Representativeness of Carbon Dioxide Fluxes Measured by Eddy Covariance over a Mediterranean Urban District with Equipment Setup Restrictions
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Site and the Set Up
2.2. Measurements and Data Processing
2.3. Morphological Characteristics and CO2 Source Areas of the Site
3. Results and Discussion
3.1. Source Area
3.2. CO2 Fluxes and Anthropogenic Activities
3.2.1. Landscape
3.2.2. Domestic Heating
3.2.3. Local Traffic
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. The Random Error
Appendix B. Procedure to Calculate the Source Areas
References
- Aubinet, M.; Vesala, T.; Papale, D. Eddy Covariance—A Practical Guide to Measurement and Data Analysis; Springer: Dordrecht, The Netherlands; Berlin/Heidelberg, Germany; London, UK; New York, NY, USA, 2012; p. 307. [Google Scholar] [CrossRef]
- Ramamurthy, P.; Pardyjak, E.R. Toward understanding the behavior of carbon dioxide and surface energy fluxes in the urbanized semi-arid Salt Lake Valley, Utah, USA. Atmos. Environ. 2011, 45, 73–84. [Google Scholar] [CrossRef]
- Liu, H.Z.; Feng, J.W.; Järvi, L.; Vesala, T. Four-year (2006–2009) eddy covariance measurements of CO2 flux over an urban area in Beijing. Atmos. Chem. Phys. Discuss 2012, 12, 7881–7892. [Google Scholar] [CrossRef] [Green Version]
- Velasco, E.; Pressley, S.; Allwine, E.; Westberg, H.; Lamb, B. Measurements of CO fluxes from the Mexico City urban landscape. Atmos. Environ. 2005, 39, 7433–7446. [Google Scholar] [CrossRef]
- Coutts, A.; Beringer, J.; Tapper, N.J. Characteristics influencing the variability of urban CO2 fluxes in Melbourne, Australia. Atmos. Environ. 2007, 41, 51–62. [Google Scholar] [CrossRef]
- Nemitz, E.; Hargreaves, K.J.; McDonald, A.G.; Dorsey, J.; Fowler, D. Micrometeorological Measurements of the Urban Heat Budget and CO2Emissions on a City Scale. Environ. Sci. Technol. 2002, 36, 3139–3146. [Google Scholar] [CrossRef] [PubMed]
- Grimmond, S.; King, T.; Cropley, F.; Nowak, D.; Souch, C. Local-scale fluxes of carbon dioxide in urban environments: Methodological challenges and results from Chicago. Environ. Pollut. 2002, 116, S243–S254. [Google Scholar] [CrossRef]
- Moriwaki, R.; Kanda, M. Seasonal and Diurnal Fluxes of Radiation, Heat, Water Vapor, and Carbon Dioxide over a Suburban Area. J. Appl. Meteorol. 2004, 43, 1700–1710. [Google Scholar] [CrossRef]
- Vesala, T.; Järvi, L.; Launiainen, S.; Sogachev, A.; Rannik, Ü.; Mammarella, I.; Siivola, E.; Keronen, P.; Rinne, J.; Riikonen, A.; et al. Surface–atmosphere interactions over complex urban terrain in Helsinki, Finland. Tellus B Chem. Phys. Meteorol. 2008, 60, 188–199. [Google Scholar] [CrossRef] [Green Version]
- Velasco, E.; Pressley, S.; Grivicke, R.; Allwine, E.; Coons, T.; Foster, W.; Jobson, B.T.; Westberg, H.; Ramos, R.; Hernandez, F.; et al. Eddy covariance flux measurements of pollutant gases in urban Mexico City. Atmos. Chem. Phys. Discuss 2009, 9, 7325–7342. [Google Scholar] [CrossRef] [Green Version]
- Helfter, C.; Famulari, D.; Phillips, G.J.; Barlow, J.F.; Wood, C.R.; Grimmond, S.B.; Nemitz, E. Controls of carbon dioxide con-centrations and fluxes above central London. Atmos. Chem. Phys. 2011, 11, 1913–1928. [Google Scholar] [CrossRef] [Green Version]
- Pawlak, W.; Fortuniak, K.; Siedlecki, M. Carbon dioxide flux in the centre of Łódź, Poland—analysis of a 2-year eddy covariance measurement data set. Int. J. Climat. 2011, 31, 232–243. [Google Scholar] [CrossRef]
- Song, T.; Wang, Y. Carbon dioxide fluxes from an urban area in Beijing. Atmos. Res. 2012, 106, 139–149. [Google Scholar] [CrossRef]
- Lietzke, B.; Vogt, R.; Feigenwinter, C.; Parlow, E. On the controlling factors for the variability of carbon dioxide flux in a heterogeneous urban environment. Int. J. Clim. 2015, 35, 3921–3941. [Google Scholar] [CrossRef]
