Investigation of Biofuel as a Potential Renewable Energy Source
Abstract
:1. Fossil Fuel and Its Alternatives
2. Suitability of Biofuel as a Potential Renewable Energy Source
3. Types of Biofuels
4. Advantages and Disadvantages of Biofuel Production and Consumption
5. Environmental Impact of Biofuel Use
6. Gaps in the Understanding of Global Biofuel Use and Their Environmental Impact
7. Biofuel Use in Aviation Industry
7.1. FT-SPK
7.2. HEFA-SPK
7.3. HFS-SIP
7.4. ATJ-SPK
8. Problems with Biofuels in the Aviation Sector
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- BP. Statistical Review of World Energy, 69th ed.; BP p.l.c.: London, UK, 2020; Available online: https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html (accessed on 30 August 2021).
- Ritchie, H.; Roser, M. Fossil fuels, Our World in Data. 2017. Available online: https://ourworldindata.org/fossil-fuels (accessed on 30 August 2021).
- UNFCCC. Adoption of the Paris Agreement. COP, Report FCCC/CP/2015/L.9/Rev.1. Paris. 2015. Available online: https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf (accessed on 30 August 2021).
- Escobar, J.C.; Lora, E.S.; Venturini, O.J.; Yáňez, E.E.; Castillo, E.F.; Almazan, O. Biofuels: Environment, technology and food security. Renew. Sustain. Energy Rev. 2009, 13, 1275–1287. [Google Scholar] [CrossRef]
- Owusu, P.A.; Asumadu-Sarkodie, S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 2016, 3, 1167990. [Google Scholar] [CrossRef]
- Jacobson, M.Z. Review of solutions to global warming, air pollution and energy security. Energy Environ. Sci. 2009, 2, 148–173. [Google Scholar] [CrossRef]
- UNDESA. Analysis of the Voluntary National Reviews Relating to Sustainable Development Goal 7; United Nations Division for Economic and Social Affairs: New York, NY, USA, 2018; Available online: https://sustainabledevelopment.un.org/content/documents/258321159DESASDG7_VNR_Analysis2018_final.pdf (accessed on 30 August 2021).
- Crippa, M.; Oreggioni, G.; Guizzardi, D.; Muntean, M.; Schaaf, E.; Lo Vullo, E.; Solazzo, E.; Monforti-Ferrario, F.; Olivier, J.G.J.; Vignati, E. Fossil CO2 and GHG Emissions of All World Countries—2019 Report; EUR 29849 EN; Publication Office of the European Union: Luxembourg, 2019.
- Cui, H.; Hall, D.; Lutsey, N. Update on Global Transition to Electric Vehicles through 2019; The International Council on Clean Transportation: Washington, DC, USA; San Francisco, CA, USA; Berlin, Germany; Beijing, China, 2020; Available online: https://theicct.org/sites/default/files/publications/update-global-EV-stats-sept2020-EN.pdf (accessed on 30 August 2021).
- DBEIS. The Ten Point Plan for a Green Industrial Revolution; Department for Business, Energy & Industrial Strategy: London, UK, 2020. Available online: https://www.gov.uk/government/publications/the-ten-point-plan-for-a-green-industrial-revolution (accessed on 30 August 2021).
- Arutyunov, V.S.; Lisichkin, G.V. Energy resource of the 21st century: Problems and forecasts. Can renewable energy source replace fossil fuels? Russ. Chem. Rev. 2017, 86, 777–804. [Google Scholar] [CrossRef]
- Eisentraut, A. Technology Roadmap—Biofuels for Transport; International Energy Agency: Paris, France, 2011; Available online: https://fiva.org/wp-content/uploads/2019/04/Technology-Biofuels-for-Transport.pdf (accessed on 30 August 2021).
- Timilsina, G.R. Biofuels in the long-run global energy supply mix for transportation. Philos. Trans. R. Soc. A 2014, 372, 20120323. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Song, W.; Buhain, J. Bioenergy and biofuels: History, status and prespective. Renew. Sustain. Energy Rev. 2015, 42, 712–725. [Google Scholar] [CrossRef]
- Lee, J.W. Advanced Biofuels and Bioproducts, 1st ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Popp, J.; Harangi-Rakos, M.; Gabnai, Z.; Balogh, P.; Antal, G.; Bai, A. Biofuels and their co-products as livestock feed: Global economic and environmental implications. Molecules 2016, 21, 285. [Google Scholar] [CrossRef] [Green Version]
- OECD/Food and Agriculture Organisation of the United Nations. OECD-FAO Agriculture Outlook 2015; OECD Publishing: Paris, France, 2015. [Google Scholar] [CrossRef]
- Gumienna, M.; Szambelan, K.; Jelen, H.; Czarnecki, Z. Evaluation of ethanol fermentation parameters for bioethanol production from sugar beet pulp and juice. J. Inst. Brew. 2014, 120, 543–549. [Google Scholar] [CrossRef]
- Astolfi, A.L.; Rempel, A.; Cavanhi, V.A.F.; Alves, M.; Deamici, K.M.; Colla, L.M.; Costa, J.A.V. Simultaneous saccharification and fermentation of Spirulina sp. And corn starch for the production of bioethanol and obtaining biopeptides with high antioxidant activity. Bioresour. Technol. 2020, 301, 122698. [Google Scholar] [CrossRef]
