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Abstract: PM2.5 was sampled from January 2017 to May 2018 at an urban, suburban, industrial, and
rural sites in Xining. The annual mean of PM2.5 was highest at the urban site and lowest at the
rural site, with an average of 51.5 ± 48.9 and 26.4 ± 17.8 µg·m−3, respectively. The average PM2.5

concentration of the industrial and suburban sites was 42.8 ± 27.4 and 37.2 ± 23.7 µg·m−3, respectively.
All sites except for the rural had concentrations above the ambient air quality standards of China
(GB3095-2012). The highest concentration of PM2.5 at all sites was observed in winter, followed by
spring, autumn, and summer. The concentration of major constituents showed statistically significant
seasonal and spatial variation. The highest concentrations of organic carbon (OC), elemental carbon
(EC), water-soluble organic carbon (WSOC), and water-soluble inorganic ions (WSIIs) were found
at the urban site in winter. The average concentration of F− was higher than that in many studies,
especially at the industrial site where the annual average concentration of F− was 1.5 ± 1.7 µg·m−3.
The range of sulfur oxidation ratio (SOR) was 0.1–0.18 and nitrogen oxidation ratio (NOR) was 0.02–0.1
in Xining. The higher SO4

2−/NO3
− indicates that coal combustion has greater impact than vehicle

emissions. The results of the potential source contribution function (PSCF) suggest that air mass from
middle- and large-scale transport from the western areas of Xining have contributed to the higher level
of PM2.5. On the basis of the positive matrix factorization (PMF) model, it was found that aerosols
from salt lakes and dust were the main sources of PM2.5 in Xining, accounting for 26.3% of aerosol total
mass. During the sandstorms, the concentration of PM2.5 increased sharply, and the concentrations of
Na+, Ca2+ and Mg2+ were 1.13–2.70, 1.68–4.41, and 1.15–5.12 times higher, respectively, than annual
average concentration, implying that aerosols were mainly from dust and the largest saltwater lake,
Qinghai Lake, and many other salt lakes in the province of Qinghai. Time-of-flight secondary ion
mass spectrometry (ToF-SIMS) was utilized to study the surface components of PM2.5 and F− was
found to be increasingly distributed from the surface to inside the particles. We determined that the
extremely high PM2.5 concentration appears to be due to an episode of heavy pollution resulting from
the combination of sandstorms and the burning of fireworks.
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1. Introduction

Due to rapid urbanization, industrialization, and economic growth in China, many cities (especially
in some developed or industrial areas like northern and eastern China) experience frequent haze
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pollution that profoundly impacts visibility, the global climate, and human health [1–5]. Although
various actions have been adopted to improve air quality, nearly 70% of 338 cities have PM2.5

concentrations well above the national ambient air quality standards (GB3095-2012) [6,7].
The chemical composition of PM2.5 is complex, and includes water-soluble inorganic ions (WSIIs),

carbonaceous compositions, and mineral components that have significant influence on the physical
and chemical properties of aerosols [8–11]. For example, the amount and chemical properties of
water-soluble organic carbon (WSOC) can affect the hygroscopic growth and cloud condensation
nucleus activity of aerosols [12]. In addition to primary emissions, PM2.5 also results from secondary
formation, such as through the production of secondary ions (sulfate, nitrate, and ammonium (SNA))
and secondary organic carbon (SOC) [13–15]. The formation mechanism of secondary compositions is
highly dependent on the concentration of precursor pollutants, the oxidative state of the atmosphere,
and meteorological conditions [16]. In the past few decades, most studies have focused on PM2.5

and the relevant haze pollution in developed areas of China such as the Jin-Jing-Ji, Pearl River Delta,
and Yangtze River Delta areas [17–20]. Many publications have reported on the haze pollution of
western cities such as Xi’an in China, but few have reported on PM2.5 in the Qinghai–Tibet Plateau.
The Qinghai–Tibet Plateau, also known as the Third Pole [21,22], has significant impact on the
global climate [23]. It is not only currently a good site for PM2.5, but also for tracing the mixing
state of sandstorms and local particles resulting from increasing energy consumption. The lack of
oxygen, stronger solar radiation, and lower concentrations of SO2 and NO2, undoubtedly influence
the composition of PM2.5 in Qinghai–Tibet Plateau, but the resulting effects of this remain unclear.
A few studies have demonstrated that higher levels of organic aerosols in the plateau environment are
oxidized due to the strong solar radiation [24,25].

