Structure and Evolution of Non-Lake-Effect Snow Producing Alberta Clippers
Abstract
:1. Introduction
- •
- mid-tropospheric low-pressure anomaly situated near the Hudson Bay;
- •
- cyclone east/northeast of the Great Lakes (typically a clipper);
- •
- anticyclone west/southwest of the Great Lakes.
2. Materials and Methods
2.1. Alberta Clipper Repository
- Cyclogenesis in the lee of the Canadian Rocky Mountains within the Canadian provinces of Yukon, Northwest Territories, British Columbia, and/or Alberta as evidenced by a closed circulation and/or evident local MSLP minimum (based on 2 mb intervals);
- Closed circulation and/or evident local MSLP minimum present for 60 h once the system makes major progress east of the Canadian Rocky Mountains (hereafter referred to as ‘time of departure’);
- System propagates southeast towards U.S–Canadian border immediately after time of departure whereafter it tracks east and/or southeast;
- System is located east of 90° W within 60 h after time of departure (a measure of cyclone propagation speed).
- Time of departure date and location;
- End time date and location;
- Complete track of system throughout its duration as marked by NCEP/NCAR Reanalysis grid points at six-hour timesteps.
2.2. Data and Statistical Methods
2.3. Diagnostic Variables
3. Results and Discussion
3.1. Influence of Lake Surface Characteristics on LES Suppression
3.2. Synoptic Analysis
3.3. Mesoscale and Stability Analysis
4. Summary and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lackmann, G. Midlatitude Synoptic Meteorology: Dynamics, Analysis, and Forecasting, 3rd ed.; American Meteorological Society: Boston, MA, USA, 2011; p. 98. [Google Scholar]
- Mercer, A.E.; Shafer, C.M.; Doswell, C.A.; Leslie, L.M.; Richman, M.B. Objective Classification of Tornadic and Nontornadic Severe Weather Outbreaks. Mon. Weather Rev. 2009, 137, 4355–4368. [Google Scholar] [CrossRef] [Green Version]
- Mercer, A.E.; Shafer, C.M.; Doswell, C.A.; Leslie, L.M.; Richman, M.B. Synoptic Composites of Tornadic and Nontornadic Out-breaks. Mon. Weather Rev. 2012, 140, 2590–2608. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E.; Caron, J.M. Estimates of Meridional Atmosphere and Ocean Heat Transports. J. Clim. 2001, 14, 3433–3443. [Google Scholar] [CrossRef]
- Geen, R.; Czaja, A.; Haigh, J.D. The effects of increasing humidity on heat transport by extratropical waves. Geophys. Res. Lett. 2016, 43, 8314–8321. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, R.N.; Hall, L.; Rickenbach, T.M. A Climatology of the Structure, Evolution, and Propagation of Midlatitude Cyclones in the Southeast United States. J. Clim. 2013, 26, 8406–8421. [Google Scholar] [CrossRef]
- Kennedy, A.; Trellinger, A.; Grafenauer, T.; Gust, G. A Climatology of Atmospheric Patterns Associated with Red River Valley Blizzards. Climate 2019, 7, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Whittaker, L.M.; Horn, L.H. Northern Hemisphere extratropical cyclone activity for four mid-season months. J. Clim. 1984, 4, 297–310. [Google Scholar] [CrossRef]
- Sawyer, J.S. Observational characteristics of atmospheric fluctuations with a time scale of a month. Q. J. R. Meteorol. Soc. 1970, 96, 610–625. [Google Scholar] [CrossRef]