- Jutakridsada, P.; Saengprachatanarug, K.; Kasemsiri, P.; Hiziroglu, S.; Kamwilaisak, K.; Chindaprasirt, P. Bioconversion of saccharum officinarum leaves for ethanol production using separate hydrolysis and fermentation processes. Waste Biomass Valorization 2019, 10, 817–825. [Google Scholar] [CrossRef]
- Kiyoshi, K.; Furukawa, M.; Seyama, T.; Kadokura, T.; Nakazato, A.; Nakayama, S. Butanol production from alkali-pretreated rice straw by co-culture of Clostridium thermocellum and Clostridium saccharoperbutylacetonicum. Bioresour. Technol. 2015, 186, 325–328. [Google Scholar] [CrossRef]
- Li, Y.; Tschaplinski, T.J.; Engle, N.L.; Hamilton, C.Y.; Rodriguez, M.; Liao, J.C.; Schadt, C.W.; Guss, A.M.; Yang, Y.; Graham, D.E. Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations. Biotechnol. Biofuels 2012, 5, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sivamani, S.; Baskar, R.; Chandrasekaran, A.P. Response surface optimization of acid pretreatment of cassava stem for bioethanol production. Environ. Prog. Sustain. Energy 2020, 39, 13335. [Google Scholar] [CrossRef]
- Saladini, F.; Patrizi, N.; Pulselli, F.M.; Marchettini, N.; Bastianoni, S. Guidelines for emergy evaluation of first, second and third generation biofuels. Renew. Sust. Energ. Rev. 2016, 66, 221–227. [Google Scholar] [CrossRef]
- Kumar, V.; Nanda, M.; Joshi, H.C.; Singh, A.; Sharma, S.; Verma, M. Production of biodiesel and bioethanol using algal biomass harvested from fresh water river. Renew. Energy 2018, 116, 606–612. [Google Scholar] [CrossRef]
- Brennan, L.; Owende, P. Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 2010, 14, 557–577. [Google Scholar] [CrossRef]
- John, R.P.; Anisha, G.S.; Nampoothiri, K.M.; Pandey, A. Micro and macroalgal biomass: A renewable source for bioethanol. Bioresour. Technol. 2011, 102, 186–193. [Google Scholar] [CrossRef]
- Daroch, M.; Geng, S.; Wang, G. Recent advances in liquid biofuel production from algal feedstocks. Appl. Energy 2013, 102, 1371–1381. [Google Scholar] [CrossRef]
- Nigam, P.S.; Singh, A. Production of liquid biofuels from renewable sources. Prog. Energ. Combust. 2011, 37, 52–68. [Google Scholar] [CrossRef]
- Choi, Y.Y.; Patel, A.K.; Hong, M.E.; Chang, W.S.; Sim, S.J. Microalgae Bioenergy with Carbon Capture and Storage (BECCS): An emerging sustainable bioprocess for reduced CO2 emission and biofuel production. Bioresour. Technol. Rep. 2019, 7, 100270. [Google Scholar] [CrossRef]
- Javed, F.; Aslam, M.; Rashid, N.; Shamair, Z.; Khan, A.L.; Yasin, M.; Fazal, T.; Hafeez, A.; Rehman, F.; Rehman, M.S.U.; et al. Microalgae-based biofuels, resource recovery and wastewater treatment: A pathway towards sustainable biorefinery. Fuel 2019, 255, 115826. [Google Scholar] [CrossRef]
- Milledge, J.J.; Smith, B.; Dyer, P.W.; Harvey, P. Macroalgae-Derived Biofuel: A Review of Methods of Energy Extraction from Seaweed Biomass. Energies 2014, 7, 7194–7222. [Google Scholar] [CrossRef]
- McLaren, J. Sugarcane as a Feedstock for Biofuels: An Analytical White Paper; National Corn Growers Association: Chesterfield, MO, USA, 2009. [Google Scholar]
- Milledge, J.J.; Heaven, S. Methods of energy extraction from microalgal biomass: A review. Rev. Environ. Sci. Biotechnol. 2014, 13, 301–320. [Google Scholar] [CrossRef] [Green Version]
- Fudholi, A.; Sopian, K.; Othman, M.Y.; Ruslan, M.H. Energy and exergy analyses of solar drying system of red seaweed. Energy Build. 2014, 68, 121–129. [Google Scholar] [CrossRef]
- Jiang, W.; Brueggeman, A.J.; Horken, K.M.; Plucinak, T.M.; Weeks, D.P. Successful transient expression of Cas9 and single guide RNA genes in Chlamydomonas reinhardtii. Eukaryot. Cell 2014, 13, 1465–1469. [Google Scholar] [CrossRef] [Green Version]
- Shin, S.-E.; Lim, J.-M.; Koh, H.G.; Kim, E.K.; Kang, N.K.; Jeon, S.; Kwon, S.; Shin, W.-S.; Lee, B.; Hwangbo, K.; et al. CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Sci. Rep. 2016, 6, 27810. [Google Scholar] [CrossRef]
- Tilman, D.; Socolow, R.; Foley, J.A.; Hill, J.; Larson, E.; Lynd, L.; Pacala, S.; Reilly, J.; Searchinger, T.; Somerville, C.; et al. Beneficial biofuels—The food, energy and environment trilemma. Science 2009, 325, 270–271. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, F.C.; Coelho, S.T. History, evolution and environmental impact of biodiesel in Brazil: A review. Renew. Sust. Energ. Rev. 2017, 75, 168–179. [Google Scholar] [CrossRef]
- Muhammad, U.L.; Shamsuddin, I.M.; Danjuma, A.; Musawa, R.S.; Dembo, U.H. Biofuels as the starring substitute to fossil fuels. Pet. Sci. Eng. 2018, 2, 44–49. [Google Scholar]
- Hanaki, K.; Portugal-Pereira, J. Biofuels and Sustainability: Holistic Perspectives for Policy-Making; Takeuchi, K., Shiroyama, H., Saito, O., Matsuura, M., Eds.; Springer: Tokyo, Japan, 2018; pp. 53–71. [Google Scholar]
- USEIA. Monthly Energy Review; U.S. Energy Information Administration: Washington, DC, USA, 2020. Available online: https://www.eia.gov/totalenergy/data/monthly/pdf/mer.pdf (accessed on 30 August 2021).
