Spatial and Temporal Distributions of Air Pollutants in Nanchang, Southeast China during 2017–2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Site
2.2. Dataset
3. Results and Discussions
3.1. Spatial Differences of Air Pollutants
3.2. Seasonal Variations of Air Pollutants
3.3. Daily Variations of Air Pollutants
3.4. Temporal Variations of Pollutants during the COVID-19 Pandemic
3.5. Spatial Variations of Pollutants during the COVID-19 Pandemic
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nuvolone, D.; Balzi, D.; Chini, M.; Scala, D.; Giovannini, F.; Barchielli, A. Short-term association between ambient air pollution and risk of hospitalization for acute myocardial infarction: Results of the cardiovascular risk and air pollution in Tuscany (RISCAT) study. Am. J. Epidemiol. 2011, 174, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Woodward, A.; Vardoulakis, S.; Kovats, S.; Wilkinson, P.; Li, L.; Xu, L.; Li, J.; Yang, J.; Cao, L.; et al. Haze, public health and mitigation measures in China: A review of the current evidence for further policy response. Sci. Total Environ. 2017, 578, 148–157. [Google Scholar] [CrossRef]
- Murray, C.J.; Aravkin, A.Y.; Zheng, P.; Abbafati, C.; Abbas, K.M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelalim, A.; Abdollahi, M.; et al. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef]
- Tian, H.; Liu, Y.; Li, Y.; Wu, C.H.; Chen, B.; Kraemer, M.U.; Li, B.; Cai, J.; Xu, B.; Yang, Q.; et al. An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China. Science 2020, 368, 638–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef]
- Wang, C.; Horby, P.W.; Hayden, F.G.; Gao, G.F. A novel coronavirus outbreak of global health concern. Lancet 2020, 395, 470–473. [Google Scholar] [CrossRef] [Green Version]
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020, 579, 270–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castaldi, S.; Maffeo, M.; Rivieccio, B.A.; Zignani, M.; Manzi, G.; Nicolussi, F.; Salini, S.; Micheletti, A.; Gaito, S.; Biganzoli, E. Monitoring emergency calls and social networks for COVID-19 surveillance. To learn for the future: The outbreak experience of the Lombardia region in Italy. Acta Biomed. 2020, 91, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.X.; Huang, C.L.; Yuan, Y.; Tan, H.P. Influence of COVID-19 event on air quality and their association in Mainland China. Aerosol Air Qual. Res. 2020, 20, 1541–1551. [Google Scholar] [CrossRef]
- Nakada, L.; Urban, R.C. COVID-19 pandemic: Impacts on the air quality during the partial lockdown in São Paulo state, Brazil. Sci. Total Environ. 2020, 730, 139087. [Google Scholar] [CrossRef]
- Tobías, A.; Carnerero, C.; Reche, C.; Massagué, J.; Querol, X. Changes in air quality during the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemic. Sci. Total Environ. 2020, 726, 138540. [Google Scholar] [CrossRef] [PubMed]
- London, G. Estimation of Changes in Air Pollution in London during the COVID19 Outbreak. 2020. Available online: https://www.london.gov.uk/WHAT-WE-DO/environment/environment-publications/estimation-changes-air-pollution-during-covid-19-outbreak-0 (accessed on 1 October 2021).
- Dantas, G.; Siciliano, B.; França, B.B.; da Silva, C.M.; Arbilla, G. The impact of COVID-19 partial lockdown on the air quality of the city of Rio de Janeiro, Brazil. Sci. Total Environ. 2020, 729, 139085. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Zhang, M.; Gao, J.; Zhang, H.; Kota, S.H. Effect of restricted emissions during COVID-19 on air quality in India. Sci. Total Environ. 2020, 728, 138878. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Wang, Y.; Zhao, B.; Wang, S.; Chang, X.; Hao, J. The impact of the “Air Pollution Prevention and Control Action Plan” on PM2.5 concentrations in Jing-Jin-Ji region during 2012–2020. Sci. Total Environ. 2017, 580, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Notice of the People’s Government of Jiangxi Province on Printing and Distributing the Comprehensive Work Plan for Energy Conservation and Emission Reduction in Jiangxi Province during the 13th Five-Year Plan 2017 (in Chinese). Available online: http://www.jiangxi.gov.cn/art/2017/7/12/art_4968_212681.html (accessed on 2 October 2021).