- Blackmon, M.L.; Wallace, J.M.; Lau, N.-C.; Mullen, S.L. An observational study of the Northern Hemisphere wintertime circulation. J. Atmos. Sci. 1977, 34, 1040–1053. [Google Scholar] [CrossRef]
- Bosart, L.F.; Lin, S.C. A Diagnostic Analysis of the Presidents’ Day Storm Of February 1979. Mon. Weather. Rev. 1984, 112, 2148–2177. [Google Scholar] [CrossRef] [Green Version]
- Sanders, F. A Study of 500 mb Vorticity Maxima Crossing the East Coast of North America and Associated Surface Cyclogenesis. Weather Forecast. 1987, 2, 70–83. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, H. Midwinter Suppression of Baroclinic Wave Activity in the Pacific. J. Atmos. Sci. 1992, 49, 1629–1642. [Google Scholar] [CrossRef] [Green Version]
- Mercer, A.E.; Richman, M.B. Statistical Differences of Quasigeostrophic Variables, Stability, and Moisture Profiles in North American Storm Tracks. Mon. Weather Rev. 2007, 135, 2312–2338. [Google Scholar] [CrossRef] [Green Version]
- Monmonier, M. Lake Effect: Tales of Large Lakes, Arctic Winds, and Recurrent Snows, 1st ed.; Syracuse University Press: Syracuse, NY, USA, 2012; p. 17. [Google Scholar]
- Wiggin, B.L. Great Snows of the Great Lakes. Weatherwise 1950, 3, 123–126. [Google Scholar] [CrossRef]
- Peace, R.L.; Sykes, R.B. Mesoscale study of a lake effect snow storm. Mon. Weather Rev. 1966, 94, 495–507. [Google Scholar] [CrossRef] [Green Version]
- Eichenlaub, V.L. Lake Effect Snowfall to the Lee of the Great Lakes: Its Role in Michigan. Bull. Am. Meteorol. Soc. 1970, 51, 403–412. [Google Scholar] [CrossRef]
- Niziol, T.A. Operational Forecasting of Lake Effect Snowfall in Western and Central New York. Weather Forecast. 1987, 2, 310–321. [Google Scholar] [CrossRef]
- Niziol, T.A.; Snyder, W.R.; Waldstreicher, J.S. Winter Weather Forecasting throughout the Eastern United States. Part IV: Lake Effect Snow. Weather Forecast. 1995, 10, 61–77. [Google Scholar] [CrossRef] [Green Version]
- Sousounis, P.J. Lake-Effect Storms. Encycl. Atmos. Sci. 2003, 1104–1115. [Google Scholar] [CrossRef]
- Hjelmfelt, M.R. Numerical Study of the Influence of Enviornmental Conditions on Lake-Effect Snowstorms over Lake Michigan. Mon. Weather Rev. 1990, 3, 54–67. [Google Scholar]
- Cordeira, J.M.; Laird, N.F. The Influence of Ice Cover on Two Lake-Effect Snow Events over Lake Erie. Mon. Weather Rev. 2008, 136, 2747–2763. [Google Scholar] [CrossRef] [Green Version]
- Vavrus, S.; Notaro, M.; Zarrin, A. The Role of Ice Cover in Heavy Lake-Effect Snowstorms over the Great Lakes Basin as Simulated by RegCM4. Mon. Weather Rev. 2013, 141, 148–165. [Google Scholar] [CrossRef]
- Wright, D.M.; Posselt, D.J.; Steiner, A.L. Sensitivity of Lake-Effect Snowfall to Lake Ice Cover and Temperature in the Great Lakes Region. Mon. Weather Rev. 2013, 141, 670–689. [Google Scholar] [CrossRef] [Green Version]
- Reeves, H.D.; Dawson, D.T. The Dependence of QPF on the Choice of Microphysical Parameterization for Lake-Effect Snowstorms. J. Appl. Meteorol. Climatol. 2013, 52, 363–377. [Google Scholar] [CrossRef]
- Conrick, R.; Reeves, H.D.; Zhong, S. The dependence of QPF on the choice of boundary- and surface-layer parameterization for a lake-effect snowstorm. J. Appl. Meteorol. Climatol. 2015, 54, 1177–1190. [Google Scholar] [CrossRef]