- Yusoff, M.N.A.M.; Zulkifli, N.W.M.; Sukiman, N.L.; Chyuan, O.H.; Hassan, M.H.; Hasnul, M.H.; Zulkifli, M.S.A.; Abbas, M.M.; Zakaria, M.Z. Sustainability of Palm biodiesel in transportation: A review on biofuel standard, policy and international collaboration between Malaysia and Colombia. BioEnergy Res. 2020, 14, 43–60. [Google Scholar] [CrossRef]
- Cardoso, L.C.B.; Bittencourt, M.V.L.; Litt, W.H.; Irwin, E.G. Biofuels policies and fuel demand elasticities in Brazil. Energy Policy 2019, 128, 296–305. [Google Scholar] [CrossRef]
- Putrasari, Y.; Praptijanto, A.; Santoso, W.B.; Lim, O. Resources, policy and research activities of biofuel in Indonesia: A review. Energy Rep. 2016, 2, 237–245. [Google Scholar] [CrossRef] [Green Version]
- Immerzeel, D.J.; Verweij, P.A.; van der Hilst, F.; Faaij, A.P.C. Biodiversity impacts of bioenergy crop production: A state-of-the-art review. Glob. Chang. Biol. Bioenergy 2014, 6, 183–209. [Google Scholar] [CrossRef] [Green Version]
- Aro, E.-M. From first generation biofuels to advanced solar biofuels. Ambio 2016, 45, 24–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, R.A.; Lavoie, J.-M. From first- to third-generation biofuels: Challenges of producing a commodity from a biomass of increasing complexity. Anim. Front. 2013, 3, 6–11. [Google Scholar] [CrossRef]
- Murphy, D.J.; Hall, C.A.S. Year in review-EROI or energy return on (energy) invested. Ann. N. Y. Acad. Sci. 2010, 1185, 102–118. [Google Scholar] [CrossRef] [PubMed]
- Goldemberg, J. Ethanol for a sustainable energy future. Science 2007, 315, 808–810. [Google Scholar] [CrossRef] [Green Version]
- de Castro, C.; Carpintero, O.; Frachoso, F.; Mediavilla, M.; de Miguel, L.J. A top-down approach to assess physical and ecological limits of biofuels. Energy 2014, 64, 506–512. [Google Scholar] [CrossRef]
- Mizik, T.; Gyarmati, G. Economic and sustainability of biodiesel production- A systematic literature review. Clean Technol. 2021, 3, 19–36. [Google Scholar] [CrossRef]
- AQEG. Road Transport Biofuels: Impact on UK Air Quality; Department for Environment Food & Rural Areas: London, UK, 2011. Available online: https://www.gov.uk/government/publications/road-transportbiofuels-impact-on-uk-air-quality (accessed on 30 August 2021).
- Dias, D.; Antunes, A.P.; Tchepel, O. Modelling of emissions and energy use from biofuel fuelled vehicles at urban scale. Sustainability 2019, 11, 2902. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, S.; Kaushik, S.; Tomar, R.S. Global scenario of biofuel production: Past, present and future. In Prospects of Renewable Bioprocessing in Future Energy Systems, Biofuel and Biorefinery Technologies; Rastegari, A., Yadav, A., Gupta, A., Eds.; Springer: Cham, Switzerland, 2019; Volume 10, pp. 499–518. [Google Scholar]
- Subramaniam, Y.; Masron, T.A.; Azman, N.H.N. Biofuels, environmental sustainability and food security: A review of 51 countries. Energy Res. Soc. Sci. 2020, 68, 101549. [Google Scholar] [CrossRef]
- US Department of Energy. Biodiesel Handling and Use Guidelines; US Department of Energy: Washington, DC, USA, 2004; pp. 1–69.
