Trends of Aerosol Optical Thickness Using VIIRS S-NPP during Fog Episodes in Pakistan and India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Method
3. Results and Discussion
AOT Over Urban Areas
4. Discussion
5. Conclusions
- (1)
- AOT is decreasing in the studied period over Northern and eastern Pakistan with a similarly declining trend of fire events. It is however, increasing in the southern Punjab region.
- (2)
- This is be due to the strict policy implementation in the north and comparatively lesser attention towards the southern region. As in the north traffic and trade flow is high and usually hampered by low visibility.
- (3)
- While on the Indian side fire events have substantially increased in the north and central Punjab. And the trend in AOT is high in northern regions. Still Sirsa, Patiala and Lahore led with highest number of fire events from 2012 to 2019 between October and Feb.
- (4)
- The highest AOT values in the entire study were observed on the Indian side with 26 Indian districts reporting a value above 1.0 followed by Kasur and Lahore In Pakistan at 0.93.
- (5)
- Similarly, for fire event counts, more than 128,000 events were recorded in Sangrur district followed by another 16 Indian districts then Kasur and Lahore at ~28,000 each.
- (6)
- For the increasing trend in AOT Yamuna Nagar and Una from India and Vehari from Pakistan topped the list.
- (7)
- For fire events Sargodha, Khushab, DI Khan and Jhang were notably on the top of the list.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; p. 1535. [Google Scholar]
- Chan, K. Aerosol optical depths and their contributing sources in Taiwan. Atmos. Environ. 2017, 148, 364–375. [Google Scholar] [CrossRef]
- Gurjar, B.; Butler, T.; Lawrence, M.; Lelieveld, J. Evaluation of emissions and air quality in megacities. Atmos. Environ. 2008, 42, 1593–1606. [Google Scholar] [CrossRef]
- Koren, I.; Altaratz, O.; Remer, L.A.; Feingold, G.; Martins, J.V.; Heiblum, R.H. Aerosol-induced intensification of rain from the tropics to the mid-latitudes. Nat. Geosci. 2012, 5, 118–122. [Google Scholar] [CrossRef]
- Koren, I.; Feingold, G. Aerosol-cloud-precipitation system as a predator-prey problem. Proc. Natl. Acad. Sci. USA 2011, 108, 12227–12232. [Google Scholar] [CrossRef] [Green Version]
- Pope, C.A., III; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 2002, 287, 1132–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chin, M.; Kahn, R. Atmospheric Aerosol Properties and Climate Impacts; US Climate Change Science Program: Washington, DC, USA, 2009; Volume 2. [Google Scholar]
- Kaufman, Y.; Tanré, D.; Remer, L.A.; Vermote, E.; Chu, A.; Holben, B. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J. Geophys. Res. Atmos. 1997, 102, 17051–17067. [Google Scholar] [CrossRef]
- Provençal, S.; Kishcha, P.; da Silva, A.M.; Elhacham, E.; Alpert, P. AOD distributions and trends of major aerosol species over a selection of the world’s most populated cities based on the 1st version of NASA’s MERRA Aerosol Reanalysis. Urban Clim. 2017, 20, 168–191. [Google Scholar] [CrossRef] [PubMed]
- Gadde, B.; Bonnet, S.; Menke, C.; Garivait, S. Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines. Environ. Pollut. 2009, 157, 1554–1558. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, S.; Joshi, L. Socioeconomic and Environmental Implications of Agricultural Residue Burning: A Case Study of Punjab, India; Springer Nature: Berlin, Germany, 2015. [Google Scholar]
- Vadrevu, K.P.; Ellicott, E.; Badarinath, K.; Vermote, E. MODIS derived fire characteristics and aerosol optical depth variations during the agricultural residue burning season, north India. Environ. Pollut. 2011, 159, 1560–1569. [Google Scholar] [CrossRef]
- Venkataraman, C.; Habib, G.; Kadamba, D.; Shrivastava, M.; Leon, J.F.; Crouzille, B.; Boucher, O.; Streets, D. Emissions from open biomass burning in India: Integrating the inventory approach with high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) active-fire and land cover data. Glob. Biogeochem. Cycles 2006, 20. [Google Scholar] [CrossRef]