- Giorgi, F.; Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Chang. 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Espadafor, M.; Lorite, I.J.; Gavilán, P.; Berengena, J. An analysis of the tendency of reference evapotranspiration estimates and other climate variables during the last 45 years in Southern Spain. Agric. Water Manag. 2011, 98, 1045–1061. [Google Scholar] [CrossRef]
- Matese, A.; Gioli, B.; Vaccari, F.; Zaldei, A.; Miglietta, F. Carbon Dioxide Emissions of the City Center of Firenze, Italy: Measurement, Evaluation, and Source Partitioning. J. Appl. Meteorol. Clim. 2009, 48, 1940–1947. [Google Scholar] [CrossRef]
- Gratani, L.; Varone, L. Daily and seasonal variation of CO in the city of Rome in relationship with the traffic volume. Atmos. Environ. 2005, 39, 2619–2624. [Google Scholar] [CrossRef]
- Contini, D.; Donateo, A.; Elefante, C.; Grasso, F. Analysis of particles and carbon dioxide concentrations and fluxes in an urban area: Correlation with traffic rate and local micrometeorology. Atmos. Environ. 2012, 46, 25–35. [Google Scholar] [CrossRef]
- Grimmond, C.S.B.; Salmond, J.A.; Oke, T.R.; Offerle, B.; Lemonsu, A. Flux and turbulence measurements at a densely buil-up site in Marseille, heat, mass (water and carbon dioxide) and momentum. J. Geoph. Res. 2004, 109, D24101. [Google Scholar] [CrossRef]
- Kotthaus, S.; Grimmond, C. Energy exchange in a dense urban environment—Part II: Impact of spatial heterogeneity of the surface. Urban Clim. 2014, 10, 281–307. [Google Scholar] [CrossRef] [Green Version]
- Claussen, M. Estimation of areally-averaged surface fluxes. Boundary-Layer Meteorol. 1991, 54, 387–410. [Google Scholar] [CrossRef]
- Kotthaus, S.; Grimmond, C.S.B. Identification of Micro-scale Anthropogenic CO2, heat and moisture sources—Processing eddy covariance fluxes for a dense urban environment. Atmos. Environ. 2012, 57, 301–316. [Google Scholar] [CrossRef]
- Peters, E.B.; Hiller, R.V.; McFadden, J.P. Seasonal contributions of vegetation types to suburban evapotranspiration. J. Geophys. Res. Space Phys. 2011, 116, 01003. [Google Scholar] [CrossRef]
- Kotthaus, S.; Grimmond, C.S.B. Energy exchange in a dense urban environment—Part I: Temporal variability of long-term observations in central London. Urb. Clim. 2014, 10, 261–280. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.A.; Moser, A.; Rötzer, T.; Pauleit, S. Microclimatic differences and their influence on transpirational cooling of Tilia cordata in two contrasting street canyons in Munich, Germany. Agric. For. Meteorol. 2017, 232, 443–456. [Google Scholar] [CrossRef]
- Rana, G.; De Lorenzi, F.; Mazza, G.; Martinelli, N.; Muschitiello, C.; Ferrara, R.M. Tree transpiration in a multi-species Mediterranean garden. Agric. For. Meteorol. 2020, 280, 107767. [Google Scholar] [CrossRef]
- Lee, X.; Massman, W.; Law, B.E. Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Kolle, O.; Rebmann, C. Eddysoft: Documentatation of a Software Package to Acquire and Process Edy Covariance Data; Max Planck Institute for Biochemistry: Jena, Germany, 2007. [Google Scholar]
- Wilczak, J.M.; Oncley, S.P.; Stage, S.A. Sonic Anemometer Tilt Correction Algorithms. Bound. Layer Meteorol. 2001, 99, 127–150. [Google Scholar] [CrossRef]
- Nakai, T.; Van Der Molen, M.; Gash, J.; Kodama, Y. Correction of sonic anemometer angle of attack errors. Agric. For. Meteorol. 2006, 136, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Webb, E.K.; Pearman, G.; Leuning, R. Correction of flux measurements for density effects due to heat and water vapour transfer. Quart. J. Roy. Meteor. Soc. 1980, 106, 85–100. [Google Scholar] [CrossRef]
- Bargeron, O.; Strachan, I. CO2 sources and sinks in urban and suburban areas in a northern mid-altitude city. Atosp. Environ. 2011, 45, 1564–1573. [Google Scholar]
- Ward, H.C.; Evans, J.G.; Grimmond, S. Multi-season eddy covariance observations of energy, water and carbon fluxes over a suburban area in Swindon, UK. Atmos. Chem. Phys. Discuss 2013, 13, 4645–4666. [Google Scholar] [CrossRef] [Green Version]
