Review of User-Friendly Models to Improve the Urban Micro-Climate
Abstract
:1. Introduction
- Building-scale models focus on isolated buildings, thermal comfort, indoor air quality, etc. These Building Energy Models (BEM) (e.g., EUReCA [17]) are based on energy balance applied to the building volume;
- Micro-scale models focus on the neighborhood scale and are mostly used in thermal comfort studies. The interaction between the building and its surroundings is the basis of the development of microclimate models. Different model types ranging from simple geometrical models to complex Computational Fluid Dynamic (CFD) and Large Eddy Simulation (LES) models can be categorized to micro-scale models. These models are mostly utilized by scientists and architects; and
- City-scale models are much coarser in resolution and are used to evaluate urban scale policies to mitigate heat island effects. For parameterization of various urban features, such as vegetation and building density at the meso-scale, single- and multi-layer urban canopy models are often applied [18].
2. Materials and Methods
2.1. Identification and Pre-Screening
2.2. Eligibility-Screening
- Peer-reviewed: The included models are published and introduced in peer-reviewed literature focusing on thermal or ventilation aspects of the micro-climate or urban climate listed in Web of Science and/or Science Direct. Models described comprehensively only in conference papers were not included. Also, models whose application is presented in peer-reviewed literature without description pertaining to the underlying basics such as formulae and concepts were excluded. This criterion also serves as proxy for the quality and reliability of the model.
- Urban Climate: The included models simulate and account for built-up and urban environments. Models that only simulate natural components were not considered.
- Micro-scale: Only models that simulate the micro-scale and resolve buildings explicitly (not parameterized) are considered.
- Worldwide application: The models included needed to have the ability to be used in different cities and across different climatic contexts globally. They should not be specifically tailored to one city, region, or country.
- Simulate outdoor thermal comfort: The included models simulate or estimate the outdoor bioclimate in terms of at least one of the following variables: air temperature (Ta), surface temperature (Ts), mean radiant temperature (Tmrt), or thermal comfort indices (e.g., PET, UTCI).
- User-friendly: The eligible models are user-friendly, i.e., provide a user interface and can be used on regular Windows PC without extensive computational resources.
- Availability: The models are currently available to download, purchase, and subscribe to. The models that are not supported or not provided any longer were excluded.
2.3. Full Review
3. Results and Discussion
3.1. Results of the Pre-Screening
3.2. Results of the Full Review
3.2.1. ADMS Temperature and Humidity Model (ADMS-TH)
3.2.2. Advanced SkyHelios Model
3.2.3. Ansys Fluent
3.2.4. ENVI-Met
3.2.5. RayMan
3.2.6. SOLWEIG
3.2.7. TownScope
3.2.8. UMEP
3.3. Evaluation against Observations
3.4. Combination and Inter-Comparison of Models
- Ref. [110] compared Envi-met, SOLWEIG, and RayMan with observations of Tmrt in Freiburg, Germany. They detected that RayMan performed with fine time resolution better than the other models.
- Ref. [114] compared the three models with observations for Berlin, Germany. The authors of this study concluded that the SOLWEIG simulated Tmrt closest to the observation, however, it over-estimated the amplitude of short-wave upward radiation.
- Ref. [81] also applied the models Envi-met, SOLWEIG, and RayMan and evaluated the simulation of Tmrt against observations in Szeged, Hungary. They evaluated the models for different survey points and revealed that models performing varies between the different sites.
- The study [115] for Szeged, Hungary, pointed out that the models RayMan Pro, SOLWEIG, and ENVI-met under-estimate night-time Tmrt. Overall SOLWEIG showed the lowest deviations from observations.
- Ref. [116] validated seasonal Tmrt obtained via RayMan and ENVI-met in Tempe, Arizona. This study reported that both models produce large simulation errors, thus exceeding a suggested Tmrt accuracy of ± 5 °C for heat-stress studies. Accordingly, both models were not able to accurately simulate Tmrt for hot conditions.
- The study [117] observed that ENVI-met has the lowest margin of error while RayMan has the highest and SOLWEIG is in the middle. RayMan however works best at higher solar altitudes on clear summer days, unlike ENVI-met that works well in cloudy and cloudless scenarios.
3.5. Links the GIS and CAD Software
- ADMS offers a visualization package and is linkable to meso-scale models such as WRF as well as to GIS software (ADMS-GIS extension). ADMS has links to GIS such as ArcGIS and offers its own GIS application called ADMS-Mapper. With these linkages model input can be generated and model output data can be visualized in GIS [130].
- The Advanced Skyhelios model can support typical spatial formats (e.g., shape, tif, ascii, and City GML) that can be generated and used in CAD or GIS in addition to special formats used by other models (RayMan obstacle files and ENVI-met area input files) [131].
- ANSYS FLUENT is targeted towards engineers since the simulating objects can be imported from various CAD and 3D visualization software.
- ENVI-met offers with Monde an additional editor to generate input data and the model domain from GIS data. Also, a Rhino/Grasshopper plugin is available to generate input data from CAD files [96].
- For RayMan a QGIS (free and opensource GIS software) plugin “SHP to OBS” provides the capability of creating input files for RayMan [132]. The plugin requires two ESRI®-shape files (or three, if vegetation is included) as input to create RayMan obstacle files. The plugin is available free for download.
- TownScope works well with CAD. The software can import data from main CAD systems and calculate solar gain, thermal comfort, and perceptive properties of urban open spaces. The software additionally allows for generation of terrain from 3D points [133]. TownScope can import data from main CAD systems and calculate solar gain, thermal comfort, and perceptive properties of urban open spaces. This produces results rapidly and can be applied to GIS formats [134].
- UMEP [71] is developed with the idea to enable users to interact with spatial information and to edit, map, and visualize inputs and results. Accordingly, it is written as a plug-in to QGIS, which is a cross-platform, free, and open-source desktop GIS application (https://qgis.org/en/site/, accessed on 2 October 2021). With a linkage to GIS also the creation of urban climate maps is supported [11]. As part of UMEP, SOLWEIG can be used in QGIS.