- National Bureau of Statistics of China (NBS). Nanchang Statistical Yearbook; China Statistics Press: Beijing, China, 2018. (In Chinese) [Google Scholar]
- National Bureau of Statistics of China (NBS). Nanchang Statistical Yearbook; China Statistics Press: Beijing, China, 2019. (In Chinese) [Google Scholar]
- National Bureau of Statistics of China (NBS). Nanchang Statistical Yearbook; China Statistics Press: Beijing, China, 2020. (In Chinese) [Google Scholar]
- Morawska, L.; Jayaratne, E.R.; Mengersen, K.; Jamriska, M.; Thomas, S. Difference in airborne particle and gaseous concentrations in urban air between weekdays and weekends. Atmos. Environ. 2002, 36, 4375–4383. [Google Scholar] [CrossRef] [Green Version]
- Elbir, T.; Muezzinoglu, A. Estimation of emission strengths of primary air pollutants in the city of Izmir, Turkey. Atmos. Environ. 2004, 38, 1851–1857. [Google Scholar] [CrossRef]
- Yang, K.L.; Ting, C.C.; Wang, J.L.; Wingenter, O.W.; Chan, C.C. Diurnal and seasonal cycles of ozone precursors observed from continuous measurement at an urban site in Taiwan. Atmos. Environ. 2005, 39, 3221–3230. [Google Scholar] [CrossRef]
- Tan, P.H.; Chou, C.; Liang, J.Y.; Chou, C.K.; Shiu, C.J. Air pollution “holiday effect” resulting from the Chinese New Year. Atmos. Environ. 2009, 43, 2114–2124. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd ed.; John Wiley&Sons, Inc.: Hoboken, NJ, USA, 2016. [Google Scholar] [CrossRef]
- Pan, L.; Xu, J.M.; Tie, X.X.; Mao, X.Q.; Gao, W.; Chang, L.Y. Long-term measurements of planetary boundary layer height and interactions with PM2.5 in Shanghai, China. Atmos. Pollut. Res. 2019, 10, 989–996. [Google Scholar] [CrossRef]
- Tang, G.; Zhang, J.; Zhu, X.; Song, T.; Wang, Y. Mixing layer height and its implications for air pollution over beijing, china. Atmos. Chem. Physics Discuss. 2016, 15, 2459–2475. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.H.; Wu, B.G.; Liu, J.L.; Zhang, H.S.; Cai, X.H.; Song, Y. Characteristics of the atmospheric boundary layer and its relation with PM2.5 during haze episodes in winter in the North China Plain. Atmos. Environ. 2020, 223, 117265. [Google Scholar] [CrossRef]
- Guinot, B.; Cachier, H.; Sciare, J.; Tong, Y.; Xin, W.; Jianhua, Y. Beijing aerosol: Atmospheric interactions and new trends. J. Geophys. Res. Space Phys. 2007, 112, D14314. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Zhang, X.; Xu, X.; Xu, J.; Meng, W.; Pu, W. Seasonal and diurnal variations of ambient PM2.5 concentration in urban and rural environments in Beijing. Atmos. Environ. 2009, 43, 2893–2900. [Google Scholar] [CrossRef]
- Sun, Y.; Zhuang, G.; Yuan, H.; Zhang, X.; Guo, J. Characteristics and sources of 2002 super dust storm in Beijing. Chin. Sci. Bull. 2004, 49, 698–705. [Google Scholar] [CrossRef]
- Yan, S.; Cao, H.; Chen, Y.; Wu, C.; Hong, T.; Fan, H. Spatial and temporal characteristics of air quality and air pollutants in 2013 in Beijing. Environ. Sci. Pollut. Res. 2016, 23, 13996–14007. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, X.; Gong, D.; Quan, W.; Zhao, X.; Ma, Z.; Kim, S.-J. Evolution of surface O3 and PM2.5 concentrations and their relationships with meteorological conditions over the last decade in Beijing. Atmos. Environ. 2015, 108, 67–75. [Google Scholar] [CrossRef]
- Zhao, S.; Hu, B.; Gao, W.; Li, L.; Huang, W.; Wang, L.; Yang, Y.; Liu, J.; Li, J.; Ji, D.; et al. Effect of the “coal to gas” project on atmospheric NOX during the heating period at a suburban site between Beijing and Tianjin. Atmos. Res. 2020, 241, 104977. [Google Scholar] [CrossRef]
- Rimetz-Planchon, J.; Perdrix, E.; Sobanska, S.; Bremard, C. PM10 air quality variations in an urbanized and industrialized harbor. Atmos. Environ. 2008, 42, 7274–7283. [Google Scholar] [CrossRef]