- Agarwal, D.; Sinha, S.; Agarwal, A.K. Experimental investigation of control of NOx emissions in biodiesel-fueled compression ignition engine. Renew. Energy 2006, 31, 2356–2369. [Google Scholar] [CrossRef]
- Demirbas, A. Progress and recent trends in biodiesel fuels. Energy Conv. Manag. 2009, 50, 14–34. [Google Scholar] [CrossRef]
- Webb, A.; Coates, D. Biofuels and Biodiversity. In Secretariat of the Convention on Biological Diversity; Technical Series No 65; Secretariat of the Convention on Biological Diversity: Montreal, QC, Canada, 2012; pp. 1–69. [Google Scholar]
- Gaurav, N.; Sivasankari, S.; Kiran, G.S.; Ninawe, A.; Selvin, J. Utilization of bioresources for sustainable biofuels: A Review. Renew. Sust. Energ. Rev. 2017, 73, 205–214. [Google Scholar] [CrossRef]
- Fingerman, K.R.; Torn, M.S.; O’Hare, M.H.; Kammen, D.M. Accounting for the water impacts of ethanol production. Environ. Res. Lett. 2010, 5, 014020. [Google Scholar] [CrossRef]
- Locke, A.; Henley, G. A Review of the Literature on Biofuels and Food Security at a Local Level: Assessing the State of the Evidence; Overseas Development Institute: London, UK, 2014. [Google Scholar]
- Renzaho, A.M.N.; Kamara, J.K.; Toole, M. Biofuel production and its impact on food security in low and middle income countries: Implications for the post-2015 sustainable development goals. Renew. Sust. Energ. Rev. 2017, 78, 503–516. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, F.; Liu, S.; Wang, L.; Qiu, L.; Alexandrov, G.; Jothiprakash, V. Bioenergy production and environmental impacts. GeoSci. Lett. 2018, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- Hill, J.; Nelson, E.; Tilman, D.; Polasky, S.; Tiffany, D. Environmnetal, economic and energetic costs and benefits of biodiesel and ethanol biofuels. Proc. Nat. Acad. Sci. USA 2006, 103, 11206–11210. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Kundu, A.; Basu, S.; Shetti, N.P.; Aminabhavi, T.M. Sustainable environmental management and related biofuel technologies. J. Environ. Manag. 2020, 273, 111096. [Google Scholar] [CrossRef]
- Milano, J.; Ong, H.C.; Majuki, H.H.; Chong, W.T.; Lam, M.K.; Loh, P.K.; Vellayan, V. Microalgae biofuels as an alternative to fossil fuel for power generation. Renew. Sust. Energ. Rev. 2016, 58, 180–197. [Google Scholar] [CrossRef]
- Larson, E.D. A review of life-cycle analysis studies on liquid biofuel systems for the transport sector. Energy Sustain. Develop. 2006, 10, 109–126. [Google Scholar] [CrossRef]
- Zabbey, N.; Olsson, G. Conflicts-Oil exploration and water. Glob. Chall. 2017, 1, 1600015. [Google Scholar] [CrossRef] [Green Version]
- Demirbas, A. Political, economic and environmental impacts of biofuels: A review. App. Energy 2009, 86, S108–S117. [Google Scholar] [CrossRef]
- Shekofteh, M.; Gundoshmian, T.M.; Jahanbakhshi, A.; Heidari-Maleni, A. Performance and emission characteristics of a diesel engine fueled with functionalized multiwall carbon nanotubes (MWCNTs-OH) and diesel-biodiesel-bioethanol blends. Energy Rep. 2020, 6, 1438–1447. [Google Scholar] [CrossRef]
- Varol, Y.; Öner, C.; Öztop, H.F.; Altun, S. Comparison of methanol, ethanol, or n-butanol blending with unleaded gasoline on exhaust emissions of an SI engine. Energy Sources, Part A: Recovery. Util. Environ. Eff. 2014, 36, 938–948. [Google Scholar]
- Giakoumis, E.G.; Rakopoulos, C.D.; Rakopoulos, D.C. Assessment of NOx emissions during transient diesel engine operation with biodiesel blends. J. Energy Eng. 2014, 140, A4014004. [Google Scholar] [CrossRef]
- Porqueras, E.M.; Rittmann, S.; Herwig, C. Biofuels and CO2 neutrality: An opportunity. Biofuels 2012, 3, 413–426. [Google Scholar] [CrossRef]
- Brazil Ministry of Agriculture, Livestock and Supply. Benefícios Ambientais da Produção e do USO do Biodiesel. Brazil. 2014. Available online: https://ubrabio.com.br/sites/1800/1891/PDFs/BenefAciosAmbientaisdaProduAAoeUsodoBiod.pdf (accessed on 30 August 2021).
- Mathews, J.A. Carbon-negative biofuels. Energy Policy 2008, 36, 940–945. [Google Scholar] [CrossRef]
- Cooke, M.C.; Marven, A.R.; Utembe, S.R.; Archibald, A.T.; Ensor, G.W.R.; Jenkin, M.E.; Derwent, R.G.; O’Doherty, S.J.; Shallcross, D.E. On the effect of a global adoption of various fractions of biodiesel on key species in the troposphere. Int. J. Oil Gas. Coal Technol. 2010, 3, 88–103. [Google Scholar] [CrossRef]
- Can, Ö.; Öztürk, E.; Yücesu, H.S. Combustion and exhaust emissions of canola biodiesel blends in a single cylinder DI diesel engine. Renew. Energy 2017, 109, 73–82. [Google Scholar] [CrossRef]