- Campbell, L.S.; Steenburgh, W.J.; Veals, P.G.; Letcher, T.W.; Minder, J.R. Lake-effect mode and precipitation enhancement over the Tug Hill Plateau during OWLeS IOP2b. Mon. Weather Rev. 2016, 144, 1729–1748. [Google Scholar] [CrossRef]
- Bergmaier, P.T.; Geerts, B.; Campbell, L.S.; Steenburgh, W.J. The OWLeS IOP2b lake-effect snowstorm: Dynamics of the secondary circulation. Mon. Weather Rev. 2017, 145, 2437–2459. [Google Scholar] [CrossRef]
- Kristovich, D.R.; Clark, R.D.; Frame, J.; Geerts, B.; Knupp, K.R.; Kosiba, K.A.; Laird, N.F.; Metz, N.D.; Minder, J.R.; Sikora, T.D.; et al. The Ontario winter lake-effect systems field campaign scientific and educational adventures to further our knowledge and prediction of lake-effect storms. Bull. Am. Meteorol. Soc. 2017, 98, 315–332. [Google Scholar] [CrossRef]
- Saslo, S.; Greybush, S.J. Prediction of lake-effect snow using convection-allowing ensemble forecasts and regional data assimilation. Weather Forecast. 2017, 32, 1727–1744. [Google Scholar] [CrossRef]
- Steenburgh, W.J.; Campbell, L.S. The OWLeS IOP2b lake-effect snowstorm: Shoreline geometry and the mesoscale forcing of precipitation. Mon. Weather Rev. 2017, 145, 2421–2436. [Google Scholar] [CrossRef]
- Mulholland, J.P.; Frame, J.; Nesbitt, S.W.; Steiger, S.M.; Kosiba, K.A.; Wurman, J. Observations of misovortices within a long-lake-axis-parallel lake-effect snowband during the OWLeS project. Mon. Weather Rev. 2017, 145, 3265–3291. [Google Scholar] [CrossRef]
- Minder, J.R.; Bartolini, W.M.; Spence, C.; Hedstrom, N.R.; Blanken, P.D.; Lenters, J.D. Characterizing and constraining uncertainty associated with surface and boundary layer turbulent fluxes in simulations of lake-effect snowfall. Weather Forecast. 2020, 35, 467–488. [Google Scholar] [CrossRef]
- Wiley, J.; Mercer, A. An Updated Synoptic Climatology of Lake Erie and Lake Ontario Heavy Lake-Effect Snow Events. Atmosphere 2020, 11, 872. [Google Scholar] [CrossRef]
- Wiley, J.; Mercer, A. Synoptic Climatology of Lake-Effect Snow Events off the Western Great Lakes. Climate 2021, 9, 43. [Google Scholar] [CrossRef]
- Thomas, B.C.; Martin, J.E. A synoptic climatology and composite analysis of the Alberta clipper. Weather Forecast. 2007, 22, 315–333. [Google Scholar] [CrossRef]
- Steenburgh, W.J.; Mass, C.F. The structure and evolution of a simulated Rocky Mountain lee trough. Mon. Weather Rev. 1994, 122, 2740–2761. [Google Scholar] [CrossRef] [Green Version]
- Schultz, D.M.; Doswell, C.A. Analyzing and forecasting Rocky Mountain lee cyclogenesis often associated with strong winds. Weather Forecast. 2000, 15, 152–173. [Google Scholar] [CrossRef] [Green Version]
- Hutchinson, T.A. An analysis of NMC’s Nested Grid Model forecasts of Alberta clippers. Weather Forecast. 1995, 10, 632–641. [Google Scholar] [CrossRef] [Green Version]
- American Meteorological Society, 2021: Alberta clipper. Glossary of Meteorology. Available online: http://glossary.ametsoc.org/wiki/”Alberta_clipper” (accessed on 1 April 2021).
- Schwartz, R.M.; Schmidlin, T.W. Climatology of Blizzards in the Conterminous United States, 1959–2000. J. Clim. 2002, 15, 1765–1772. [Google Scholar] [CrossRef]
- Heidenreich, P. Wind Gusts Reached 137 km/h in Province on Wednesday thanks to Alberta Clipper Low-Pressure System. Global News. Available online: https://globalnews.ca/news/7575464/alberta-clipper-low-wind-record-rain-snow/ (accessed on 5 September 2021).