- Gultepe, I.; Tardif, R.; Michaelides, S.C.; Cermak, J.; Bott, A.; Bendix, J.; Müller, M.D.; Pagowski, M.; Hansen, B.; Ellrod, G.; et al. Fog Research: A Review of Past Achievements and Future Perspectives. Pure Appl. Geophys. 2007, 164, 1121–1159. [Google Scholar] [CrossRef]
- Gultepe, I.; Pagowski, M.; Reid, J. Using surface data to validate a satellite based fog detection scheme. Weather Forecast. 2007, 22, 444–456. [Google Scholar] [CrossRef]
- Bulbul, G.; Shahid, I.; Chishtie, F.; Shahid, M.Z.; Hundal, R.A.; Zahra, F.; Shahzad, M.I. PM10 Sampling and AOD Trends during 2016 Winter Fog Season in the Islamabad Region. Aerosol Air Qual. Res. 2018, 18, 188–199. [Google Scholar] [CrossRef] [Green Version]
- Shahid, Z.M.; Liao, H.; Li, J.; Shahid, I.; Lodhi, A.; Mansha, M. Seasonal variations of aerosols in Pakistan: Contributions of domestic anthropogenic emissions and transboundary transport. Aerosol Air Qual. Res. 2015, 15, 1580–1600. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Zhang, X.; Zhu, X.; Zhang, H.; Gao, J.; Hopke, P.K. Chemical Characteristics of PM2.5 during a 2016 Winter Haze Episode in Shijiazhuang, China. Aerosol Air Qual. Res. 2016, 17, 368–380. [Google Scholar] [CrossRef] [Green Version]
- Feng, N.; Christopher, S.A. Satellite and surface-based remote sensing of Southeast Asian aerosols and their radiative effects. Atmos. Res. 2013, 122, 544–554. [Google Scholar] [CrossRef]
- Griggs, M. Measurements of Atmospheric Aerosol Optical Thickness over Water Using ERTS-1 Data. J. Air Pollut. Control. Assoc. 1975, 25, 622–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaufman, J.Y.; Tanré, D.; Boucher, O. A satellite view of aerosols in the climate system. Nature 2002, 419, 215–223. [Google Scholar] [CrossRef]
- Levy, R.C.; Remer, L.; Kleidman, R.; Mattoo, S.K.; Ichoku, C.; Kahn, R.; Eck, T.F. Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmos. Chem. Phys. Discuss. 2010, 10, 10399–10420. [Google Scholar] [CrossRef] [Green Version]
- Levy, C.R.; Remer, L.A.; Dubovik, O. Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Remer, A.L.; Kaufman, Y.; Tanré, D.; Mattoo, S.; Chu, D.; Martins, J.V.; Li, R.-R.; Ichoku, C.; Levy, R.; Kleidman, R. The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef] [Green Version]
- Boiyo, R.; Kumar, K.R.; Zhao, T.; Bao, Y. Climatological analysis of aerosol optical properties over East Africa observed from space-borne sensors during 2001–2015. Atmos. Environ. 2017, 152, 298–313. [Google Scholar] [CrossRef]
- Jackson, M.J.; Liu, H.; Laszlo, I.; Kondragunta, S.; Remer, L.A.; Huang, J.; Huang, H.C. Suomi-NPP VIIRS aerosol algorithms and data products. J. Geophys. Res. Atmos. 2013, 118, 12673–12689. [Google Scholar] [CrossRef]
- He, Q.; Li, C.; Tang, X.; Li, H.; Geng, F.; Wu, Y. Validation of MODIS derived aerosol optical depth over the Yangtze River Delta in China. Remote Sens. Environ. 2010, 114, 1649–1661. [Google Scholar] [CrossRef]
- Huang, J.; Kondragunta, S.; Laszlo, I.; Liu, H.; Remer, L.A.; Zhang, H.; Superczynski, S.; Ciren, P.; Holben, B.N.; Petrenko, M. Validation and expected error estimation of Suomi-NPP VIIRS aerosol optical thickness and Ångström exponent with AERONET. J. Geophys. Res. Atmos. 2016, 121, 7139–7160. [Google Scholar] [CrossRef] [Green Version]
- Meng, F.; Cao, C.; Shao, X. Spatio-temporal variability of Suomi-NPP VIIRS-derived aerosol optical thickness over China in 2013. Remote Sens. Environ. 2015, 163, 61–69. [Google Scholar] [CrossRef]
- Kondragunta, S.; Laszlo, I.; Ciren, P.; Zhang, H.; Liu, H.; Huang, J.; Huff, A. Exceptional events monitoring using S-NPP VIIRS aerosol products. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 1285–1287. [Google Scholar] [CrossRef]
- Cao, C.; de Luccia, F.J.; Xiong, X.; Wolfe, R.; Weng, F. Early on-orbit performance of the visible infrared imaging ra-diometer suite onboard the Suomi National Polar-Orbiting Partnership (S-NPP) satellite. IEEE Trans. Geosci. Remote Sens. 2013, 52, 1142–1156. [Google Scholar] [CrossRef] [Green Version]
- DATA.GOV, VIIRS/SNPP Deep Blue Level 3 Daily Aerosol Data, 1 × 1 Degree Grid. 2020. Available online: https://catalog.data.gov/dataset/viirs-snpp-deep-blue-level-3-daily-aerosol-data-1x1-degree-grid (accessed on 7 December 2020).