3.6. Availability of Support
3.7. Limitations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Webb, B. The Use of Urban Climatology in Local Climate Change Strategies: A Comparative Perspective. Int. Plan. Stud. 2016, 22, 68–84. [Google Scholar] [CrossRef] [Green Version]
- Bajšanski, I.V.; Milošević, D.D.; Savić, S.M. Evaluation and improvement of outdoor thermal comfort in urban areas on extreme temperature days: Applications of automatic algorithms. Build. Environ. 2015, 94, 632–643. [Google Scholar] [CrossRef]
- Jamei, E.; Seyedmahmoudian, M.; Horan, B.; Stojcevski, A. Verification of a bioclimatic modeling system in a growing suburb in Melbourne. Sci. Total Environ. 2019, 689, 883–898. [Google Scholar] [CrossRef] [PubMed]
- Lai, D.; Liu, W.; Gan, T.; Liu, K.; Chen, Q. A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces. Sci. Total Environ. 2019, 661, 337–353. [Google Scholar] [CrossRef] [PubMed]
- Milošević, D.D.; Bajšanski, I.V.; Savić, S.M. Influence of changing trees locations on thermal comfort on street parking lot and footways. Urban For. Urban Green. 2017, 23, 113–124. [Google Scholar] [CrossRef]
- Santamouris, M.; Synnefa, A.; Karlessi, T. Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions. Sol. Energy 2011, 85, 3085–3102. [Google Scholar] [CrossRef]
- Manavvi, S.; Rajasekar, E. Evaluating outdoor thermal comfort in “Haats”—The open air markets in a humid subtropical region. Build. Environ. 2021, 190, 107527. [Google Scholar] [CrossRef]
- Tablada, A.; De Troyer, F.; Blocken, B.; Carmeliet, J.; Verschure, H. On natural ventilation and thermal comfort in compact urban environments—The Old Havana case. Build. Environ. 2009, 44, 1943–1958. [Google Scholar] [CrossRef]
- Taleghani, M. Outdoor Thermal Comfort by Different Heat Mitigation Strategies—A Review. Renew. Sustain. Energ. Rev. 2018, 81, 2011–2018. [Google Scholar] [CrossRef]
- Wong, N.H.; Jusuf, S.K.; Tan, C.L. Integrated Urban Microclimate Assessment Method as a Sustainable Urban Development and Urban Design Tool. Landsc. Urban Plan. 2011, 100, 386–389. [Google Scholar] [CrossRef]
- Parsaee, M.; Joybari, M.M.; Mirzaei, P.A.; Haghighat, F. Urban Heat Island, Urban Climate Maps and Urban Development Policies and Action Plans. Environ. Technol. Innov. 2019, 14, 100341. [Google Scholar] [CrossRef]
- Erell, E. The Application of Urban Climate. Research in the Design of Cities. Adv. Build. Energy Res. 2008, 2, 95–121. [Google Scholar] [CrossRef]
- Toparlar, Y.; Blocken, B.; Maiheu, B.; van Heijst, G.J.F. A Review on the CFD Analysis of Urban Microclimate. Renew. Sustain. Energy Rev. 2017, 80, 1613–1640. [Google Scholar] [CrossRef]
- Lee, H.; Mayer, H. Validation of the Mean Radiant Temperature Simulated by the RayMan Software in Urban Environments. Int. J. Biomet. 2016, 60, 1775–1785. [Google Scholar] [CrossRef]
- Lauzet, N.; Rodler, A.; Musy, M.; Azam, M.-H.; Guernouti, S.; Mauree, D.; Colinart, T. How Building Energy Models Take the Local Climate into Account in an Urban Context A Review. Renew. Sustain. Energy Rev. 2019, 116, 109390. [Google Scholar] [CrossRef]
- Mirzaei, P.A. Recent Challenges in Modeling of Urban Heat Island. Sustain. Cities Soc. 2015, 19, 200–206. [Google Scholar] [CrossRef] [Green Version]
- Prataviera, E.; Romano, P.; Carnieletto, L.; Pirotti, F.; Vivian, J.; Zarrella, A. EUReCA: An open-source urban building energy modelling tool for the efficient evaluation of cities energy demand. Renew. Energy 2021, 173, 544–560. [Google Scholar] [CrossRef]
- Kwok, Y.T.; Ng, E.Y.Y. Trends, topics, and lessons learnt from real case studies using mesoscale atmospheric models for urban climate applications in 2000–2019. Urban Clim. 2021, 36, 100785. [Google Scholar] [CrossRef]
- Bherwani, H.; Singh, A.; Kumar, R. Assessment Methods of Urban Microclimate and Its Parameters: A Critical Review to Take the Research from Lab to Land. Urban Clim. 2020, 34, 100690. [Google Scholar] [CrossRef]
- Coccolo, S.; Kämpf, J.; Scartezzini, J.-L.; Pearlmutter, D. Outdoor Human Comfort and Thermal Stress: A Comprehensive Review on Models and Standards. Urban Clim. 2016, 18, 33–57. [Google Scholar] [CrossRef]
- Mauree, D.; Naboni, E.; Coccolo, S.; Perera, A.T.D.; Nik, V.M.; Scartezzini, J.-L. A Review of Assessment Methods for the Urban Environment and Its Energy Sustainability to Guarantee Climate Adaptation of Future Cities. Renew. Sustain. Energ. Rev. 2019, 112, 733–746. [Google Scholar] [CrossRef]
- Carruthers, D.J.; Holroyd, R.J.; Hunt, J.C.R.; Weng, W.S.; Robins, A.G.; Apsley, D.D.; Thompson, D.J.; Smith, F.B. UK-ADMS: A New Approach to Modelling Dispersion in the Earths Atmospheric Boundary Layer. J. Wind Eng. Ind. Aerodyn. 1994, 52, 139–153. [Google Scholar] [CrossRef]
- Fröhlich, D.; Matzarakis, A. Spatial Estimation of Thermal Indices in Urban Areas—Basics of the SkyHelios Model. Atmosphere 2018, 9, 209. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Hao, T.; Hou, S.S.; Jones, P. Simulation-Informed Urban Design: Improving Urban Microclimate in Real-World Practice in a High Density City. IOP Conf. Ser. Earth Environ. Sci. 2019, 329, 012047. [Google Scholar] [CrossRef] [Green Version]
- Poole, E.L.; Heroux, M.A.; Vaidya, P.; Joshi, A. Performance of Iterative Methods in ANSYS on Cray Parallel/Vector Supercomputers. Comput. Syst. Eng. 1995, 6, 251–259. [Google Scholar] [CrossRef]
