H.; Burns, S.P.; Banta, R.M.; Newsom, R.K.; Coulter, R.; Frasier, S.; Ince, T.; Nappo, C.; Balsley, B.B. Atmospheric disturbances that generate intermittent turbulence in nocturnal boundary layers. Bound.-Layer Meteor. 2004, 110, 255–279. [Google Scholar] [CrossRef]
- Mahrt, L. Intermittency of atmospheric turbulence. J. Atmos. Sci. 1989, 46, 79–95. [Google Scholar] [CrossRef]
- Holton, J.R. An Introduction to Dynamic Meteorology; Elsevier Academic Press: Amsterdam, The Netherlands, 1973; Volume 88, pp. 1–535f. [Google Scholar]
- Costantino, L.; Heinrich, P. Tropical deep convection and density current signature in surface pressure: Comparison between WRF model simulations and infrasound measurements. Atmos. Chem. Phys. 2014, 14, 3113–3132. [Google Scholar] [CrossRef] [Green Version]
- Stull, R. Meteorology for Scientists and Engineers; UBC: Vancouver, BC, Canada, 2015; pp. 1–295f. [Google Scholar]
- Emanuel, K.A. An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci. 1986, 43, 585–605. [Google Scholar] [CrossRef]
- Marwan, N. Current Developments of Concepts Cased on Recurrence Plots and Their Applications. Ph.D. Thesis, University of Potsdam, Potsdam, Germany, 2003; pp. 1–331f. [Google Scholar]
- Chen, Y.; Yang, H. Multiscale recurrence analysis of long-term nonlinear and nonstationary time series. Chaos Solition Fract. 2012, 45, 978–987. [Google Scholar] [CrossRef]
- Yang, H. Multiscale recurrence quantification analysis of spatial cardiac vectorcardiogram signals. IEEE Trans. Biomed. Eng. 2011, 58, 339–347. [Google Scholar] [CrossRef]
- Dakos, V.; Carpenter, S.R.; van Nes, E.H.; Scheffer, M. Resilience indicators: Prospects and limitations for early warnings of regime shifts. Philos. Trans. R. Soc. B 2015, 370, 20130263. [Google Scholar] [CrossRef] [Green Version]
- Lenton, T.M.; Livina, V.N.; Dakos, V.; Van Nes, E.H.; Scheffer, M. Early warning of climate tipping points from critical slowing down: Comparing methods to improve robustness. Philos. Trans. R. Soc. A 2012, 370, 1185–1204. [Google Scholar] [CrossRef]
- Wyngaard, J.C. Turbulence in the Atmosphere; Cambridge University Press: Cambridge, UK, 2010; 393p. [Google Scholar]
- Kendall, M.G. A new measure of rank correlation. Biometrika 1938, 30, 81–93. [Google Scholar] [CrossRef]
- Vickers, D.; Mahrt, L. Quality control and flux sampling problems for tower and aircraft data. J. Atmos. Ocean. Technol. 1997, 14, 512–526. [Google Scholar] [CrossRef]
- Dakos, V.; Scheffer, M.; van Nes, E.H.; Brovkin, V.; Petoukhov, V.; Held, H. Slowing down as an early warning signal for abrupt climate change. Proc. Natl. Acad. Sci. USA 2008, 105, 14308–14312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wakimoto, R.M. The life cycle of thunderstorm gust fronts as viewed with Doppler radar and rawinsonde data. Mon. Weather Rev. 1982, 110, 1060–1082. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Krejci, R.; Giangrande, S.; Kuang, C.; Barbosa, H.M.J.; Brito, J.; Carbone, S.; Chi, X.; Comstock, J.; Ditas, F. Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall. Nature 2016, 539, 416–419. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miranda, F.O.; Ramos, F.M.; von Randow, C.; Dias-Júnior, C.Q.; Chamecki, M.; Fuentes, J.D.; Manzi, A.O.; de Oliveira, M.E.; de Souza, C.M. Detection of Extreme Phenomena in the Stable Boundary Layer over the Amazonian Forest. Atmosphere 2020, 11, 952. https://doi.org/10.3390/atmos11090952
Miranda FO, Ramos FM, von Randow C, Dias-Júnior CQ, Chamecki M, Fuentes JD, Manzi AO, de Oliveira ME, de Souza CM. Detection of Extreme Phenomena in the Stable Boundary Layer over the Amazonian Forest. Atmosphere. 2020; 11(9):952. https://doi.org/10.3390/atmos11090952
Chicago/Turabian StyleMiranda, Francisco O., Fernando M. Ramos, Celso von Randow, Cléo Q. Dias-Júnior, Marcelo Chamecki, Jose D. Fuentes, Antônio O. Manzi, Marceliano E. de Oliveira, and Cledenilson M. de Souza. 2020. "Detection of Extreme Phenomena in the Stable Boundary Layer over the Amazonian Forest" Atmosphere 11, no. 9: 952. https://doi.org/10.3390/atmos11090952
APA StyleMiranda, F. O., Ramos, F. M., von Randow, C., Dias-Júnior, C. Q., Chamecki, M., Fuentes, J. D., Manzi, A. O., de Oliveira, M. E., & de Souza, C. M. (2020). Detection of Extreme Phenomena in the Stable Boundary Layer over the Amazonian Forest. Atmosphere, 11(9), 952. https://doi.org/10.3390/atmos11090952