Xining is the capital city of Qinghai province, and it is located in the northeastern Qinghai–Tibet
Plateau [26]. As the largest city in this region with a population of two million, Xining has recently
encountered high levels of fine particles due to increasing industrialization. Previous studies have
mostly focused on metropoles or cities in developed areas while there are few comprehensive studies
on cities of Qinghai–Tibet Plateau. In this study, we conducted a one-year field campaign in which
chemical components, including WSIIs and carbonaceous compounds in PM2.5, were analyzed at
an urban, suburban, industrial, and rural sites in Xining. The main objectives of this study were to
(1) characterize the seasonal and spatial variations of PM2.5, (2) explore the potential sources of PM2.5

on the basis of the potential source contribution function (PSCF) and positive matrix factorization
(PMF), and (3) investigate the characteristics of PM2.5 on the basis of surface analysis with time-of-flight
secondary ion mass spectrometry (ToF-SIMS) during sandstorms. These results help to fill in the gaps
in knowledge with regard to PM2.5 in the Qinghai–Xizang (Tibet) Plateau.

2. Experimental Methods

2.1. Sampling Sites

PM2.5 was sampled at four sites in Xining, an urban, suburban, industrial, and rural site. The details
of the four sites are as follows (Figure 1).

The urban site (FPH; N36◦37′, E101◦46′; 2258 m above sea level) was at Xining First People’s
Hospital in the urban center of the Chengzhong district, adjacent to Xida Street and Changjiang Road.
Therefore, this sampling site is surrounded by both heavy traffic and commercial areas. The air sampler
was set on the roof of an outpatient building almost 20 m above ground level.

The industrial site (GID; N36◦32′, E101◦31” 2590 m above sea level) was at the Ganhe industrial
district, about 36 km southwest away from FPH. The air sampler was about 30 m away from the
nearest street, Ganqinger, and set on the top of a building over 10 m above ground level. A variety of
industrial activities (such as metal smelting and fertilizer production) are performed in this area.
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Figure 1. Sampling-site locations. 

The industrial site (GID; N36°32′, E101°31’’ 2590 m above sea level) was at the Ganhe industrial 
district, about 36 km southwest away from FPH. The air sampler was about 30 m away from the 
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industrial district and 15 km north of FPH. The air sampler was on the roof of Department of 
Chemical Engineering building of Qinghai University, approximately 18 m above ground level. The 
nearest road, Haihu, was almost 50 m away. There was no large industrial source nearby.  

The rural site (YLV; N36°42′, E101°31′; 2426 m above sea level) was at the village of Yula, which 
is northwest of Xining and about 30 km from FHP. This site is representative of rural areas, without 
any industrial emissions present. The air sampler was set on the roof of a farmer’s house, 3 m above 
ground level. 

PM2.5 was collected by medium-volume PM2.5 samplers (TH-150C China) at a flow rate of 100 L 
min−1. All filters were 90 mm quartz (Whatman Inc., Maidstone, UK) and prebaked at 600 °C for 4.5 
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2.2. Chemical Analysis 
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Figure 1. Sampling-site locations.

The suburban site (QHU; N36◦43′, E101◦ 44′; 2330 m above sea level) was at Qinghai University in
the northern suburb of Xining, approximately 5 km away from the Science and Technology industrial
district and 15 km north of FPH. The air sampler was on the roof of Department of Chemical Engineering
building of Qinghai University, approximately 18 m above ground level. The nearest road, Haihu,
was almost 50 m away. There was no large industrial source nearby.

The rural site (YLV; N36◦42′, E101◦31′; 2426 m above sea level) was at the village of Yula, which is
northwest of Xining and about 30 km from FHP. This site is representative of rural areas, without
any industrial emissions present. The air sampler was set on the roof of a farmer’s house, 3 m above
ground level.