- Querol, X.; Alastuey, A.; Ruiz, C.; Artiñano, B.; Hansson, H.; Harrison, R.; Buringh, E.; Brink, H.T.; Lutz, M.; Bruckmann, P.; et al. Speciation and origin of PM10 and PM2.5 in selected European cities. Atmos. Environ. 2004, 38, 6547–6555. [Google Scholar] [CrossRef]
- Yin, J.; Allen, A.G.; Harrision, R.M.; Jennings, S.G.; Wright, E.; Fitzpatrick, M.; Healy, T.; Barry, E.; Ceburnis, D.; McCusker, D. Major component composition of urban PM10 and PM2.5 in Ireland. Atmospheric Res. 2005, 78, 149–165. [Google Scholar] [CrossRef]
- Gao, Z.X.; Wang, X.L.; Xiang, H.; Gou, A.N. Variation characteristics and potential sources of air pollutants during 2014–2017 in Wuhan. Acta Sci. Circumstantiae. 2018, 11, 4440–4453. (In Chinese) [Google Scholar] [CrossRef]
- Hong, W.; Qiuping, Z.; Hua, Y.; Binbin, C.; Dongsheng, J. Temporal and Spatial Variation Characteristics and the Impact Factors of CO in Fuzhou. Ecol. Environ. Sci. 2015, 7, 1191–1196. (In Chinese) [Google Scholar] [CrossRef]
- Yu, Z.; Liu, S.D.; Wang, Y.W.; Hu, N. Observation of Atmospheric Pollutants in the Urban Area of Hangzhou. Sci. Technol. Eng. 2016, 16, 95–104. (In Chinese) [Google Scholar] [CrossRef]
- Yang, J.D. Analysis on Pollution Characteristics and Variation Trend of CO in Tianjin. Environ. Sci. Manag. 2012, 37, 89–90. (In Chinese) [Google Scholar] [CrossRef]
- Fujita, E.M.; Stockwell, W.R.; Keislar, R.E.; Chinkin, L.R. Weekend/Weekday Ozone Observations in the South Coast Air Basin: Retrospective Analysis of Ambient and Emissions Data and Refinement of Hypotheses, Volume I-Executive Summary; The National Renewable Energy Laboratory: Golden, CO, USA; The Desert Research Institute: Reno, NV, USA; Sonoma Technology: Petaluma, CA, USA, 2000.
- Lei, Y.; Zhang, X.L.; Tang, Y.X.; Fan, G.Z.; Zhou, D.W. Holiday effects on PM2.5 and other major pollutants in Beijing. Acta Sci. Circumstantiae 2015, 35, 1520–1528. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Z.-S.; Li, Y.-T.; Chen, T.; Zhang, D.-W.; Sun, F.; Sun, R.-W.; Dong, X.; Sun, N.-D.; Pan, L.-B. Temporal and Spatial Distribution Characteristics of Ozone in Beijing. Environ. Sci. 2014, 12, 4446–4453. (In Chinese) [Google Scholar] [CrossRef]
- Yanfen, L.; Qian, W.; Qingyan, F.; Jianming, X.; Qinzhen, L.; Fang, L.; Kan, H. Temporal-Spatial Characteristics and Impact Factors of Ozone Pollution in Shanghai. Environ. Monit. China 2017, 4, 60–67. (In Chinese) [Google Scholar] [CrossRef]
- Su, Z.H.; Han, H.Q.; Chen, B. Spatial and temporal variation and combined pollution characteristics of atmospheric pollutants in urban Guiyang. Carsologica Sin. 2020, 3, 442–452. (In Chinese) [Google Scholar]
- Wang, Z.; Li, Y.; Chen, T.; Zhang, D.; Sun, F.; Wei, Q.; Dong, X.; Sun, R.; Huan, N.; Pan, L. Ground-level ozone in urban Beijing over a 1-year period: Temporal variations and relationship to atmospheric oxidation. Atmos. Res. 2015, 164–165, 110–117. [Google Scholar] [CrossRef]
- Han, S.; Bian, H.; Feng, Y.; Liu, A.; Li, X.; Zeng, F.; Zhang, X. Analysis of the Relationship between O3, NO and NO2 in Tianjin, China. Aerosol Air Qual. Res. 2011, 11, 128–139. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Hu, B.; Wang, L.; Wu, F.; Gao, W.; Wang, Y. Seasonal and diurnal variation in particulate matter (PM10 and PM2.5) at an urban site of Beijing: Analyses from a 9-year study. Environ. Sci. Pollut. Res. 2015, 22, 627–642. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, Y.; Lin, H.; Feng, X.; Fu, T.M.; Wang, Y. NOx emission reduction and recovery during COVID-19 in East China. Atmosphere 2020, 11, 433. [Google Scholar] [CrossRef] [Green Version]
- Watts, J.; Kommenda, N. Coronavirus pandemic leading to huge drop in air pollution. Available online: https://www.theguardian.com/environment/2020/mar/23/coronavirus-pandemic-leading-to-huge-drop-in-air-pollution (accessed on 1 October 2021).