- Ellis, A.W.; Leathers, D.J. A synoptic climatological approach to the analysis of lake-effect snowfall: Potential forecasting applications. Weather Forecast. 1996, 11, 216–229. [Google Scholar] [CrossRef] [Green Version]
- Liu, A.Q.; Moore, G.W.K. Lake-effect snowstorms over southern Ontario, Canada, and their associated synoptic-scale environment. Mon. Weather Rev. 2004, 132, 2595–2609. [Google Scholar] [CrossRef]
- Suriano, Z.J.; Leathers, D.J. Synoptic climatology of lake-effect snowfall conditions in the eastern Great Lakes region. Int. J. Climatol. 2017, 37, 4377–4389. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Pan, H.-L.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Kistler, R.; Woollen, J.; Behringer, D.; et al. The NCEP Climate Forecast System Reanalysis. Bull. Am. Meteorol. Soc. 2010, 91, 1015–1058. [Google Scholar] [CrossRef]
- Grid Analysis and Display System (GrADS) The Center for Ocean-Land-Atmosphere Studies (COLA). George Mason University. Available online: http://cola.gmu.edu/grads/grads.php (accessed on 1 April 2021).
- ESRI. ArcGIS Pro: Release 2.1.0 Redlands; Environmental Systems Research Institute: Redlands, CA, USA, 2021. [Google Scholar]
- Zolina, O.; Gulev, S.K. Improving the accuracy of mapping cyclone numbers and frequencies. Mon. Weather Rev. 2002, 130, 748–759. [Google Scholar] [CrossRef]
- Marciano, C.G.; Lackmann, G.M.; Robinson, W.A. Changes in U.S. East Coast cyclone dynamics with climate change. J. Clim. 2015, 28, 468–484. [Google Scholar] [CrossRef]
- Mesinger, F.; DiMego, G.; Kalnay, E.; Mitchell, K.; Shafran, P.C.; Ebisuzaki, W.; Jovi’c, D.; Woollen, J.; Rogers, E.; Berbery, E.H.; et al. North American Regional Reanalysis. Bull. Am. Meteorol. Soc. 2006, 87, 343–360. [Google Scholar] [CrossRef] [Green Version]
- Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation for cluster analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Hoskins, B.J.; Draghici, I.; Davies, H.C. A new look at the ω-equation. Q. J. R. Meteorol. Soc. 1978, 104, 31–38. [Google Scholar] [CrossRef]
- NOAA Great Lakes Environmental Research Laboratory. Available online: https://coastwatch.glerl.noaa.gov/statistic/ (accessed on 9 July 2021).
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences; Academic Press: Cambridge, MA, USA, 2019; p. 182. [Google Scholar]
- Bjerknes, J. On the structure of moving cyclones. Geofys. Publ. 1919, 1, 1–8. [Google Scholar] [CrossRef]
- Xiao, C.; Lofgren, B.M.; Wang, J. WRF-based assessment of the Great Lakes’ impact on cold season synoptic cyclones. Atmos. Res. 2018, 214, 189–203. [Google Scholar] [CrossRef]
- Clark, C.A.; Goebbert, K.H.; Ganesh-Babu, B.; Young, A.M.; Heinlein, K.N.; Casas, E.G.; VanDe Guchte, A.P.; Krull, A.J.; Sefcovic, Z.P.; Connelly, R.J.; et al. Classification of Lake Michigan snow days for estimation of the lake-effect contribution to the downward trend in November snowfall. Int. J. Climatol. 2020, 40, 5656–5670. [Google Scholar] [CrossRef]
Year | December | January | February | Yearly Total |
---|---|---|---|---|
1997/98 | 2 | 2 | 0 | 4 |
1998/99 | 3 | 1 | 3 | 7 |
2005/06 | 3 | 5 | 3 | 11 |
2006/07 | 3 | 4 | 2 | 9 |
2007/08 | 3 | 1 | 2 | 6 |