PM2.5 was collected by medium-volume PM2.5 samplers (TH-150C China) at a flow rate of
100 L min−1. All filters were 90 mm quartz (Whatman Inc., Maidstone, UK) and prebaked at 600 ◦C
for 4.5 h before sampling. After being stabilized at 20 ± 1◦C temperature and 30% ± 2% humidity,
filters were weighed before and after sampling with an analytical scale (Mettler Toledo XP205DR,
Zurich, Switzerland; precision: 0.01 mg). All filters were individually packed with aluminum foil,
sealed in clean plastic bags, and stored at −18 ◦C until analysis. In total, 311 samples were collected
from 7 January 2017 to 28 May 2018. Details are outlined in Table 1.

Table 1. Number of samples at each site per season (2017–2018).

Season FPH GID QHU YLV

Spring 15 15 38 12
Summer 26 19 15 17
Autumn 16 21 17 13
Winter 37 15 15 20

FPH, First People’s Hospital; GID, Ganhe industrial district; QHU, Qinghai University; YLV, Yula village.

2.2. Chemical Analysis

Half of each filter was cut into small pieces and then ultrasonically extracted with 20 mL ultrapure
Milli-Q water (18.2 MΩcm−1) for 40 min. Following filtration using a microporous membrane filter
(pore size: 0.45µm), all filtrates were stored at 4 ◦C in precleaned glass bottles until analysis. Five cations
(Na+, NH4

+, K+, Mg2+, and Ca2+) were analyzed using Dionex ICS5000 (Thermo Fisher Scientific,
Waltham, USA). Five anions (F−, Cl−, NO3

−, C2O4
2−, and SO4

2−) were analyzed using Dionex ICS1100
(Thermo Fisher Scientific, Waltham, USA). To efficiently separate the ions, a gradient weak base eluent
(KOH + H2O) was used for anion detection at a flow rate of 1.5 mL/min. Water-soluble organic carbon
(WSOC) was measured with a Multi N/C 2100 (Analytik-Jena, Jena, Germany).

A small piece (0.526 cm2) was taken from each filter for organic carbon (OC) and elemental carbon
(EC) analysis using a carbon analyzer (Desert Research Institute Model 2001) [27]. Detailed procedures
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can be found in our previous study [28]. Surface analysis of PM2.5 was performed with a ToF-SIMS V
instrument (ION-ToF GmbH, Germany). A small punch (10 mm × 8 mm) of each filter was taken to
match the sample holder as detailed in our previous study [29]. In this study, we obtained clear images
of Na+, NH4

+, K+, Mg2+, and Ca2+ by ToF-SIMS, while images of F−, Cl−, NO3
−, C2O4

2−, and SO4
2−

were unclear because of a matrix effect, and these images are not shown.

2.3. Air Pollutants and Meteorological Data

The data of SO2, NO2, and O3 were obtained from national air quality monitoring stations
(http://www.xnepb.gov.cn/). Temperature (T), relative humidity (RH), wind direction (WD), and wind
speed (WS) were collected from the Xining Meteorological Institute (http://qh.cma.gov.cn/).

2.4. Potential Source Contribution Function (PSCF) and Positive Matrix Factorization (PMF)

In this study, the potential source contribution function (PSCF) was applied to identify the potential
source regions that contributed to the elevated PM2.5 episodes. Positive matrix factorization (PMF)
was used for source apportionment in this study. Uncertainties for individual species were cij ≥MDLj,
calculated as (1); cij ≤MDLj, calculated as Equations (2) and (3).

ui j = si j + 1/3×MDL j (1)

ci j = 1/2×MDL j (2)

ui j = 5/6×MDL j, (3)

where cij, uij, and sij are the concentration, uncertainty, and analytical uncertainty of species j in the i-th
sample, and MDLj is the method detection limit for species j [30,31]. This method has been previously
described in detail in a previous report [32]. The input observable parameters included OC, EC, WSOC,
and 7 ions (Na+, NH4

+, K+, Ca2+, Cl−, NO3
−, and SO4

2−). In this study, F−, Mg2+, and C2O4
2− were

excluded due to the low signal-to-noise (S/N) ratios that were acquired.