- Cadotte, M. Early evidence that COVID-19 government policies reduce urban air pollution. Available online: https://eartharxiv.org/repository/view/345/ (accessed on 1 October 2021).
- He, G.; Pan, Y.; Tanaka, T. COVID-19, city lockdowns, and air pollution: Evidence from China. HKUST IEMS Work. Paper 2020, 2019-72. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Page, A.; Strode, S.A.; Yoshida, Y.; Choi, S.; Zheng, B.; Lamsal, L.N.; Li, C.; Krotkov, N.A.; Eskes, H.; et al. Abrupt decline in tropospheric nitrogen dioxide over China after the outbreak of COVID-19. Sci. Adv. 2020, 6, eabc2992. [Google Scholar] [CrossRef]
- Huang, X.; Ding, A.; Gao, J.; Zheng, B.; Zhou, D.; Qi, X.; Tang, R.; Wang, J.; Ren, C.; Nie, W.; et al. Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China. Natl. Sci. Rev. 2021, 8, nwaa137. [Google Scholar] [CrossRef]
- Jiangxi Provincial Department of Ecology and Environment. Jiangxi Province Environmental Statistics Annual Report; China Statistics Press: Beijing, China, 2016; pp. 21–32. [Google Scholar]
- De Fatima Andrade, M.; Kumar, P.; de Freitas, E.D.; Ynoue, R.Y.; Martins, J.; Martins, L.D.; Nogueira, T.; Perez-Martinez, P.J.; de Miranda, R.M.; Albuquerque, T.T.D.A.; et al. Air quality in the megacity of São Paulo: Evolution over the last 30 years and future perspectives. Atmos. Environ. 2017, 159, 66–82. [Google Scholar] [CrossRef] [Green Version]
- Mahato, S.; Pal, S.; Ghosh, K.G. Effect of lockdown amid COVID-19 pandemic on air quality of the megacity Delhi, India. Sci. Total Environ. 2020, 730, 139086. [Google Scholar] [CrossRef]
B1 | D2 | A3 | D2vB1 | A3vD2 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2020 | 2018 | 2019 | 2020 | 2018 | 2019 | 2020 | 2018 | 2019 | 2020 | 2018 | 2019 | 2020 | ||
PM2.5 (μg/m3) | Urban area | 58.96 | 60.27 | 45.5 | 53.45 | 54.23 | 31.7 | 49.23 | 39.64 | 30.6 | −9.34% * | −10.03% * | −30.33% * | −7.89% * | −26.89% * | −3.47% |
Industrial area | 62.28 | 60.92 | 65.1 | 55.07 | 60.10 | 33.1 | 58.04 | 44.34 | 18.8 | −11.58% | −1.33% | −49.16% * | 5.40% | −26.23% * | −43.2% * | |
County | 53.81 | 60.10 | 39.2 | 47.22 | 54.81 | 28.1 | 44.69 | 39.55 | 22.9 | −12.24% | −8.80% | −28.32% * | −5.36% | −27.85% * | −18.51% * | |
Mountain | 46.82 | 50.97 | 35 | 43.90 | 47.71 | 25.2 | 35.68 | 36.36 | 25.5 | −6.23% | −6.40% | −28.00% * | −18.72% | −23.79% | 1.19% | |
PM10 (μg/m3) | Urban area | 97.21 | 94.92 | 68.6 | 85.16 | 90.61 | 41.7 | 84.25 | 64.04 | 47.6 | −12.4%* | −4.54% | −39.21% * | −1.06% | −29.32% * | 14.15% * |