- Nabi, M.N.; Akhter, M.S.; Shahadat, M.M.Z. Improvement of engine emissions with conventional diesel fuel and diesel-biodiesel blends. Bioresour. Technol. 2006, 97, 372–378. [Google Scholar] [CrossRef]
- Ehhalt, D.; Prather, M.; Dentener, F.; Derwent, R.; Dlugokencky, E.J.; Holland, E.; Isaksen, I.; Katima, J.; Kirchhoff, V.; Matson, P.; et al. Atmospheric Chemistry and Greenhouse Gases, in Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2001; pp. 239–288. [Google Scholar]
- Zhang, J.J.; Wei, Y.; Fang, Z. Ozone pollution: A Major health hazard worldwide. Front. Immun. 2019, 10, 2518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartz, J. Air pollution and hospital admissions for admissions for respiratory disease. Epidemiology 1997, 7, 20–28. [Google Scholar] [CrossRef]
- Medina-Ramón, M.; Zanobetti, A.; Schwartz, J. The effect of ozone and PM10 on hospital admissions for pneumonia and chronic obstructive pulmonary disease: A national multicity study. Am. J. Epidemiol. 2006, 163, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Ji, M.; Cohan, D.S.; Bell, M.L. Meta-analysis of the association between short-term exposure to ambient ozone and respiratory hospital admissions. Environ. Res. Lett. 2011, 6, 024006. [Google Scholar] [CrossRef] [PubMed]
- Hoek, G.; Schwartz, J.D.; Groot, B.; Eilers, P. Effects of ambient particulate matter and ozone on daily mortality in Rotterdam, The Netherlands. Arch. Environ. Health 1997, 52, 455–463. [Google Scholar] [CrossRef]
- Touloumi, G.; Katsouyanni, K.; Zmirou, D.; Schwartz, J.; Spix, C.; de Leon, A.P.; Tobias, A.; Quennel, P.; Rabczenko, D.; Bacharov, L.; et al. Short-term effects of ambient oxidant exposure on mortality: A combined analysis with the APHEA project. Air Pollution and Health: A European Approach. Am. J. Epidemiol. 1997, 146, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, M.S.; Burnett, R.T.; Brook, J.; Bailar, J.C., III; Valois, M.F.; Vincent, R. Associations between daily cause-specific mortality and concentrations of ground-level ozone in Montreal, Quebec. Am. J. Epidemiol. 2001, 154, 817–826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, Y.H.; Abdullah, M.O.; Nolasco-Hipolito, C.; Zauzi, N.S.A.; Abdullah, G.W. Engine performance and emissions characteristics of a diesel engine fueled with diesel-biodiesel-bioethanol emulsions. Energy Convers. Manag. 2017, 132, 54–64. [Google Scholar] [CrossRef]
- Hosseinzadeh-Bandbafha, H.; Tabatabaei, M.; Aghbashlo, M.; Khanali, M.; Demirbas, A. A comprehensive review on the environmental impacts of diesel/biodiesel additives. Energy Convers. Manag. 2018, 174, 579–614. [Google Scholar] [CrossRef]
- Gharehghani, A.; Asiaei, S.; Khalife, E.; Najafi, B.; Tabatabaei, M. Simulataneous reduction of CO and NOx emissions as well as fuel consumption by using water and nano particles in diesel-biodiesel blend. J. Clean. Prod. 2019, 210, 1164–1170. [Google Scholar] [CrossRef]
- Nogueira, T.; Dominutti, P.A.; de Carvalho, L.R.F.; Fornaro, A.; de Fatima Andrade, M. Formaldehyde and acetaldehyde measurements in urban atmosphere impacted by the use of ethanol biofuel: Metropolitan area of Sao Paulo (MASP), 2012-2013. Fuel 2014, 134, 505–513. [Google Scholar] [CrossRef]
- Zarante, P.H.B.; Sodré, J.R. Simulation of aldehyde emissions from an ethanol fueled spark ignition engine and comparison with FTIR measurements. J. Phys. Conf. Ser. 2016, 745, 32023. [Google Scholar] [CrossRef]
- Sundvor, I.; López-Aparicio, S. Impact of bioethanol fuel implementation in transport based on modelled acetaldehyde concentration in the urban environment. Sci. Total Environ. 2014, 496, 100–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, L.; Cheung, C.S.; Zhang, W.G.; Fang, J.H.; Huang, Z. Effects of ethanol-biodiesel blend and diesel oxidation catalyst (DOC) on particulate and unregulated emissions. Fuel 2013, 113, 690–696. [Google Scholar] [CrossRef]
- Atkinson, R.; Baulch, D.L.; Cox, R.A.; Crowley, J.N.; Hampson, R.F.; Hynes, R.G.; Jenkin, M.E.; Rossi, M.J.; Troe, J. IUPAC Subcommittee. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II- gas phase reactions of organic species. Atmos. Chem. Phys. 2006, 6, 3625–4055. [Google Scholar] [CrossRef] [Green Version]
- Grosjean, D. Atmospheric chemistry of alcohols. J. Braz. Chem. Soc. 1997, 8, 433–442. [Google Scholar] [CrossRef] [Green Version]
- Tanner, R.L.; Miguel, A.H.; de Andrade, J.B.; Gaffney, J.S.; Streit, G.E. Atmospheric chemistry of aldehydes: Enhanced peroxyacetyl nitrate formation from ethanol-fueled vehicular emissions. Environ. Sci. Technol. 1988, 22, 1026–1034. [Google Scholar] [CrossRef]