3. Results and Discussion

3.1. PM2.5 and Chemical Compositions

3.1.1. PM2.5

The annual average concentration of PM2.5 in Xining was 40.6 ± 34.6 µg·m−3; the highest
concentration was 51.5 ± 48.9 µg·m−3, observed at FPH, and the lowest in YLV, with an average
of 26.4 ± 17.8 µg·m−3. The average PM2.5 concentration of GID and QHU was 42.8 ± 27.4 and
37.2 ± 23.7 µg·m−3, respectively. All sites except YLV had concentrations above the ambient air quality
standards of China (GB3095-2012). In this study, the determined PM2.5 concentrations was lower
than the recorded levels for provincial capitals in western China, including Xi’an [33], Lanzhou [34],
and Chengdu [35], and much higher than those of studies in the Qinghai–Tibet Plateau [24,36,37].

In addition, the PM2.5 concentration also shared similar seasonal variation across sampling
sites as those of most studies, being highest in winter and lowest during summer. On the one
hand, during winter, coal combustion heating systems can release large amounts of air pollutants.
Lower temperature and wind speed in winter can also result in a lower mixing layer, which contributes
to particle accumulation. The average PM2.5 concentrations in spring were higher than those in autumn
at the suburban and rural sites, and quite different from those at the other two sites (FPH and GID).
These findings were the opposite of results obtained for Ningbo [38]. This can be ascribed to the
following reasons: (1) in the past, straw was burned randomly in autumn, but burning straw in fields
is now prohibited by government legislation; and (2) dust is prone to occurring in spring, and YLV and
QHU are surrounded by bare fields, which makes them more likely to form dust.

http://www.xnepb.gov.cn/
http://qh.cma.gov.cn/
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3.1.2. OC/EC

At FPH, OC concentrations ranged from 1.6 to 24.6 µg·m−3 with an annual average of 9.3 ±
5.5 µg·m−3, and EC concentrations ranged from 0.3 to 10.8 µg·m−3 with an annual average of 2.2 ±
2.0 µg·m−3. At GID, OC ranged from 1.3 to 22.5 µg·m−3 (average: 6.2 ± 4.4 µg·m−3), and EC ranged
from 0.2 to 5.9 µg·m−3 (average: 1.6 ± 1.2 µg·m−3). At QHU, annual average OC concentration was 6.3
± 5.1 µg·m−3, and average EC was 1.8 ± 1.0 µg·m−3. At YLV, the annual average concentration of OC
was 6.7 ± 5.0 µg·m−3, whereas average EC was 2.1 ± 1.0 µg·m−3. Generally, concentrations of OC and
EC in Xining were lower than those in Beijing [39] (25.9 OC and 6.1 µg·m−3 EC) and Shanghai [40]
(14.1 OC and 8.5 µg·m−3 EC in winter). OC was about four times higher than EC, especially at FPH (6.1
± 6.0) and GID (7.4 ± 3.9). It is reported that, if OC/EC > 2, secondary organic carbon (SOC) may be
formed [41–43]. SOC could be calculated using the following equations:

POC = EC(OC/EC)min (4)

OC = OC− POC, (5)

where POC is primary organic carbon, and (OC/EC)min is the minimal OC/EC ratio excluding special
data for the days when snow, rainstorms, and sandstorms caused drastic changes to the OC/EC ratio
during the period of observation [42,44].