Industrial area | 109.54 | 104.13 | 71.7 | 99.80 | 120.76 | 47.6 | 98.20 | 94.26 | 21 | −8.89% | 15.96% | −33.61% | −1.60% | −21.94% | −55.88% | |
County | 99.82 | 96.97 | 67.1 | 86.15 | 92.69 | 42.5 | 80.87 | 66.63 | 47.6 | −13.69% | −4.41% | −36.66% * | −6.14% | −28.12% * | 12.00% | |
Mountain | 59.23 | 53.17 | 42 | 56.08 | 56.76 | 26.8 | 56.51 | 36.08 | 31.8 | −5.31% | 6.75% | −36.19% * | 0.77% | −36.43% * | 18.66% | |
SO2 (μg/m3) | Urban area | 15.37 | 10.35 | 7.54 | 12.98 | 10.89 | 6.45 | 9.26 | 9.40 | 7.38 | −15.53% * | 5.24% | −14.46% * | −28.68% * | −13.64% | 14.42% * |
Industrial area | 47.32 | 20.38 | 15.2 | 44.37 | 22.49 | 3.06 | 32.07 | 24.01 | 3.49 | −6.23% | 10.35% | −79.87% * | −27.71% * | 6.74% | 14.05% | |
County | 27.13 | 20.55 | 14 | 21.63 | 16.63 | 14.3 | 22.54 | 15.36 | 15.4 | −20.28% * | −19.07% * | 2.14% | 4.19% | −7.62% | 7.69% | |
Mountain | 6.69 | 4.15 | 4.82 | 5.68 | 4.80 | 5.69 | 4.86 | 2.90 | 4.71 | −15.02% | 15.55% | 18.05% | −14.53% | −39.43% | −17.22% | |
CO (mg/m3) | Urban area | 1.14 | 1.40 | 0.99 | 0.93 | 1.04 | 0.67 | 1.04 | 1.06 | 0.77 | −18.54% * | −25.43% * | −32.32% * | 12.73% * | 1.59% | 14.93% * |
Industrial area | 0.87 | 1.22 | 1.03 | 0.54 | 0.86 | 0.91 | 0.68 | 0.86 | 0.61 | −38.53% * | −29.91% * | −11.65% | 27.36% | 0.49% | −32.97% | |
County | 0.97 | 1.29 | 1.22 | 0.67 | 0.97 | 0.82 | 0.93 | 1.02 | 0.83 | −30.51% * | −24.75% * | −32.79% * | 38.63% * | 5.11% | 1.22% | |
Mountain | 0.91 | 1.01 | 0.81 | 0.80 | 0.92 | 0.66 | 0.81 | 0.91 | 0.6 | −11.73% | −9.29% | −18.52% * | 1.40% | −0.65% | −9.09% | |
NO (μg/m3) | Urban area | 18.27 | 13.68 | 11.6 | 9.46 | 7.46 | 2.23 | 12.87 | 7.47 | 3.26 | −48.25% * | −45.46% * | −80.78% * | 36.05% * | 0.15% | 46.19% |
Industrial area | 10.48 | 2.79 | 9.51 | 3.47 | 4.48 | 1.70 | 0.76 | 7.07 | 1.59 | −66.85% | 60.43% | −82.12% | −78.10% | 57.85% | −6.47% | |
County | 3.44 | 7.78 | 7.91 | 2.28 | 3.71 | 2.76 | 2.43 | 4.13 | 2.82 | −33.83% | −52.29% * | −65.11% * | 6.79% | 11.27% | 2.17% | |
Mountain | 3.46 | 2.55 | 7.36 | 1.05 | 0.81 | 3.25 | 1.17 | 0.61 | 3.57 | −69.78% * | −68.20% * | −55.84% * | 11.44% | −24.26% | 9.85% | |
NO2 (μg/m3) | Urban area | 55.06 | 55.00 | 35.6 | 42.81 | 37.88 | 12.7 | 39.13 | 41.23 | 20.7 | −22.25% * | −31.12% * | −64.33% * | −8.60% * | 8.84% * | 62.99% * |
Industrial area | 23.89 | 21.05 | 31.2 | 12.95 | 22.85 | 10.4 | 6.32 | 12.54 | 9.38 | −45.79% * | 8.53% | −66.67% * | −51.19% * | −45.12% * | −9.81% | |
County | 23.31 | 37.86 | 29.7 | 14.64 | 26.05 | 10.4 | 18.91 | 27.08 | 14.1 | −37.20% * | −31.21% * | −64.98% * | 29.18% | 3.95% | 35.58% * | |