2008/09 | 3 | 4 | 0 | 7 |
2009/10 | 1 | 1 | 0 | 2 |
2010/11 | 2 | 2 | 1 | 5 |
2011/12 | 3 | 4 | 1 | 8 |
2012/13 | 3 | 5 | 2 | 10 |
2013/14 | 2 | 5 | 2 | 9 |
Monthly Total | 28 (35.9%) | 34 (43.6%) | 16 (20.5%) | 78 |
Experiment Number | NARR Variables Used to Construct PCA |
---|---|
1 * | MSLP * |
2 | MSLP, 10-m winds |
3 | MSLP, 10-m winds, 1000 mb T |
4 | MSLP, 10-m winds, 1000 mb T, 2-m q |
5 | MSLP, 10-m winds, 1000 mb T, 2-m q, 850 mb heights, 850 mb winds |
6 | MSLP, 10-m winds, 1000 mb T, 2-m q, 850 mb heights, 850 mb winds, 850 mb T, 850 mb q |
7 | MSLP, 10-m winds, 1000 mb T, 2-m q, 500 mb heights, 500 mb winds |
8 | MSLP, 10-m winds, 1000 mb T, 2-m q, 500 mb heights, 500 mb winds, 500 mb T, 500 mb q |
9 | MSLP, 10-m winds, 1000 mb T, 2-m q, 850 mb heights, 850 mb winds, 500 mb heights, 500 mb winds |
10 | MSLP, 10-m winds, 1000 mb T, 2-m q, 850 mb heights, 850 mb winds, 850 mb T, 850 mb q, 500 mb heights, 500 mb winds, 500 mb T, 500 mb q |
11 | All NARR variables originally retained |
Experiment Number | PCs Retained | Clusters Used | Variance Explained | Silhouette Coefficient | Number of Misclusters |
---|---|---|---|---|---|
1 * | 2 * | 3 * | 25.9% * | 0.442 * | 1 * |
2 | 2 | 4 | 18.8% | 0.434 | 0 |
3 | 2 | 3 | 19.6% | 0.426 | 0 |
4 | 2 | 10 | 19.4% | 0.480 | 0 |
5 | 2 | 9 | 18.7% | 0.448 | 0 |
6 | 2 | 10 | 18.7% | 0.397 | 0 |
7 | 2 | 10 | 19.1% | 0.387 | 0 |
8 | 2 | 7 | 18.5% | 0.431 | 0 |
9 | 2 | 8 | 18.5% | 0.400 | 0 |
10 | 2 | 5 | 18.3% | 0.428 | 1 |
11 | 2 | 5 | 17.9% | 0.425 | 0 |
Lake Superior | Lake Michigan | Lake Huron | Lake Erie | Lake Ontario | |
---|---|---|---|---|---|
Lake Surface Temperature (non-LES) | 2.63 °C | 3.49 °C | 2.76 °C | 2.46 °C | 3.77 °C |
Lake Surface Temperature (LES) | 2.82 °C | 3.54 °C | 3.08 °C | 2.87 °C | 4.10 °C |
Ice cover (non-LES) | 16.96% | 14.52% | 24.60% | 34.33% | 8.22% |
Ice cover (LES) | 13.52% | 12.06% | 20.30% | 28.58% | 6.95% |
Cluster 1 | Cluster 2 | Cluster 3 | LES Composite | |
---|---|---|---|---|
Duration (hrs) | 89.3 | 77.4 | 80.1 | 90.32 |
Storm Intensity (mb) | 999.7 | 1006.2 | 1021.7 | 999.9 |
Propagation Speed (m s−1) | 15.85 | 16.83 | 18.46 | 15.93 |
Lake Superior | Lake Michigan | Lake Huron | Lake Erie | Lake Ontario | |
---|---|---|---|---|---|
Cluster 1 | 0.002 * | 0.005 * | 0.000 * | 0.005 * | 0.002 * |
Cluster 2 | 0.034 * | 0.048 * | 0.076 | 0.182 | 0.072 |
Cluster 3 | 0.357 | 0.301 | 0.368 | 0.386 | 0.676 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiley, J.; Mercer, A. Structure and Evolution of Non-Lake-Effect Snow Producing Alberta Clippers. Atmosphere 2021, 12, 1288. https://doi.org/10.3390/atmos12101288
Wiley J, Mercer A. Structure and Evolution of Non-Lake-Effect Snow Producing Alberta Clippers. Atmosphere. 2021; 12(10):1288. https://doi.org/10.3390/atmos12101288
Chicago/Turabian StyleWiley, Jake, and Andrew Mercer. 2021. "Structure and Evolution of Non-Lake-Effect Snow Producing Alberta Clippers" Atmosphere 12, no. 10: 1288. https://doi.org/10.3390/atmos12101288
APA StyleWiley, J., & Mercer, A. (2021). Structure and Evolution of Non-Lake-Effect Snow Producing Alberta Clippers. Atmosphere, 12(10), 1288. https://doi.org/10.3390/atmos12101288