SOC concentration at the four sampling sites was highest in winter, which might be attributed to
higher levels of gaseous precursor pollutants and the favorable oxidation conditions for secondary
conversion in winter. The char-EC/soot-EC ratio is thought to be an indicator for identifying sources
from biomass and coal burning or vehicle exhausts [45]. Char-EC is the major constituent of EC and is
mainly derived from biomass and coal burning, while soot-EC usually results from vehicle emissions
with higher-temperature combustion. According to previous studies, the char-EC/soot-EC of vehicle
exhausts is about 0.60, while the char-EC/soot-EC of biomass and coal combustion is about 22.6 [46].
In this study, the average of char-EC/soot-EC shared similar seasonal variation across the sampling
sites, with the highest in winter and lowest during summer, the highest average char-EC/soot-EC was
9.6 ± 5.5 at YLV and the lowest average char-EC/soot-EC was 1.3 ± 0.6 at GID in summer, annual
average of char-EC/soot-EC at YLV and at GID were 5.1 ± 4.8, 2.8 ± 1.7 indicating that EC was mainly
influenced by biomass and coal combustion at YLV, and by vehicle emissions at GID.

3.1.3. WSOC

The annual WSOC concentration in Xining was 4.0 ± 2.0 µg·m−3, less than that in Beijing [47] and
Xi’an, probably due to Xining’s smaller population and lower plant coverage than compared to other
cities. There was no significant difference in the annual WSOC concentrations at the four sampling sites:
GID (3.6 ± 1.6 µg·m−3) < QHU (3.9 ± 2.1µg·m−3) < YLV (4.1 ± 2.3 µg·m−3) < FPH (4.7 ± 2.1 µg·m−3).
while the seasonal variation of WSOC at the four sampling points were significant statistically (ANOVA,
p < 0.01). WSOC was highest in the winter and lowest in the summer across all four sites, which
might be due to the higher intensity of biomass burning for heating and cooking in winter [48–50].
The annual mean WSOC/PM2.5 ratio was 10.7% ± 5.0% across all four sites. The WSOC/PM2.5 ratio
was highest at YLV (14.2% ± 7.6%) and lowest at FPH (8.8% ± 5.3%). WSOC was more strongly
correlated with PM2.5 at all four sampling sites in spring, autumn, and winter than in summer (Figure 2).
The correlation coefficients of PM2.5 and WSOC were higher in winter and lower in summer across
the four sampling sites, which can be ascribed to the higher WSOC in winter being formed by the
conversion of atmospheric pollutants. WSOC was an important part of PM2.5, especially at YLV,
because biomass burning is the main source of heating at YLV.
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3.1.4. WSIIs

The annual average concentration of total WSIIs was 16.7 ± 10.9 µg·m−3, accounting for 46.1% ±
18.2% of PM2.5. The annual total WSII concentrations at the four sampling sites showed significant
differences statistically (ANOVA, p < 0.01), in the following order: YLV (11.7 ± 5.4 µg·m−3) < QHU (16.8
± 10.2 µg·m−3) < GID (17.1 ± 8.9 µg·m−3) < FPH (20.6 ± 14.5 µg·m−3), contributing to 38.2%–53.8% of
PM2.5 mass. The ratio of WSIIs to PM2.5 at GID was higher than that at YLV, while the opposite pattern
was found for the ratio of WSOC to PM2.5, which was probably because the sources of YLV were mainly
influenced by biomass burning, while those of GID were mainly influenced by industrial emissions.

As shown in Figure 3, WSIIs were highest in winter and lowest in summer across all four sites,
and seasonal variations were similar to those in our previous research in Shanghai [51]. In this study,
the higher concentrations of Ca2+ and Mg2+ in spring are mainly due to the frequent occurrence of
sand and dust. The concentration of F− at Xining was higher than that at other Chinese cities [52,53],
especially at GID, where the average concentration of F− was 1.5 ± 1.7 µg·m−3. The high levels of F−

measured in Xining might be associated with material manufacturing, such as electrolytic aluminum
and phosphate fertilizer [53,54].
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PM2.5 mainly originates from external inputs, local emissions, and secondary conversions.
The formation and transformation of secondary aerosols are usually characterized by the sulfur
oxidation ratio (SOR) and nitrogen oxidation ratio (NOR) [55–57]. SOR and NOR can be calculated
using the following equations:

SOR = nSO2−
4 /
(
nSO2−

4 + nSO2
)

(6)

NOR = nNO2−
4 /
(
nNO2−

4 + nNO2
)

(7)

where n is the molar concentration. The range of SOR was 0.1–0.18 and NOR was 0.02–0.1 in Xining.
In this study, the highest values for SOR and NOR were observed at FPH in summer and winter,
while the lowest SOR and NOR was observed at YLV in autumn and summer, respectively. Results
indicated that secondary conversion was more likely to occur at FPH, and the conversion of SO2 to
SO4

2− always occurs in summer, while conversion of NO2 to NO3
− was more intensive in winter.