Mountain | 25.79 | 22.81 | 25.4 | 16.52 | 18.58 | 7.51 | 14.31 | 15.26 | 13.6 | −35.96% * | −18.54% * | −70.43% * | −13.35% | −17.87% * | 81.09% * | |
NOx (μg/m3) | Urban area | 73.37 | 68.67 | 53 | 52.26 | 45.19 | 15.2 | 51.99 | 48.70 | 24.9 | −28.77% * | −34.20% * | −71.32% * | −0.52% | 7.78% | 63.82% * |
Industrial area | 34.36 | 23.84 | 45.6 | 16.42 | 27.32 | 12.9 | 7.08 | 19.60 | 11.5 | −52.21% * | 14.61% | −71.71% * | −56.88% * | −28.25% | −10.85% | |
County | 26.75 | 45.64 | 41.8 | 18.45 | 29.76 | 14.6 | 21.34 | 31.20 | 18.5 | −31.02% | −34.80% * | −65.07% * | 15.67% | 4.86% | 26.71% | |
Mountain | 29.25 | 25.36 | 36.6 | 17.56 | 19.40 | 12.4 | 15.48 | 16.21 | 18.6 | −39.96% * | −23.51% * | −66.12% * | −11.87% | −16.45% * | 50.00% | |
O3 (μg/m3) | Urban area | 28.75 | 33.00 | 33.5 | 48.11 | 51.15 | 65 | 45.28 | 51.45 | 59 | 67.32% * | 55.00% * | 94.03% * | −5.88% * | 0.58% | −9.23% * |
Industrial area | 30.25 | 36.39 | 31.6 | 45.50 | 53.53 | 57.9 | 51.30 | 69.90 | 53.9 | 50.42% | 47.09% * | 83.23% * | 12.75% * | 30.57% * | −6.91% | |
County | 33.94 | 51.87 | 47.8 | 69.56 | 56.87 | 76.6 | 51.74 | 58.79 | 71.1 | 104.94% * | 9.64% | 60.25% * | −25.62% * | 3.37% | −7.18% * | |
Mountain | 29.13 | 31.38 | 30.8 | 45.92 | 41.68 | 52.1 | 52.50 | 45.25 | 48.5 | 57.65% * | 32.83% * | 69.16% * | 14.33% * | 8.57% | −6.91% |
Region | Year | Period | PM2.5 | PM10 | SO2 | CO | NO | NO2 | NOx | O3 |
---|---|---|---|---|---|---|---|---|---|---|
Urban area | 2018 | NCNY | 52.70 | 89.66 | 12.68 | 1.04 | 15.05 | 47.83 | 62.89 | 40.63 |
CNY | 59.75 | 79.84 | 7.14 | 1.08 | 2.42 | 20.74 | 23.17 | 40.38 | ||
2019 | NCNY | 51.17 | 83.43 | 10.26 | 1.19 | 10.28 | 47.92 | 58.20 | 44.75 | |
CNY | 37.10 | 52.65 | 8.21 | 0.95 | 2.01 | 16.53 | 18.41 | 51.07 | ||
2020 | NCNY | 35.52 | 53.97 | 7.33 | 0.83 | 6.25 | 27.69 | 34.11 | 48.07 | |
CNY | 37.01 | 46.78 | 6.48 | 0.72 | 2.21 | 14.31 | 16.52 | 66.00 | ||
Industrial area | 2018 | NCNY | 57.42 | 102.59 | 41.28 | 0.70 | 4.96 | 14.56 | 19.52 | 42.91 |
CNY | 70.45 | 99.15 | 27.83 | 0.82 | 0.91 | 4.77 | 5.68 | 42.14 | ||
2019 | NCNY | 54.38 | 105.28 | 22.03 | 0.99 | 5.06 | 18.35 | 23.41 | 55.74 | |
CNY | 45.30 | 90.29 | 26.52 | 0.83 | 0.35 | 6.02 | 6.38 | 49.57 | ||
2020 | NCNY | 45.74 | 48.49 | 8.51 | 0.87 | 5.00 | 22.25 | 28.76 | 41.27 | |
CNY | 37.36 | 49.69 | 4.04 | 0.96 | 1.80 | 11.57 | 13.38 | 58.33 | ||
County | 2018 | NCNY | 47.43 | 88.40 | 24.38 | 0.86 | 2.91 | 19.99 | 23.09 | 50.51 |