- Gaffney, J.S.; Marley, N.A.; Martin, R.S.; Dixon, R.W.; Reyes, L.G.; Popp, C.J. Potential air quality effects of using ethanol-gasoline fuel blends: A field study in Albuquerque, New Mexico. Environ. Sci. Technol. 1997, 31, 3053–3061. [Google Scholar] [CrossRef]
- Khan, M.A.H.; Cooke, M.C.; Utembe, S.R.; Archibald, A.T.; Maxwell, P.; Morris, W.C.; Xiao, P.; Derwent, R.G.; Jenkin, M.E.; Percival, C.J.; et al. The global atmospheric budget and distribution of acetone using the 3-D global model, STOCHEM-CRI. Atmos. Environ. 2015, 112, 269–277. [Google Scholar] [CrossRef]
- Khan, M.A.H.; Cooke, M.C.; Utembe, S.R.; Archibald, A.T.; Derwent, R.G.; Jenkin, M.E.; Leather, K.E.; Percival, C.J.; Shallcross, D.E. Global budget and distribution of peroxyacetyl nitrate (PAN) for present and preindustrial scenarios. Int. J. Earth Environ. Sci. 2017, 2, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.A.H.; Glaubes, H.; Kent, A.; Harrison, T.G.; Foulds, A.; Percival, C.J.; Shallcross, D.E. An estimate of the global budget and distribution of ethanol using a global 3-D atmospheric chemistry transport model STOCHEM-CRI. Trans. Royal Soc. S. Afr. 2017, 72, 174–183. [Google Scholar] [CrossRef] [Green Version]
- Wasiuk, D.K.; Khan, M.A.H.; Shallcross, D.E.; Lowenberg, M.H. An aircraft fuel burn and emissions inventory for 2005-2011. Atmosphere 2016, 7, 78. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, M.Z. Effects of ethanol (E85) versus gasoline vehicles on cancer and mortality in the United States. Environ. Sci. Technol. 2007, 41, 4150–4157. [Google Scholar] [CrossRef]
- Fischer, E.V.; Jacob, D.J.; Yantosca, R.M.; Sulprizio, M.P.; Millet, D.B.; Mao, J.; Paulot, F.; Singh, H.B.; Roiger, A.; Ries, L.; et al. Atmospheric peroxyacetyl nitrate (PAN): A global budget and source attribution. Atmos. Chem. Phys. 2014, 14, 2679–2698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Research and Council. Renewable Fuel Standard: Potential Economic Effects of U.S. Biofuel Policy; The National Academics Press: Washington, DC, USA, 2011.
- Utembe, S.R.; Cooke, M.C.; Archibald, A.T.; Jenkin, M.E.; Derwent, R.G.; Shallcross, D.E. Using a reduced Common Representative Intermediates (CRI v2-R5) mechanism to simulate tropospheric ozone in a 3D Lagrangian chemistry transport model. Atmos. Environ. 2010, 44, 1609–1622. [Google Scholar] [CrossRef]
- Archibald, A.T.; Cooke, M.C.; Utembe, S.R.; Shallcross, D.E.; Derwent, R.G.; Jenkin, M.E. Impacts of mechanistic changes on Hox formation and recycling in the oxidation of isoprene. Atmos. Chem. Phys. 2010, 10, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Naik, V.; Fiore, A.M.; Horowitz, L.W.; Singh, H.B.; Wiedinmyer, C.; Guenther, A.; de Gouw, J.A.; Millet, D.B.; Goldan, P.D.; Kuster, W.C.; et al. Observational constraints on the global atmospheric budget of ethanol. Atmos. Chem. Phys. 2010, 10, 5361–5370. [Google Scholar] [CrossRef] [Green Version]
- Ohlrogge, J.; Allen, D.; Berguson, B.; DellaPenna, D.; Shachar-Hill, Y.; Stymne, S. Driving on biomass. Science 2009, 324, 1019–1020. [Google Scholar] [CrossRef]
- Campbell, J.E.; Lobell, D.B.; Field, C.B. Greater transportation energy and GHG offsets from bioelectricity than ethanol. Science 2009, 324, 1055–1057. [Google Scholar] [CrossRef] [Green Version]
- Clayton, C. Drax group’s bioenergy CCS (BECCS) project. Greenh. Gas. Sci. Technol. 2019, 9, 130–133. [Google Scholar] [CrossRef]
- Consoli, C. Bioenergy and Carbon Capture Storage; Global CCS Institute: Melbourne, Australia, 2019; Available online: http://www.globalccsinstitute.com/wp-content/uploads/2019/03/BECCS-Perspective_FINAL_PDF.pdf (accessed on 30 August 2021).
- Chuck, C. Biofuels for Aviation: Feedbacks, Technology and Implementation; Academic Press: London, UK, 2016. [Google Scholar]
- Chiaramonti, D. Sustainable Aviation Fuels: The challenge of decarbonization. Energy Procedia 2019, 158, 1202–1207. [Google Scholar] [CrossRef]
- Lee, J.J. Can we accelerate the improvement of energy efficiency in aircraft systems? Energy Convers. Manag. 2010, 51, 189–196. [Google Scholar] [CrossRef]
- Kousoulidou, M.; Lonza, L. Biofuels in aviation: Fuel demand and CO2 emissions evolution in Europe toward 2030. Transp. Res. Part. D Transp. Environ. 2016, 46, 166–181. [Google Scholar] [CrossRef]
- Mohsin, R.; Kumar, T.; Majid, Z.A.; Nasri, N.S.; Sharer, Z.; Kumar, I.; Wash, A.M. Assessment of Biofuels in Aviation Industry for Environmental Sustainability. Chem. Eng. Trans. 2017, 56, 1189–1194. [Google Scholar]
- Le Feuvre, P. Are Aviation Biofuels Ready for Take-Off? IEA: Paris, France, 2019; Available online: https://www.iea.org/commentaries/are-aviation-biofuels-ready-for-take-off (accessed on 30 August 2021).