- Foken, T.; Wichura, B. Tools for quality assessment of surface-based flux measurements. Agric. For. Meteorol. 1996, 78, 83–105. [Google Scholar] [CrossRef]
- Fortuniak, K.; Pawlak, W.; Siedlecki, M. Integral Turbulence Statistics Over a Central European City Centre. Bound. Layer Meteorol. 2012, 146, 257–276. [Google Scholar] [CrossRef]
- Moncrieff, J.; Massheder, J.; De Bruin, H.; Elbers, J.; Friborg, T.; Heusinkveld, B.; Kabat, P.; Scott, S.; Soegaard, H.; Verhoef, A. A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. J. Hydrol. 1997, 188, 589–611. [Google Scholar] [CrossRef]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Atmospheric Sciences Library, Kluwer Academic: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Roth, M. Review of atmospheric turbulence over cities. Quart. J. Roy. Met. Soc. 2000, 126, 941–990. [Google Scholar] [CrossRef]
- Weber, S.; Kordowski, K. Comparison of atmospheric turbulence characteristics and turbulent fluxes from two urban sites in Essen, Germany. Theor. Appl. Clim. 2009, 102, 61–74. [Google Scholar] [CrossRef]
- Finkelstein, P.L.; Sims, P.F. Sampling error in eddy correlation flux measurements. J. Geophys. Res. Space Phys. 2001, 106, 3503–3509. [Google Scholar] [CrossRef]
- Kormann, R.; Meixner, F.X. An Analytical Footprint Model For Non-Neutral Stratification. Bound. Layer Meteorol. 2001, 99, 207–224. [Google Scholar] [CrossRef]
- Macdonald, R.; Griffiths, R.; Hall, D. An improved method for the estimation of surface roughness of obstacle arrays. Atmos. Environ. 1998, 32, 1857–1864. [Google Scholar] [CrossRef]
- Ratti, C.; Di Sabatino, S.; Britter, R. Urban texture analysis with image processing techniques: Winds and dispersion. Theor. Appl. Clim. 2006, 84, 77–90. [Google Scholar] [CrossRef]
- Kljun, N.; Calanca, P.; Rotach, M.W.; Schmid, H.P. A Simple Parameterisation for Flux Footprint Predictions. Bound. Layer Meteorol. 2004, 112, 503–523. [Google Scholar] [CrossRef]
Date | Event |
---|---|
7 March | Start of CO2 flux measurements |
31 March | Household heating official switch off |
11–18 April | Failure of equipment |
1 June | Beginning of school holidays and reduction of university activities |
17 June | End of CO2 flux measurements |
Wind Direction | Runs (n) | Mean CO2 Fluxes (μmol m−2 s−1) | Standard Deviation (μmol m−2 s−1) | Mean Random Error (μmol m−2 s−1) |
---|---|---|---|---|
I quadrant (north-east) | 918 | −0.25 | 21.7 | 1.35 |
others | 2416 | +4.00 | 117.8 | 2.43 |
Day of the Week | F-Value | p-Value |
---|---|---|
Sunday | 0.792 | 0.376 |
Monday | 40.46 | 7.21 × 10−9 *** |
Tuesday | 37.43 | 2.28 × 10−8 *** |
Wednesday | 28.85 | 5.97 × 10−7 *** |
Thursday | 25.67 | 2.04 × 10−6 *** |
Friday | 22.75 | 6.74 × 10−6 *** |
Saturday | 3.863 | 0.0523 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rana, G.; Martinelli, N.; Famulari, D.; Pezzati, F.; Muschitiello, C.; Ferrara, R.M. Representativeness of Carbon Dioxide Fluxes Measured by Eddy Covariance over a Mediterranean Urban District with Equipment Setup Restrictions. Atmosphere 2021, 12, 197. https://doi.org/10.3390/atmos12020197
Rana G, Martinelli N, Famulari D, Pezzati F, Muschitiello C, Ferrara RM. Representativeness of Carbon Dioxide Fluxes Measured by Eddy Covariance over a Mediterranean Urban District with Equipment Setup Restrictions. Atmosphere. 2021; 12(2):197. https://doi.org/10.3390/atmos12020197
Chicago/Turabian StyleRana, Gianfranco, Nicola Martinelli, Daniela Famulari, Francesco Pezzati, Cristina Muschitiello, and Rossana Monica Ferrara. 2021. "Representativeness of Carbon Dioxide Fluxes Measured by Eddy Covariance over a Mediterranean Urban District with Equipment Setup Restrictions" Atmosphere 12, no. 2: 197. https://doi.org/10.3390/atmos12020197
APA StyleRana, G., Martinelli, N., Famulari, D., Pezzati, F., Muschitiello, C., & Ferrara, R. M. (2021). Representativeness of Carbon Dioxide Fluxes Measured by Eddy Covariance over a Mediterranean Urban District with Equipment Setup Restrictions. Atmosphere, 12(2), 197. https://doi.org/10.3390/atmos12020197