- Tanimoto, J.; Hagishima, A.; Chinklai, P. Development of an advanced computer tool. AUSSM-Tool for a coupling simulation with building thermal system and urban climatology. In Proceedings of the Eighth International IBPSA Conference, Eindhoven, The Netherlands, 11–14 August 2003. [Google Scholar]
- Kim, K.R.; Yi, C.; Lee, J.S.; Meier, F.; Jänicke, B.; Fehrenbach, U.; Scherer, D. BioCAS: Biometeorological Climate impact Assessment System for building-scale impact assessment of heat-stress related mortality. DIE ERDE J. Geographic. Soc. 2014, 145, 62–79. [Google Scholar] [CrossRef]
- Schiavon, S.; Hoyt, T.; Piccioli, T.A. Web Application for Thermal Comfort Visualization and Calculation According to ASHRAE Standard 55. Build. Sim. 2014, 7, 321–334. [Google Scholar] [CrossRef]
- Fonseca, J.A.; Nguyen, T.A.; Schlueter, A.; Marechal, F. City Energy Analyst (CEA): Integrated Framework for Analysis and Optimization of Building Energy Systems in Neighborhoods and City Districts. Energy Build. 2016, 113, 202–226. [Google Scholar] [CrossRef]
- Chen, Y.; Hong, T.; Piette, M.A. Automatic generation and simulation of urban building energy models based on city datasets for city-scale building retrofit analysis. Appl. Energy 2017, 205, 323–335. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Cedeño-Laurent, J.G.; Spengler, J.D. CityComfort+: A Simulation-Based Method for Predicting Mean Radiant Temperature in Dense Urban Areas. Build. Environ. 2014, 80, 84–95. [Google Scholar] [CrossRef] [Green Version]
- Gallinelli, P.; Camponovo, R.; Guillot, V. CityFeel-micro climate monitoring for climate mitigation and urban design. Energy Procedia 2017, 122, 391–396. [Google Scholar] [CrossRef]
- Longcore, T.; Li, C.; Wilson, J.P. Applicability of citygreen urban ecosystem analysis software to a densely built urban neighborhood. Urban Geogr. 2004, 25, 173–186. [Google Scholar] [CrossRef] [Green Version]
- Robinson, D.; Haldi, F.; Leroux, P.; Perez, D.; Rasheed, A.; Wilke, U. CitySim: Comprehensive micro-simulation of resource flows for sustainable urban planning. In Proceedings of the Eleventh International IBPSA Conference, Glasgow, Scotland, 27–30 July 2009; pp. 1083–1090. [Google Scholar]
- Matuschek, O.; Matzarakis, A. A mapping tool for climatological applications. Meteorol Appl. 2011, 18, 230–237. [Google Scholar] [CrossRef]
- Brown, R.D.; Krys, S.A.; Gillespie, T.J. A model for estimating radiation received by a person in the landscape. Lands. Res. 1990, 15, 33–36. [Google Scholar] [CrossRef]
- Fava, D.; Guaragno, G.; Dall’Olio, C. Decision Support Systems for Urban Planning. In Counteracting Urban Heat Island Effects in a Global Climate Change Scenario; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 109–127. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; He, B.J.; Ye, M. Application research of ECOTECT in residential estate planning. Energy Build. 2014, 72, 95–202. [Google Scholar] [CrossRef]
- Bruse, M.; Fleer, H. Simulating surface–plant–air interactions inside urban environments with a three dimensional numerical model. Environ. Modelling Softw. 1998, 13, 373–384. [Google Scholar] [CrossRef]
- Gross, G. Some effects of deforestation on nocturnal drainage flow and local climate—A numerical study. Bound. Layer Meteorol. 1987, 38, 315–337. [Google Scholar] [CrossRef]
- Shashua-Bar, L.; Hoffman, M.E. The Green CTTC Model for Predicting the Air Temperature in Small Urban Wooded Sites. Build. Environ. 2002, 37, 1279–1288. [Google Scholar] [CrossRef]
- Devs, K.K.; Singh, M.; Vij, A. Online calculation for evaluation for site planning impacts—Experience of developing heat island tool for GRIHA LD. In Proceedings of the BS2015: 14th Conference of International Building Performance Simulation Association, Hyderabad, India, 7–9 December 2015. [Google Scholar]
- Buchholz, S.; Kossmann, M.; Roos, M. INKAS: A Guidance Tool to Assess the Impact of Adaptation Measures against Urban Heat. Meteorol. Z. 2016, 25, 281–289. [Google Scholar] [CrossRef]
- Allen, L.; Lindberg, F.; Grimmond, C.S.B. Global to city scale urban anthropogenic heat flux: Model and variability. Int. J. Climatol. 2001, 31, 1990–2005. [Google Scholar] [CrossRef]
- Wang, Y.Q. MeteoInfo: GIS Software for Meteorological Data Visualization and Analysis. Meteorol. Appl. 2012, 21, 360–368. [Google Scholar] [CrossRef]
- Ehrhard, J.; Khatib, I.A.; Winkler, C.; Kunz, R.; Moussiopoulos, N.; Ernst, G. The microscale model MIMO: Development and assessment. J. Wind Eng. Ind. Aerodyn. 2000, 85, 163–176. [Google Scholar] [CrossRef]
- Sailor, D.J.; Dietsch, N. The Urban Heat Island Mitigation Impact Screening Tool (MIST). Environ. Model Softw. 2007, 22, 1529–1541. [Google Scholar] [CrossRef] [Green Version]
- Sievers, U.; Zdunkowkski, A. microscale urban climate model. Beitr. Phys. Atmosph. 1986, 59, 13–40. [Google Scholar]
- Sievers, U. Das Kleinskalige Strömungsmodell MUKLIMO. Teil 1: Theoretische Grundlagen, PC-Basisversion und Validierung. Available online: https://refubium.fu-berlin.de/handle/fub188/19051 (accessed on 1 October 2021).
- Piroozmand, P.; Mussetti, G.; Allegrini, J.; Haji, M.; Ehsan, M.; Carmeliet, J. Coupled CFD framework with mesoscale urban climate model: Application to microscale urban flows with weak synoptic forcing. J. Wind Eng. Ind. Aerodyn. 2020, 197, 104059. [Google Scholar] [CrossRef]
- Comfable Inc. OTC Model™. Available online: https://comfable.com/otc-model-1-4-0/ (accessed on 7 January 2020).