High relative humidity and intensive solar radiation in summer could be attributed to the increasing
concentrations of SO4

2− [58]. The mass ratio of NO3
− /SO4

2− was 0.67, suggesting that coal burning
had greater impact on PM2.5 in Xining than vehicle exhausts, similar to the results in Hangzhou [59].

On the basis of ToF-SIMS, Ca+, K+, and Mg+ were found to be mostly distributed as larger
particles at lower concentrations of PM2.5 at FPH in Xining, while Ca+, K+, and Mg+ were mostly
distributed as smaller particles at higher concentrations of PM2.5 relative to the larger particles (Figure 4);
the profile was different from our previous research in Shanghai [60], indicating that the formation
mechanism and composition of PM2.5 in the two cities were different. To explore the sources of
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heavy pollution, two samples that were obtained during a pollution episode were selected for depth
profiles, which showed that K+ and the Na+ signals were stronger than those of other ions (Figure 5).
The presence of the two ions gradually decreased going from the surface to the interior particles, with
Na+ decreasing more steeply than K+. NH4

+ was more evenly distributed on the surface and interior
of particles. Other cations were distributed on the particle surface. SO4

− was evenly distributed going
from the surface to the interior of particles. F− increased going from the surface to the interior of
particles, further research is needed to investigate the mechanism.

Atmosphere 2020, 11, x FOR PEER REVIEW 8 of 16 

 

 

Figure 4. Images of PM2.5 under positive mode. (A1,A2) were low-concentration samples (35.6 and 
41.7 μg × m−3), (A3,A4) were high-concentration samples (132.6 and 98.4 μg × m−3); relative humidity 
(RH) on sampling day was 32%, 38%, 35%, and 32%, respectively. Green, fuchsia, and blue represent 
Ca+, K+, and Mg+, respectively. 

A1 A2 

A3 A4 

Figure 4. Images of PM2.5 under positive mode. (A1,A2) were low-concentration samples (35.6 and
41.7 µg ×m−3), (A3,A4) were high-concentration samples (132.6 and 98.4 µg ×m−3); relative humidity
(RH) on sampling day was 32%, 38%, 35%, and 32%, respectively. Green, fuchsia, and blue represent
Ca+, K+, and Mg+, respectively.



Atmosphere 2020, 11, 953 9 of 16

Atmosphere 2020, 11, x FOR PEER REVIEW 9 of 16 

 

 
Figure 5. Depth profiles for PM2.5 samples from FPH in winter. Note: (A,B) refer to Positive and 

Negative ions in samples A3, (C,D) refer to Positive and Negative ions in samples A4. 

3.2. PM2.5 Source Apportionment in Xining 

To exactly identify the spatial distribution of potential sources, the PSCF method was utilized 
on the basis of the results of backward-trajectory analysis of 72 h air masses. For each day, four 
trajectories (local time: 2:00, 8:00, 14:00, and 20:00) were employed with an interval of six hours. As 
shown in Figure 6, most potential source areas with higher PSCF values for PM2.5 were located west 
of Xining, including the Qaidam basin in Qinghai province, the Tarim basin in Xinjiang province, and 
the Pamirs plateau, where the air mass passed over the desert. Through mid- and large-scale 
transportation, the air mass that passed over this area made a large contribution to PM2.5 

concentrations in Xining, the prevailing wind was from west during the sampling period in Xining. 
In this study, PMF analysis was conducted to identity emission sources of PM2.5 in Xining. PMF 

input was the dataset (the concentrations of chemical compositions mentioned above) of the PM2.5 

samples. Samples collected during heavy pollution events, such as sandstorms and the Lunar New 
year, were excluded. Five to eight factors were tested, and the source profile of the seven-factor 
solution was the most reasonable. The seven-factor solution was verified to be stable by performing 
100 bootstrap runs, as 85% of the runs produced the same factors. 