- Díaz-Pérez, M.A.; Serrano-Ruiz, J.C. Catalytic production of jet fuels from biomass. Molecules 2020, 25, 802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doliente, S.; Narayan, A.; Tapia, F.; Samsatli, N.J.; Zhao, Y.; Samsatli, S. Bio-aviation fuel: A comprehensive review and analysis of the supply chain components. Front. Energy Res. 2020, 8, 110. [Google Scholar] [CrossRef]
- Yang, J.; Xin, Z.; He, Q.; Corscadden, K.; Niu, H. An overview on performance characteristics of bio-jet fuels. Fuel 2019, 237, 916–936. [Google Scholar] [CrossRef]
- Blakey, S.; Rye, L.; Wilson, C.W. Aviation gas turbine alternative fuels: A review. Proc. Combust. Inst. 2011, 33, 2863–2885. [Google Scholar] [CrossRef]
- Timko, M.T.; Herndon, S.C.; de la Rosa Blanco, E.; Wood, E.C.; Yu, Z.; Miake-Lye, R.C.; Knighton, W.B.; Shafer, L.; Dewitt, M.J.; Corporan, E. Combustion products of petroleum jet fuel, a Fischer-Tropsch synthetic fuel and a biomass fatty acid methyl ester fuel for a gas turbine engine. Combust. Sci. Technol. 2011, 183, 1039–1068. [Google Scholar] [CrossRef]
- Gutiérrez-Antonio, C.; Gómez-Castro, F.I.; de Lira-Flores, J.A.; Hernández, S. A review on the production processes of renewable jet fuel. Renew. Sustain. Energy Rev. 2017, 79, 709–729. [Google Scholar] [CrossRef]
- Donnis, B.; Egeberg, R.G.; Blom, P.; Knudsen, K.G. Hydroprocessing of bio-oils and oxygenates to hydrocarbons. Understanding the reaction routes. Top. Catal. 2009, 52, 229–240. [Google Scholar] [CrossRef]
- Melero, J.A.; Iglesias, J.; Garcia, A. Biomass as renewable feedstock in standard refinery units. Feasibility, opportunities and challenges. Energy Environ. Sci. 2012, 5, 7393–7420. [Google Scholar] [CrossRef]
- Immer, J.G.; Kelly, M.J.; Lamb, H.H. Catalytic reaction pathways in liquid-phase deoxygenation of C18 free fatty acids. Appl. Catal. A 2010, 375, 134–139. [Google Scholar] [CrossRef]
- Takemura, Y.; Nakamura, A.; Taguchi, H.; Ouchi, K. Catalytic decarboxylation of benzoic acid. Ind. Eng. Chem. Prod. Res. Dev. 1985, 24, 213–215. [Google Scholar] [CrossRef]
- Snåre, M.; Kubičková, I.; Mäki-Arvela, P.; Eränen, K.; Murzin, D.Y. Heterogeneous catalytic deoxygenation of stearic acid for production of biodiesel. Ind. Eng. Chem. Res. 2006, 45, 5708–5715. [Google Scholar] [CrossRef]
- Wang, M.; Chen, M.; Fang, Y.; Tan, T. Highly efficient conversion of plant oil to bio-aviation fuel and valuable chemicals by combination of enzymatic transesterification, olefin cross-metathesis, and hydrotreating. Biotechnol. Biofuels 2018, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ciubota-Rosie, C.; Ruiz, J.R.; Ramos, M.J.; Pérez, Á. Biodiesel from Camelina sativa: A comprehensive characterization. Fuel 2013, 105, 572–577. [Google Scholar] [CrossRef]
- Chiaramonti, D.; Prussi, M.; Buffi, M.; Tacconi, D. Sustainable bio kerosene: Process routes and industrial demonstration activities in aviation biofuels. Appl. Energy 2014, 136, 767–774. [Google Scholar] [CrossRef]
- Toba, M.; Abe, Y.; Kuramochi, H.; Osako, M.; Mochizuki, T.; Yoshimura, Y. Hydrodeoxygenation of waste vegetable oil over sulfide catalysts. Catal. Today 2011, 164, 533–537. [Google Scholar] [CrossRef]
- Verma, D.; Rana, B.S.; Kumar, R.; Sibi, M.G.; Sinha, A.K. Diesel and aviation kerosene with desired aromatics from hydroprocessing of Jatropha oil over hydrogenation catalysts supported on hierarchical mesoporous SAPO-11. Appl. Catal. A 2015, 490, 108–116. [Google Scholar] [CrossRef]
- Jiménez-Díaz, L.; Caballero, A.; Pérez-Hernández, N.; Segura, A. Microbial alkane production for jet fuel industry: Motivation, state of the art and perspectives. Microb. Biotechnol. 2017, 10, 103–124. [Google Scholar] [CrossRef]
- Fortier, M.O.P.; Roberts, G.W.; Stagg-Williams, S.M.; Sturm, B.S.M. Life cycle assessment of bio-jet fuel from hydrothermal liquefaction of microalgae. Appl. Energy 2014, 122, 73–82. [Google Scholar] [CrossRef]
- Bauen, A.; Bitossi, N.; German, L.; Harris, A.; Leow, K. Sustainable aviation fuels. Johns. Matthey Technol. Rev. 2020, 64, 263–278. [Google Scholar] [CrossRef]
- Liu, C.L.; Tian, T.; Alonso-Gutierrez, J.; Garabedian, B.; Wang, S.; Baidoo, E.E.K.; Benites, V.; Chen, Y.; Petzold, C.J.; Adams, P.D.; et al. Renewable production of high density jet fuel precursor sesquiterpenes from Escherichia coli. Biotechnol. Biofuels 2018, 11, 1–15. [Google Scholar] [CrossRef]
- Hu, Y.; Zhan, N.; Dou, C.; Huang, H.; Han, Y.; Yu, D.; Hu, Y. Selective dehydration of bio-ethanol to ethylene catalyzed by lanthanum-phosphorous-modified HZSM-5: Influence of the fusel. Biotechnol. J. 2010, 5, 1186–1191. [Google Scholar] [CrossRef] [PubMed]
- Atsumi, S.; Hanai, T.; Liao, J.C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 2008, 451, 86–89. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Tao, L.; Markham, J.; Zhang, Y.; Tan, E.; Batan, L.; Biddy, M.; Wang, W.-C.; Tao, L.; Zhang, Y.; et al. Review of Biojet Fuel Conversion Technologies; Technical Report, NREL/TP-5100-66291; National Renewable Energy Laboratory: Golden, CO, USA, 2016. Available online: https://www.nrel.gov/docs/fy16osti/66291.pdf (accessed on 30 August 2021).