- Mavrogianni, A.; Davies, M.; Batty, M.; Belcher, S.E.; Bohnenstengel, S.I.; Carruthers, D.; Chalabi, Z. The Comfort Energy and Health Implications of London’s Urban Heat Island. Build. Serv. Eng. Res. Technol. 2011, 32, 35–52. [Google Scholar] [CrossRef]
- Maronga, B.; Gryschka, M.; Heinze, R.; Hoffmann, F.; Kanani-Sühring, F.; Keck, M.; Ketelsen, K.; Letzel, M.O.; Sühring, M.; Raasch, S. The Parallelized Large-Eddy Simulation Model (PALM) version 4.0 for atmospheric and oceanic flows: Model formulation, recent developments, and future perspectives. Geosci. Model Dev. 2015, 8, 2515–2551. [Google Scholar] [CrossRef] [Green Version]
- Overby, M.; Willemsen, P.; Bailey, B.N.; Halverson, S.; Pardyjak, E.R. A Rapid and Scalable Radiation Transfer Model for Complex Urban Domains. Urban Clim. 2016, 15, 25–44. [Google Scholar] [CrossRef] [Green Version]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments—Application of the RayMan model. Int. J. Biometeorol. 2007, 51, 323–334. [Google Scholar] [CrossRef]
- Smith, C.; Lindley, S. Sustainable Cities: Options for Responding to Climate Change Impacts and Outcomes. WP3 Workshop Report Draft 1. In Proceedings of the SCORCHIO Stakeholder Workshop, Manchester, UK, 13 March 2008. [Google Scholar]
- Hoffmann, P.; Fischereit, J.; Heitmann, S.; Schlünzen, H.; Gasser, I. Modeling Exposure to Heat Stress with a Simple Urban Model. Urban Sci. 2018, 2, 9. [Google Scholar] [CrossRef] [Green Version]
- Nouvel, R.; Brassel, K.H.; Bruse, M.; Duminil, E.; Coors, V.; Eicker, U.; Robinson, D. SimStadt, a new workflow-driven urban energy simulation platform for CityGML city models. In Proceedings of the International Conference 2015 Future Buildings and Districts Sustainability from Nano to Urban Scale, Lausanne, Switzerland, 9–11 September 2015; pp. 889–894. [Google Scholar]
- Asawa, T.; Hoyano, A.; Nakaohkubo, K. Thermal design tool for outdoor spaces based on heat balance simulation using a 3D-CAD system. Build. Environ. 2008, 43, 2112–2123. [Google Scholar] [CrossRef]
- Morille, B.; Lauzet, N.; Musy, M. SOLENE-microclimate: A tool to evaluate envelopes efficiency on energy consumption at district scale. Energy Proc. 2015, 78, 1165–1170. [Google Scholar] [CrossRef] [Green Version]
- Lindberg, F.; Holmer, B.; Thorsson, S. SOLWEIG 1.0 Modelling Spatial Variations of 3D Radiant Fluxes and Mean Radiant Temperature in Complex Urban Settings. Int. J. Biomet. 2008, 52, 697–713. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.; Li, X.; Zhu, Y.; Qin, Y.; Zhu, Y.; Qin, Y. Numerical Simulation Studies of the Different Vegetation Patterns’ Effects on Outdoor Pedestrian Thermal Comfort. J. Wind Eng. Ind. Aerodyn. 2008, 96, 1707–1718. [Google Scholar] [CrossRef]
- Cavan, G.; Butlin, T.; Gill, S.; Kingston, R.; Lindley, S. Web-GIS Tools for Climate Change Adaptation Planning in Cities. In Handbook of Climate Change Adaptation; Leal Filho, W., Ed.; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Järvi, L.; Grimmond, C.S.B.; Christen, A. The Surface Urban Energy and Water Balance Scheme (SUEWS): Evaluation in Los Angeles and Vancouver. J. Hydrol. 2011, 411, 219–237. [Google Scholar] [CrossRef]
- Robinson, D.; Campbell, N.; Gaiser, W.; Kabel, K.; Le-Mouel, A.; Morel, N.; Page, J.; Stankovic, S.; Stone, A. SUNtool A New Modelling Paradigm for Simulating and Optimising Urban Sustainability. Sol. Energy 2007, 81, 1196–1211. [Google Scholar] [CrossRef]
- Gál, T.; Unger, J. A new software tool for SVF calculations using building and tree-crown databases. Urban Clim. 2014, 10, 594–606. [Google Scholar] [CrossRef] [Green Version]
- Teller, J.; Azar., S. Townscope IIA Computer System to Support Solar Access Decision-Making. Sol. Energy 2001, 70, 187–200. [Google Scholar] [CrossRef] [Green Version]
- Krayenhoff, E.S.; Voogt., J.A. A Microscale Three-Dimensional Urban Energy Balance Model for Studying Surface Temperatures. Bound. Layer Meteorol. 2007, 123, 433–461. [Google Scholar] [CrossRef]
- Friedrich, M.; Grätz, A.; Jendritzky, G. Further development of the urban bioclimate model UBIKLIM, taking local wind systems into account. Meteorol. Z. 2001, 10, 267–272. [Google Scholar] [CrossRef]
- Komac, B.; Ciglič, R. Urban heat island atlas: A web tool for the determination and mitigation of the urban heat island effect. Geogr. Pol. 2014, 87, 587–591. [Google Scholar]
- Lindberg, F.; Grimmond, C.S.B.; Gabey, A.; Huang, B.; Kent, C.W.; Sun, T.; Theeuwes, N.E. Urban Multi-Scale Environmental Predictor (UMEP): An Integrated Tool for City-Based Climate Services. Environ. Model Softw. 2018, 99, 70–87. [Google Scholar] [CrossRef]
- Reinhart, C.; Dogan, T.; Jakubiec, J.A.; Rakha, T.; Sang, A. Umi-an urban simulation environment for building energy use, daylighting and walkability. In Proceedings of the 13th Conference of International Building Performance Simulation Association, Chambery, France, 26–28 August 2013. [Google Scholar]