Figure 5. Depth profiles for PM2.5 samples from FPH in winter. Note: (A,B) refer to Positive and
Negative ions in samples A3, (C,D) refer to Positive and Negative ions in samples A4.

3.2. PM2.5 Source Apportionment in Xining

To exactly identify the spatial distribution of potential sources, the PSCF method was utilized on
the basis of the results of backward-trajectory analysis of 72 h air masses. For each day, four trajectories
(local time: 2:00, 8:00, 14:00, and 20:00) were employed with an interval of six hours. As shown in
Figure 6, most potential source areas with higher PSCF values for PM2.5 were located west of Xining,
including the Qaidam basin in Qinghai province, the Tarim basin in Xinjiang province, and the Pamirs
plateau, where the air mass passed over the desert. Through mid- and large-scale transportation,
the air mass that passed over this area made a large contribution to PM2.5 concentrations in Xining,
the prevailing wind was from west during the sampling period in Xining.

In this study, PMF analysis was conducted to identity emission sources of PM2.5 in Xining.
PMF input was the dataset (the concentrations of chemical compositions mentioned above) of the
PM2.5 samples. Samples collected during heavy pollution events, such as sandstorms and the Lunar
New year, were excluded. Five to eight factors were tested, and the source profile of the seven-factor
solution was the most reasonable. The seven-factor solution was verified to be stable by performing
100 bootstrap runs, as 85% of the runs produced the same factors.

As shown in Figure 7, seven factors associated with the following seven sources were resolved:
(1) The main species of Factor 1 were OC (46.5%) and EC (93.6%), which mainly originated from
vehicle exhaust [61,62]. The high positive loading of nitrate was 93.2% in Factor 2, which suggested
that the secondary conversion of nitrate made major contributions [63]. Factor 3 was characterized by
high-loading sodium (61.1%) and potassium (60.8%) that mainly originated from salt lakes [64,65].
Factor 4 was characterized by loading calcium (80.2%) that mainly originate from dust [66,67].
Factor 5 was characterized by loading OC (49.2%) and ammonium (44.1%), which were designated as
secondary organic matter [68]. Factor 6 was characterized by loading chloride (93.4%) and potassium
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(37.5%), which were designated as combustion sources and industrial emission [69,70]. Factor 7
was characterized by loading sulfate (64.5%) and ammonium (47.3%), which were designated as
secondary sulfates [71,72]. Thus, vehicle exhausts (13.8%), secondary nitrate (18.2%), salt lakes
(14.6%), dust (11.7%), secondary organic matter (16.1%), combustion sources and industrial emission
(12.5%), and secondary sulfate (13.1%) were major PM2.5 sources in Xining. Dust mainly comes
from transportation, but dust and aerosols from salt lakes were important sources of PM2.5 in Xining.
Dust and transport from salt lakes were important sources of PM2.5 in Xining, this is different from
studies in other cities in China [62,63,68,73].
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3.3. Special-Pollution-Episode Analysis

3.3.1. Influence of Sandstorms on PM2.5

During spring and winter, the frequent occurrence of sand and dust contributed to a higher
concentration of PM2.5 in Xining. As mentioned above, the dust mainly was from west, FPH located
at the most east of Xining. Thus, FPH is the ideal site for investigating the effect of dust in Xining.
During the sampling period, there were 10 severely polluted episode affected by sandstorms, particle
samples during severely polluted episodes at FPH were chosen to analyze the characteristics of particles.
During these sandstorms, the average concentrations of PM2.5 and PM10 sharply increased, and the
concentration of PM2.5 reached 1.42–10.21 times higher than the annual average values (Figure 8).
The concentrations of Na+, Ca2+, and Mg2+ were 1.13–2.70, 1.68–4.41, and 1.15–5.12 times higher than
the average concentration, respectively. Na+ mainly comes from marine and industrial emissions,
but Xining is an inland city on a plateau; thus, Na+ was likely to come from salt lakes and saltwater
lakes such as Qinghai Lake, which is the largest saltwater lake. This is also the reason for the higher
concentration of Mg2+. The surface profiles of PM2.5 collected at FPH during a sandstorm and a clear
day were determined by ToF-SIMS. Particulate matter in the sandstorm greatly increased and almost
covered the entire filter area. The silicon fiber on the clean day was very clear, and there were no
significant changes in the NH4