- McGillen, M.R.; Bassandori, M.; Burkholder, J.B. Gas-Phase Rate Coefficients for the OH plus n-, i-, s- and t-Butanol Reactions Measured Between 220 and 380 K: Non-Arrhenius Behaviour and Site-Specific Reactivity. J. Phys. Chem. A 2013, 117, 4636–4656. [Google Scholar] [CrossRef]
- McGillen, M.R.; Tyndall, G.S.; Orlando, J.J.; Pimentel, A.S.; Medeiros, D.J.; Burkholder, J.B. Experimentally Determined Site-Specific Reactivity of the Gas-Phase OH and Cl plus i-Butanol Reactions Between 251 and 340 K. J. Phys. Chem. A 2016, 120, 9968–9981. [Google Scholar] [CrossRef]
- Collins, W.J.; Stevenson, D.S.; Johnson, C.E.; Derwent, R.G. Tropospheric ozone in a global-scale three-dimensional Lagrangian model and its response to NOx emission controls. J. Atmos. Chem. 1997, 26, 223–274. [Google Scholar] [CrossRef]
- Wang, W.; Pinto, J.P.; Yung, Y.L. Greenhouse effects due to man-made perturbations of trace gases. J. Atmos. Sci. 1980, 37, 333–338. [Google Scholar] [CrossRef]
- Lacis, A.A.; Wuebbles, D.J.; Logan, J.A. Radiative forcing of climate by changes in the vertical distribution of ozone. J. Geophys. Res. 1990, 95, 9971–9981. [Google Scholar] [CrossRef]
- Hauglustaine, D.A.; Granier, C.; Brasseur, G.P.; Mégie, G. The importance of atmospheric chemistry in the calculation of radiative forcing on the climate system. J. Geophys. Res. 1994, 99, 1173–1186. [Google Scholar] [CrossRef]
- Mickley, L.J.; Murti, P.P.; Jacob, D.J.; Logan, J.A.; Koch, D.M.; Rind, D. Radiative forcing from tropospheric ozone calculated with a unified chemistry-climate model. J. Geophys. Res. 1999, 104, 30153–30172. [Google Scholar] [CrossRef]
- Jaeglé, L.; Jacob, D.J.; Brune, W.H.; Wennberg, P.O. Chemistry of HOx radicals in the upper troposphere. Atmos. Environ. 2001, 35, 469–489. [Google Scholar] [CrossRef]
- Kandaramath Hari, T.; Yaakob, Z.; Binitha, N.N. Aviation biofuel from renewable resources: Routes, opportunities and challenges. Renew. Sustain. Energy Rev. 2015, 42, 1234–1244. [Google Scholar] [CrossRef]
- He, Y.; King, B.; Pothier, M.; Lewane, L.; Akherati, A.; Mattila, J.; Farmer, D.K.; McCormick, R.L.; Thornton, M.; Pierce, J.R.; et al. Secondary organic aerosol formation from evaporated biofuels: Comparison to gasoline and correction for vapor wall losses. Environ. Sci. Process. Impacts 2020, 22, 1461–1474. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.A.H.; Bonifacio, S.; Clowes, J.; Foulds, A.; Holland, R.; Matthews, J.C.; Percival, C.J.; Shallcross, D.E. Investigation of Biofuel as a Potential Renewable Energy Source. Atmosphere 2021, 12, 1289. https://doi.org/10.3390/atmos12101289
Khan MAH, Bonifacio S, Clowes J, Foulds A, Holland R, Matthews JC, Percival CJ, Shallcross DE. Investigation of Biofuel as a Potential Renewable Energy Source. Atmosphere. 2021; 12(10):1289. https://doi.org/10.3390/atmos12101289
Chicago/Turabian StyleKhan, M. Anwar H., Sophia Bonifacio, Joanna Clowes, Amy Foulds, Rayne Holland, James C. Matthews, Carl J. Percival, and Dudley E. Shallcross. 2021. "Investigation of Biofuel as a Potential Renewable Energy Source" Atmosphere 12, no. 10: 1289. https://doi.org/10.3390/atmos12101289
APA StyleKhan, M. A. H., Bonifacio, S., Clowes, J., Foulds, A., Holland, R., Matthews, J. C., Percival, C. J., & Shallcross, D. E. (2021). Investigation of Biofuel as a Potential Renewable Energy Source. Atmosphere, 12(10), 1289. https://doi.org/10.3390/atmos12101289