- Yao, R.; Luo, Q.; Luo, Z.; Jiang, L.; Yang, Y. An Integrated Study of Urban Microclimates in Chongqing China: Historical Weather Data, Transverse Measurement and Numerical Simulation. Sustain. Cities Soc. 2015, 14, 187–199. [Google Scholar] [CrossRef] [Green Version]
- Bueno, B.; Norford, L.; Hidalgo, J.; Pigeon, G. The Urban Weather Generator. J. Build. Perform. Simul. 2013, 6, 269–281. [Google Scholar] [CrossRef]
- Kusaka, H.; Chen, F.; Tewari, M.; Dudhia, J.; Gill, D.O.; Duda, M.G.; Wang, W.; Miya, Y. Numerical simulation of urban heat island effect by the WRF model with 4-km Grid increment: An inter-comparison study between the urban canopy model and slab model. J. Meteorol. Soc. Jpn. 2012, 90, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Maggiotto, G.; Buccolieri, R.; Santo, M.A.; Leo, L.S.; Di Sabatino, S. Validation of Temperature-Perturbation and CFD-Based Modelling for the Prediction of the Thermal Urban Environment: The Lecce (IT) Case Study. Environ. Model. Softw. 2014, 60, 69–83. [Google Scholar] [CrossRef]
- Nazarian, N.; Kleissl, J. CFD Simulation of an Idealized Urban Environment: Thermal Effects of Geometrical Characteristics and Surface Materials. Urban Clim. 2015, 12, 141–159. [Google Scholar] [CrossRef]
- Tsoka, S.; Tsikaloudaki, A.; Theodosiou, T. Analyzing the ENVI-Met Microclimate Model’s Performance and Assessing Cool Materials and Urban Vegetation Applications. A Review. Sustain. Cities Soc. 2018, 43, 55–76. [Google Scholar] [CrossRef]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments: Basics of the RayMan model. Int. J. Biometeorol. 2010, 54, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Lau, K.K.-L.; Ren, C.; Ho, J.; Ng, E. Numerical Modelling of Mean Radiant Temperature in High-Density Sub-Tropical Urban Environment. Energy Build. 2016, 114, 80–86. [Google Scholar] [CrossRef]
- Kántor, N.; Gál, C.V.; Gulyás, A.; Unger, J. The Impact of FaçAde Orientation and Woody Vegetation on Summertime Heat Stress Patterns in a Central European Square: Comparison of Radiation Measurements and Simulations. Adv. Meteorol. 2018, 2018, 2650642. [Google Scholar] [CrossRef]
- Bahgat, R.; Reffat, R.M.; Elkady, S.L. Analyzing the impact of design configurations of urban features on reducing solar radiation. J. Build. Eng. 2020, 32, 101664. [Google Scholar] [CrossRef]
- Al-Maiyah, S.; Elkadi, H. The role of daylight in preserving identities in heritage context. Renew. Sustain. Energy Rev. 2007, 11, 1544–1557. [Google Scholar] [CrossRef]
- Righi, S.; Lucialli, P.; Pollini, E. Statistical and Diagnostic Evaluation of the ADMS-Urban Model Compared with an Urban Air Quality Monitoring Network. Atmos. Environ. 2009, 43, 3850–3857. [Google Scholar] [CrossRef]
- Mallet, V.; Tilloy, A.; Poulet, D.; Girard, S.; Brocheton, F. Meta-Modeling of ADMS-Urban by Dimension Reduction and Emulation. Atmos. Environ. 2018, 184, 37–46. [Google Scholar] [CrossRef]
- Hamilton, I.; Stocker, J.; Evans, S.; Davies, M.; Carruthers, D. The Impact of the London Olympic Parkland on the Urban Heat Island. J. Build. Perform. Simul. 2013, 7, 119–132. [Google Scholar] [CrossRef] [Green Version]
- Virk, G.; Jansz, A.; Mavrogianni, A.; Mylona, A.; Stocker, J.; Davies, M. Microclimatic Effects of Green and Cool Roofs in London and Their Impacts on Energy Use for a Typical Office Building. Energy Build. 2015, 88, 214–228. [Google Scholar] [CrossRef]
- Fröhlich, D.; Gangwisch, M.; Matzarakis, A. Effect of Radiation and Wind on Thermal Comfort in Urban Environments—Application of the RayMan and SkyHelios Model. Urban Clim. 2019, 27, 1–7. [Google Scholar] [CrossRef]
- Singh, B.; Hansen, B.S.; Brown, M.J.; Pardyjak, E.R. Evaluation of the QUIC-URB Fast Response Urban Wind Model for a Cubical Building Array and Wide Building Street Canyon. Environ. Fluid Mech. 2008, 8, 281–312. [Google Scholar] [CrossRef]
- ANSYS Inc. ANSYS FLUENT 12.0/12.1 Documentation. 2020. Available online: https://www.afs.enea.it/project/neptunius/docs/fluent/index.htm (accessed on 18 March 2020).
- Saneinejad, S.; Moonen, P.; Carmeliet, J. Comparative Assessment of Various Heat Island Mitigation Measures. Build. Environ. 2014, 73, 162–170. [Google Scholar] [CrossRef]
- Garcia, J.; Cerdeira, R.; Tavares, N.; Coelho, L.M.R.; Kumar, K.; Carvalho, M.G. Influence of Virtual Changes in Building Configurations of a Real Street Canyon on the Dispersion of PM10. Urban Clim. 2013, 5, 68–81. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Li, Y. Predicting Urban Heat Island Circulation Using CFD. Build Environ. 2016, 99, 82–97. [Google Scholar] [CrossRef]
- Vidrih, B.; Medved, S. Multiparametric model of urban park cooling island. Urban For. Urban Green. 2013, 12, 220–229. [Google Scholar] [CrossRef]
- Simon, H.; Lindén, J.; Hoffmann, D.; Braun, P.; Bruse, M.; Esper, J. Modeling Transpiration and Leaf Temperature of Urban Trees A Case Study Evaluating the Microclimate Model ENVI-Met against Measurement Data. Landsc. Urban Plan. 2018, 174, 33–40. [Google Scholar] [CrossRef]
- Envi-met GmbH 2020 Technical Model Webpage. Available online: https://Envi-Met.info (accessed on 15 March 2020).