CNY | 55.76 | 87.10 | 20.34 | 1.10 | 0.74 | 14.49 | 15.24 | 42.78 | ||
2019 | NCNY | 51.32 | 85.24 | 17.71 | 1.12 | 5.52 | 31.98 | 37.50 | 56.53 | |
CNY | 36.49 | 59.42 | 14.05 | 0.91 | 2.38 | 15.15 | 17.53 | 52.06 | ||
2020 | NCNY | 28.79 | 53.36 | 14.79 | 0.97 | 4.70 | 21.81 | 26.58 | 61.10 | |
CNY | 32.80 | 48.11 | 14.19 | 0.87 | 2.81 | 12.41 | 15.35 | 79.34 | ||
Mountain | 2018 | NCNY | 40.60 | 56.98 | 5.83 | 0.83 | 1.98 | 19.00 | 20.98 | 43.59 |
CNY | 46.83 | 60.43 | 3.99 | 0.95 | 1.02 | 14.69 | 15.71 | 41.08 | ||
2019 | NCNY | 45.11 | 47.87 | 3.92 | 0.95 | 1.40 | 19.46 | 21.02 | 40.13 | |
CNY | 31.90 | 34.71 | 2.28 | 0.86 | 0.50 | 9.97 | 10.47 | 37.77 | ||
2020 | NCNY | 28.27 | 34.51 | 4.69 | 0.68 | 4.93 | 21.54 | 24.49 | 41.31 | |
CNY | 29.40 | 30.04 | 6.76 | 0.71 | 3.29 | 11.30 | 13.01 | 52.03 |
Region | Period | PM2.5 | PM10 | SO2 | CO | NO | NO2 | NOx | O3 |
---|---|---|---|---|---|---|---|---|---|
Urban area | CNY | 37.01 | 46.78 | 6.48 | 0.72 | 2.21 | 14.31 | 16.52 | 66.00 |
D2 | 31.70 | 41.70 | 6.45 | 0.67 | 2.23 | 12.70 | 15.20 | 65.00 | |
Industrial area | CNY | 37.36 | 49.69 | 4.04 | 0.96 | 1.80 | 11.57 | 13.38 | 58.33 |
D2 | 33.10 | 47.60 | 3.06 | 0.91 | 1.70 | 10.40 | 12.90 | 57.90 | |
County | CNY | 32.80 | 48.11 | 14.19 | 0.87 | 2.81 | 12.41 | 15.35 | 79.34 |
D2 | 28.10 | 42.50 | 14.30 | 0.82 | 2.76 | 10.40 | 14.60 | 76.60 | |
Mountain | CNY | 29.40 | 30.04 | 6.76 | 0.71 | 3.29 | 11.30 | 13.01 | 52.03 |
D2 | 25.20 | 26.80 | 5.69 | 0.66 | 3.25 | 7.51 | 12.40 | 52.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Liu, M.; Luo, L.; Chen, X.; Zhang, Y.; Zhang, H.; Yang, S.; Li, Y. Spatial and Temporal Distributions of Air Pollutants in Nanchang, Southeast China during 2017–2020. Atmosphere 2021, 12, 1298. https://doi.org/10.3390/atmos12101298
Wang X, Liu M, Luo L, Chen X, Zhang Y, Zhang H, Yang S, Li Y. Spatial and Temporal Distributions of Air Pollutants in Nanchang, Southeast China during 2017–2020. Atmosphere. 2021; 12(10):1298. https://doi.org/10.3390/atmos12101298
Chicago/Turabian StyleWang, Xiaoman, Min Liu, Li Luo, Xi Chen, Yongyun Zhang, Haoran Zhang, Shudi Yang, and Yuxiao Li. 2021. "Spatial and Temporal Distributions of Air Pollutants in Nanchang, Southeast China during 2017–2020" Atmosphere 12, no. 10: 1298. https://doi.org/10.3390/atmos12101298
APA StyleWang, X., Liu, M., Luo, L., Chen, X., Zhang, Y., Zhang, H., Yang, S., & Li, Y. (2021). Spatial and Temporal Distributions of Air Pollutants in Nanchang, Southeast China during 2017–2020. Atmosphere, 12(10), 1298. https://doi.org/10.3390/atmos12101298