+, Ca+, and Mg+ images. K+ and Na+ in the images were more obvious
on the clear day. The difference of the negative- and positive-ion spectrum between sandstorm and
clear days in Xining was not as obvious as the comparison between haze and clear days in Shanghai [29].
TOF-SIMS was not suitable for analyzing filters polluted by sandstorms, which might be related to the
stronger matrix effect caused by the nonconductivity of a large amount of dust.Atmosphere 2020, 11, x FOR PEER REVIEW 12 of 16 
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3.3.2. Heavy-Pollution Episode

A severe pollution episode with an AQI of 500 occurred on 26–27 January 2017, where the
concentration of PM2.5 exceeded 200 µg·m−3. PM2.5 concentration peaked at 406.77 µg·m−3 on
26 January, which was much higher than the annual average concentration of PM2.5. Concentrations of
Ca2+ and Mg2+ increased more sharply than that of Na+ on 26 January. Ca2+ and Mg2+ are usually
thought to be the indicator of dust and sand; thus, the higher levels of PM2.5 on 26 January were related
to the sandstorm (verified by the Qinghai Meteorological Bureau). Additionally, K+ on 27 January was
almost 20 times higher than the annual average value, which is mainly because 27 January was the
traditional Chinese New Year’s Eve, where a large number of fireworks and firecrackers were burned.
On 28 January, high wind speed was helpful for the dilution of air pollutants, so the concentration of
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PM2.5 decreased. Backward trajectory analysis also demonstrated that the air pollution process was
affected by dust from the sandstorm that occurred in the Hexi corridor on 25 January, and the stable
weather conditions in Xining contributed to the accumulation of atmospheric pollutants.

4. Conclusions

To comprehensively study the characteristics of WSIIs and organic compositions in addition
to the potential sources of PM2.5, an over-one-year field measurement study was conducted from
January 2017 to May 2018 at four sites in Xining, China: an urban, industrial, suburban, and rural
site. The annual mean of PM2.5 was the highest at the urban site and lowest at the rural site, with an
average of 51.5 ± 48.9 and 26.4 ± 17.8 µg·m−3, respectively. The average PM2.5 concentration of the
industrial and suburban sites was 42.8 ± 27.4 and 37.2 ± 23.7 µg·m−3, respectively. All sites except the
rural had concentrations above the ambient air quality standards of China (GB3095-2012). The highest
concentration of PM2.5 was observed in winter, followed by spring, autumn, and summer at all
sites. The concentration of major constituents of PM2.5 showed statistically significant seasonal and
spatial variation; the highest concentrations of OC, EC, WSOC, and WSIIs were found in winter
at the urban site. The average concentration of F− was higher than that of many studies in other
cities of China, especially at the industrial site, where the annual average concentration of F− was
1.5 ± 1.7 µg·m−3. PSCF results showed that air mass from mid- and large-scale transportation from
the western areas of Xining contributed to the higher level of PM2.5. On the basis of PMF, aerosols
from salt lakes and dust were found to be important sources of PM2.5 in Xining, accounting for
26.3% of aerosol total mass. During the sandstorms, the concentration of PM2.5 increased sharply,
and concentrations of Na+, Ca2+, and Mg2+ were 1.13–2.70, 1.68–4.41, and 1.15–5.12 times higher
than the annual average concentration, respectively, and were mainly derived from dust and the
largest saltwater lake, Qinghai Lake, and many other salt lakes in Qinghai. The surface profiles of
PM2.5 showed F− was increasingly distributed from surface to inside of the particles. During the
heavy pollution episode, the combination of sandstorms and burning of fireworks contributed to the
occurrence of severe pollution and extremely high concentration of PM2.5.
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