- Lindberg, F.; Grimmond, C.S.B. The Influence of Vegetation and Building Morphology on Shadow Patterns and Mean Radiant Temperatures in Urban Areas: Model Development and Evaluation. Theor. Appl. Climatol. 2011, 105, 311–323. [Google Scholar] [CrossRef]
- Thorsson, S.; Lindberg, F.; Björklund, J.; Holmer, B.; Rayner, D. Potential Changes in Outdoor Thermal Comfort Conditions in Gothenburg Sweden Due to Climate Change: The Influence of Urban Geometry. Int. J. Climatol. 2010, 31, 324–335. [Google Scholar] [CrossRef]
- Lindberg, F.; Onomura, S.; Grimmond, C.S.B. Influence of Ground Surface Characteristics on the Mean Radiant Temperature in Urban Areas. Int. J. Biomet. 2016, 60, 1439–1452. [Google Scholar] [CrossRef] [Green Version]
- Thom, J.K.; Coutts, A.M.; Broadbent, A.M.; Tapper, N.J. The Influence of Increasing Tree Cover on Mean Radiant Temperature across a Mixed Development Suburb in Adelaide Australia. Urban For. Urban Green. 2016, 20, 233–242. [Google Scholar] [CrossRef]
- Aminipouri, M.; Knudby, A.J.; Krayenhoff, E.S.; Zickfeld, K.; Middel., A. Modelling the Impact of Increased Street Tree Cover on Mean Radiant Temperature across Vancouver’s Local Climate Zones. Urban For. Urban Green. 2019, 39, 9–17. [Google Scholar] [CrossRef]
- Aminipouri, M.; Rayner, D.; Lindberg, F.; Thorsson, S.; Knudby, A.J.; Zickfeld, K.; Middel, A.; Krayenhoff, E.S. Urban Tree Planting to Maintain Outdoor Thermal Comfort under Climate Change: The Case of Vancouvers Local Climate Zones. Build. Environ. 2019, 158, 226–236. [Google Scholar] [CrossRef]
- Keene, S.E. Object-Oriented Programming in Common Lisp; a Programmer’s Guide to Clos; Symbolics Inc.: Cambridge, MA, USA, 1989. [Google Scholar]
- Dogniaux, R. Eclairement energetique solaire, direct, diffus et global du surfaces orientees et inclinees. IRM Misc. Ser. B 1994, 59, 46. [Google Scholar]
- Balany, F.; Ng, A.W.; Muttil, N.; Muthukumaran, S.; Wong, M.S. Green Infrastructure as an Urban Heat Island Mitigation Strategy—A Review. Water 2020, 12, 3577. [Google Scholar] [CrossRef]
- Marique, A.-F.; Reiter, S. A Simplified Framework to Assess the Feasibility of Zero-Energy at the Neighbourhood/Community Scale. Energy Build. 2014, 82, 114–122. [Google Scholar] [CrossRef] [Green Version]
- Brito, M.C.; Redweik, P.; Catita, C.; Freitas, S.; Santos, M. 3D solar potential in the urban environment: A case study in Lisbon. Energies 2019, 12, 3457. [Google Scholar] [CrossRef] [Green Version]
- Acero, J.A.; Arrizabalaga, J. Evaluating the performance of ENVI-met model in diurnal cycles for different meteorological conditions. Theoretic. Appl. Cimatol. 2018, 131, 455–469. [Google Scholar] [CrossRef]
- Thorsson, S.; Lindberg, F.; Eliasson, I.; Holmer, B. Different Methods for Estimating the Mean Radiant Temperature in an Outdoor Urban Setting. Int. J. Climatol. 2007, 27, 1983–1993. [Google Scholar] [CrossRef]
- Matzarakis, A.; Gangwisch, M.; Fröhlich, D. RayMan and SkyHelios Model. Urban Microclimate Modelling for Comfort and Energy Studies; Springer: Cham, Switzerland, 2021; pp. 339–361. [Google Scholar]
- Chen, Y.-C.; Lin, T.-P.; Matzarakis, A. Comparison of Mean Radiant Temperature from Field Experiment and Modelling: A Case Study in Freiburg Germany. Theor. Appl. Climatol. 2014, 118, 535–551. [Google Scholar] [CrossRef]
- Chen, L.; Yu, B.; Yang, F.; Mayer, H. Intra-Urban Differences of Mean Radiant Temperature in Different Urban Settings in Shanghai and Implications for Heat Stress under Heat Waves: A GIS-Based Approach. Energy Build. 2016, 130, 829–842. [Google Scholar] [CrossRef]
- Ao, X.; Grimmond, C.S.B.; Ward, H.C.; Gabey, A.M.; Tan, J.; Yang, X.-Q.; Liu, D.; Zhi, X.; Liu, H.; Zhang, N. Evaluation of the Surface Urban Energy and Water Balance Scheme (SUEWS) at a Dense Urban Site in Shanghai: Sensitivity to Anthropogenic Heat and Irrigation. J. Hydrometeorol. 2018, 19, 1983–2005. [Google Scholar] [CrossRef]
- Jänicke, B.; Meier, F.; Hoelscher, M.-T.; Scherer, D. Evaluating the Effects of Façade Greening on Human Bioclimate in a Complex Urban Environment. Adv. Meteorol. 2015, 2015, 747259. [Google Scholar] [CrossRef]
- Gál, C.V.; Kántor, N. Modeling Mean Radiant Temperature in Outdoor Spaces, A Comparative Numerical Simulation and Validation Study. Urban Clim. 2020, 32, 100571. [Google Scholar] [CrossRef]
- Crank, P.J.; Middel, A.; Wagner, M.; Hoots, D.; Smith, M.; Brazel, A. Validation of Seasonal Mean Radiant Temperature Simulations in Hot Arid Urban Climates. Sci. Total Environ. 2020, 749, 141392. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Hu, S.; Liu, J. Contrasting the Performance Capabilities of Urban Radiation Field between Three Microclimate Simulation Tools. Build. Environ. 2020, 175, 106789. [Google Scholar] [CrossRef]
- Hämmerle, M.; Gál, T.; Unger, J.; Matzarakis, A. Comparison of Models Calculating the Sky View Factor Used for Urban Climate Investigations. Theor. Appl. Climatol. 2011, 105, 521–527. [Google Scholar] [CrossRef]
- Park, S.; Tuller, S.E. Advanced view factor analysis method for radiation exchange. Int. J. Biometeorol. 2014, 58, 161–178. [Google Scholar] [CrossRef] [PubMed]
- Fröhlich, D.; Matzarakis, A. Modeling of changes in thermal bioclimate: Examples based on urban spaces in Freiburg, Germany. Theor. Appl. Climatol. 2013, 111, 547–558. [Google Scholar] [CrossRef]
- Santos Nouri, A.; Fröhlich, D.; Matos Silva, M.; Matzarakis, A. The Impact of Tipuana tipu Species on Local Human Thermal Comfort Thresholds in Different Urban Canyon Cases in Mediterranean Climates: Lisbon, Portugal. Atmosphere 2018, 9, 12. [Google Scholar] [CrossRef] [Green Version]
- Fröhlich, D.; Matzarakis, A. Calculating human thermal comfort and thermal stress in the PALM model system 6.0. Geoscie. Model Dev. 2020, 13, 3055–3065. [Google Scholar] [CrossRef]
- Ketterer, C.; Matzarakis, A. Human-biometeorological assessment of heat stress reduction by replanning measures in Stuttgart, Germany. Landsc. Urban Plan. 2014, 122, 78–88. [Google Scholar] [CrossRef]
- Ketterer, C.; Matzarakis, A. Comparison of different methods for the assessment of the urban heat island in Stuttgart, Germany. Int. J. Biometeorol. 2015, 59, 1299–1309. [Google Scholar] [CrossRef]
- Huang, K.T.; Yang, S.R.; Matzarakis, A.; Lin, T.P. Identifying outdoor thermal risk areas and evaluation of future thermal comfort concerning shading orientation in a traditional settlement. Sci. Total Environ. 2018, 626, 567–580. [Google Scholar] [CrossRef]
- Peng, L.L.H.; Jim, C.Y. Green-Roof Effects on Neighborhood Microclimate and Human Thermal Sensation. Energies 2013, 6, 598–618. [Google Scholar] [CrossRef] [Green Version]
- Sodoudi, S.; Zhang, H.; Chi, X.; Müller, F.; Li, H. The influence of spatial configuration of green areas on microclimate and thermal comfort. Urban For. Urban Green. 2018, 34, 85–96. [Google Scholar] [CrossRef]
- Battisti, A. Bioclimatic Architecture and Urban Morphology. Studies on Intermediate Urban Open Spaces. Energies 2020, 13, 5819. [Google Scholar] [CrossRef]
- Goldberg, V.; Kurbjuhn, C.; Bernhofer, C. How relevant is urban planning for the thermal comfort of pedestrians? Numerical case studies in two districts of the City of Dresden (Saxony/Germany). Meteorol. Z. 2013, 22, 739–751. [Google Scholar] [CrossRef]
- CERC, Cambridge Environmental Research Consultants Ltd. 2020: Environmental Software. Available online: https://www.cerc.co.uk/environmental-software.html (accessed on 18 March 2020).
- Matzarakis, A.; Fröhlich, D. SkyHelios. Available online: https://www.urbanclimate.net/skyhelios/ (accessed on 20 March 2020).
- Hämmerle, M.; Gál, T.; Unger, J.; Matzarakis, A. Different aspects in the quantification of the Sky View Factor in complex environments. Acta Climatol. Chorol. 2014, 47, 53–62. [Google Scholar]
- Azar, S. TownScope. Available online: http://www.townscope.com (accessed on 10 March 2020).
- Oh, M.; Park, H.-D. A New Algorithm Using a Pyramid Dataset for Calculating Shadowing in Solar Potential Mapping. Renew. Energy 2018, 126, 465–474. [Google Scholar] [CrossRef]
- Lim, T.K.; Ignatius, M.; Miguel, M.; Wong, N.H.; Juang, H.-M.H. Multi-Scale Urban System Modeling for Sustainable Planning and Design. Energy Build. 2017, 157, 78–91. [Google Scholar] [CrossRef]
- McRae, I.; Freedman, F.; Rivera, A.; Li, X.; Dou, J.; Cruz, I.; Ren, C.; Dronova, I.; Fraker, H.; Bornstein, R. Integration of the WUDAPT WRF and ENVI-Met Models to Simulate Extreme Daytime Temperature Mitigation Strategies in San Jose California. Build. Environ. 2020, 184, 107180. [Google Scholar] [CrossRef]
- Jänicke, B.; Meier, F.; Lindberg, F.; Schubert, S.; Scherer, D. Towards City-Wide Building-Resolving Analysis of Mean Radiant Temperature. Urban Clim. 2016, 15, 83–98. [Google Scholar] [CrossRef]
- Wong, N.H.; He, Y.; Nguyen, N.G.; Raghavan, S.V.; Martin, M.; Hii, D.J.C.H.; Yu, Z.; Deng, J. An Integrated Multiscale Urban Microclimate Model for the Urban Thermal Environment. Urban Clim. 2021, 35, 100730. [Google Scholar] [CrossRef]
- Pelorosso, R. Modeling and Urban Planning: A Systematic Review of Performance-Based Approaches. Sustain. Cities Soc. 2020, 52, 101867. [Google Scholar] [CrossRef]
- Lenzholzer, S.; Brown, R.D. Post-Positivist Microclimatic Urban Design Research: A Review. Landsc. Urban Plan. 2016, 153, 111–121. [Google Scholar] [CrossRef]
- Jakubiec, J.A.; Reinhart, C. DIVA-FOR-RHINO 2.0: Environmental parametric modeling in rhinoceros/grasshopper using RADIANCE, Daysim and EnergyPlus. In Proceedings of the Conference Proceedings of Building Simulation, Sydney, Australia, 14–16 November 2011. [Google Scholar]
- Sharlin, N.; Hoffman, M.E. The Urban Complex as a Factor in the Air-Temperature Pattern in a Mediterranean Coastal Region. Energy Build. 1984, 7, 149–158. [Google Scholar] [CrossRef]
- Swaid, H.; Hoffman, M.E. Prediction of Urban Air Temperature Variations Using the Analytical CTTC Model. Energy Build. 1990, 14, 313–324. [Google Scholar] [CrossRef]
- Swaid, H.; Hoffman, M.E. Thermal Effects of Artificial Heat Sources and Shaded Ground Areas in the Urban Canopy Layer. Energy Build. 1990, 15, 253–261. [Google Scholar] [CrossRef]
- Elnahas, M.M.; Williamson, T.J. An Improvement of the CTTC Model for Predicting Urban Air Temperatures. Energy Build. 1997, 25, 41–49. [Google Scholar] [CrossRef]
- Gholami, M.; Shemirani, M.M.; Fayaz, R. A Modelling Methodology for a Solar Energy-Efficient Neighbourhood. SASBE 2018, 7, 117–132. [Google Scholar] [CrossRef]
- Maronga, B.; Banzhaf, S.; Burmeister, C.; Esch, T.; Forkel, R.; Fröhlich, D.; Fuka, V.; Gehrke, K.F.; Geletič, J.; Giersch, S.; et al. Overview of the PALM model system 6.0. Geosci. Model Dev. 2020, 13, 1335–1372. [Google Scholar] [CrossRef]
- Resler, J.; Eben, K.; Geletič, J.; Krč, P.; Rosecký, M.; Sühring, M.; Belda, M.; Fuka, V.; Halenka, T.; Huszár, P.; et al. Validation of the PALM model system 6.0 in a real urban environment: A case study in Dejvice, Prague, the Czech Republic. Geosci. Model Dev. 2021, 14, 4797–4842. [Google Scholar] [CrossRef]
- Belda, M.; Resler, J.; Geletič, J.; Krč, P.; Maronga, B.; Sühring, M.; Kurppa, M.; Kanani-Sühring, F.; Fuka, V.; Eben, K.; et al. Sensitivity analysis of the PALM model system 6.0 in the urban environment. Geosci. Model Dev. 2021, 14, 4443–4464. [Google Scholar] [CrossRef]
No. | Name | Reference | Inclusion (Y/N) | Exclusion Reason(s) |
---|---|---|---|---|
1 | ADMS Temperature and Humidity model | [22] | Y | None |
2 | (Advanced) SkyHelios model | [23] | Y | None |
3 | AKL FlowDesigner | [24] | N | 1 |
4 | ANSYS FLUENT | [25] | Y | None |
5 | AUSSSM-Tool | [26] | N | 3 |
6 | BioCAS | [27] | N | 4, 7 |
7 | CBE Thermal Comfort Tool | [28] | N | 2, 3 |
8 | City Energy Analyst (CEA) | [29] | N | 5 |
9 | CityBES | [30] | N | 3 |
10 | CityComfort+ | [31] | N | 6 |
11 | CityFeel | [32] | N | 3, 6, 7 |
12 | CITYgreen | [33] | N | 2, 5, 6, 7 |
13 | CitySim | [34] | N | 1, 7 |
14 | Climate Mapping Tool | [35] | N | 2, 3 |
15 | COMFA model | [36] | N | 2, 3, 6 |
16 | Decision Support System (DSS) | [37] | N | 3 |
17 | Ecotect Win-Air | [38] | N | 1, 7 |
18 | ENVI-met | [39] | Y | None |
19 | FITNAH | [40] | N | 3, 6, 7 |
20 | Green CTTC Model/CTTC model | [41] | N | 6, 7 |
21 | Griha LD online model | [42] | N | 1.7 |
22 | INKAS | [43] | N | 3, 4 |
23 | Lucy model | [44] | N | 3,,5 |
24 | MeteoInfo | [45] | N | 3 |
25 | MIMO | [46] | N | 6, 7 |
26 | Mitigation Impact Screening Tool (MIST) | [47] | N | 3 |
27 | MUKLIMO-3 Basis/Thermodynamic version | [48,49] | N | 5, 6, 7 |
28 | OpenFOAM mircoscale model | [50] | N | 6 |
29 | OTC Model | [51] | N | 7 |
30 | OutdoorROOM | [52] | N | 7 |
31 | PALM | [53] | N | 6 |
32 | QUIC EnvSim | [54] | N | 7 |
33 | RayMan | [55] | Y | None |
34 | SCORCHIO tool | [56] | N | 4, 7 |
35 | Simple Urban Radiation Model (SURM) | [57] | N | 3, 6 |
36 | SimStadt | [58] | N | 1, 5 |
37 | ThermoRender | [59] | Y | 7 |
38 | SOLENE Microclimate | [60] | N | 7 |
39 | SOLWEIG | [61] | Y | None |
40 | SPOTE | [62] | N | 7 |
41 | The Surface Temperature And Runoff (STAR) Tools | [63] | N | 4 |
42 | STEVE | [10] | N | 4 |
43 | SUEWS | [64] | N | 5 |
44 | SUNtool | [65] | N | 7 |
45 | SVF mapping tool | [66] | N | 5 |
46 | TownScope | [67] | Y | None |
47 | TUF-3D | [68] | N | 5 |
48 | UBIKLIM | [69] | N | 3 |
49 | UHI Atlas | [70] | N | 3, 4 |
50 | UMEP | [71] | Y | None |
51 | UMI | [72] | N | 5 |
52 | Umsim | [73] | N | 7 |
53 | Urban Weather Generator | [74] | N | 1, 3 |
54 | WRF-UCM | [75] | N | 3 |
No. | Name | Reference | Simulated Variables | Bioclimatic Indices/Variables | Ventilation Aspects | Plants | Supported Data Formats | Linkage (to GIS/CAD) | Pay-/Free-Ware | Example(s) of Evaluation Studies | Number of Publications in Science Direct (Web of Science) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mentioning Model Name | Mentioning Model Name and Urban Climate or Micro-Climate | |||||||||||
1 | ADMS Temperature and Humidity model | [22] | Ts, Ta, Q, Tmrt | - | X | X | .csv, specifc | GIS | Pay | [76] | 72 (41) | 0 (1) |
2 | advanced SkyHelios model | [23] | Ws, Wd, Q, Tmrt | PT, UTCI, PET | X | X | grid/vector | GIS/CAD | Free | [23] | 0 (1) | 1 (5) |
3 | ANSYS FLUENT | [25] | Ta, Ts, Q, Ws, Wd, others | - | X | X | specific formats | CAD | Pay | [77] | 1503 (2954) | 5 (8) |
4 | ENVI-met | [39] | Ta, Ts, Q, Ws, Wd, others | PMV, UTCI, PET, SET | X | X | specific formats, Net-CDF-Output possible | CAD/GIS | Pay | Numerous studies (see review by [78]) | 264 (389) | 179 (281) |
5 | RayMan | [79] | Q, Tmrt, Ts | PET, SET, PMV, mPET, UTCI, PT | X | X | .txt, specific formats | GIS | Free | [14,55] | 49 (122) | 25 (53) |
6 | SOLWEIG | [61] | Q, Tmrt | - | X | .shp, .txt, .tif | GIS | Free | [61,80,81] | 12 (29) | 5 (11) | |
7 | TownScope | [67] | Q | Sweat rate, sweatevaporation, skin wetness | X | X | specific formats | CAD | Pay | [82,83] | 3 (3) | 0 (0) |
8 | Urban Multi-scale Environmental Predictor (UMEP) | [71] | Ta, Q, Tmrt, T | - | X | .shp, .txt, .tif | GIS | Free | see examples for SOLWEIG | 2 (2) | 1 (1) |
Name | Man-ual/ | For-um/Support | Tutorials, Videos | Training Courses | Website/ |
---|---|---|---|---|---|
ADMS-TH | x | x | https://www.cerc.co.uk/environmental-software/ADMS-Urban-model.html (accessed on 2 October 2021) | ||
advanced SkyHelios model | x | x | https://www.urbanclimate.net/skyhelios/ (accessed on 2 October 2021) | ||
ANSYS FLUENT | x | x | x | x | https://www.ansys.com/training-center/ (accessed on 2 October 2021) |
ENVI-met | x | x | x | https://www.envi-met.com (accessed on 2 October 2021) | |
RayMan | x | x | x | x | https://www.urbanclimate.net/rayman/ (accessed on 2 October 2021) |
SOLWEIG | x | x | x | x | https://umep-docs.readthedocs.io/projects/tutorial/en/latest/Tutorials/IntroductionToSolweig.html (accessed on 2 October 2021) |
TownScope | x | x | x | x | www.townscope.com (accessed on 2 October 2021) |
UMEP | x | x | x | x | https://umep-docs.readthedocs.io/en/latest/ (accessed on 2 October 2021) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jänicke, B.; Milošević, D.; Manavvi, S. Review of User-Friendly Models to Improve the Urban Micro-Climate. Atmosphere 2021, 12, 1291. https://doi.org/10.3390/atmos12101291
Jänicke B, Milošević D, Manavvi S. Review of User-Friendly Models to Improve the Urban Micro-Climate. Atmosphere. 2021; 12(10):1291. https://doi.org/10.3390/atmos12101291
Chicago/Turabian StyleJänicke, Britta, Dragan Milošević, and Suneja Manavvi. 2021. "Review of User-Friendly Models to Improve the Urban Micro-Climate" Atmosphere 12, no. 10: 1291. https://doi.org/10.3390/atmos12101291
APA StyleJänicke, B., Milošević, D., & Manavvi, S. (2021). Review of User-Friendly Models to Improve the Urban Micro-Climate. Atmosphere, 12(10), 1291. https://doi.org/10.3390/atmos12101291