- Sayer, A.; Hsu, N.; Lee, J.; Bettenhausen, C.; Kim, W.; Smirnov, A. Satellite Ocean Aerosol Retrieval (SOAR) Algorithm Extension to S-NPP VIIRS as Part of the “Deep Blue” Aerosol Project. J. Geophys. Res. Atmos. 2018, 123, 380–400. [Google Scholar] [CrossRef]
- Sabetghadam, S.; Khoshsima, M.; Alizadeh-Choobari, O. Spatial and temporal variations of satellite-based aerosol optical depth over Iran in Southwest Asia: Identification of a regional aerosol hot spot. Atmos. Pollut. Res. 2018, 9, 849–856. [Google Scholar] [CrossRef]
- Yu, M.; Yuan, X.; He, Q.; Yu, Y.; Cao, K.; Yang, Y.; Zhang, W. Temporal-spatial analysis of crop residue burning in China and its impact on aerosol pollution. Environ. Pollut. 2019, 245, 616–626. [Google Scholar] [CrossRef]
- Schroeder, W.; Oliva, P.; Giglio, L.; Csiszar, I.A. The New VIIRS 375m active fire detection data product: Algorithm description and initial assessment. Remote Sens. Environ. 2014, 143, 85–96. [Google Scholar] [CrossRef]
- Csiszar, I.; Schroeder, W.; Giglio, L.; Ellicott, E.; Vadrevu, K.P.; Justice, C.O.; Wind, B. Active fires from the Suomi NPP Visible Infrared Imaging Radiometer Suite: Product status and first evaluation results. J. Geophys. Res. Atmos. 2014, 119, 803–816. [Google Scholar] [CrossRef]
- Naheed, G.; Kazmi, D.; Rasul, G. Seasonal variation of rainy days in Pakistan. Pak. J. Meteorol. 2013, 9, 9–13. [Google Scholar]
- Hartmann, H.; Andresky, L. Flooding in the Indus River basin—A spatiotemporal analysis of precipitation records. Glob. Planet. Chang. 2013, 107, 25–35. [Google Scholar] [CrossRef]
- Hartmann, H.; Buchanan, H. Trends in extreme precipitation events in the Indus River Basin and flooding in Pakistan. Atmos. Ocean 2014, 52, 77–91. [Google Scholar] [CrossRef]
- Partal, T.; Kahya, E. Trend analysis in Turkish precipitation data. Hydrol. Process. Int. J. 2006, 20, 2011–2026. [Google Scholar] [CrossRef]
- Von Storch, H. Misuses of statistical analysis in climate research. In Analysis of Climate Variability; Springer: Berlin/Heidelberg, Germany, 1999; pp. 11–26. [Google Scholar]
- Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol. Process. 2002, 16, 1807–1829. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Jiang, T.; Su, B.; Hartmann, H. Temporal and spatial trends of precipitation and river flow in the Yangtze River Basin, 1961–2000. Geomorphology 2007, 85, 143–154. [Google Scholar] [CrossRef]
- Reiter, A.; Weidinger, R.; Mauser, W. Recent Climate Change at the Upper Danube—A temporal and spatial analysis of temperature and precipitation time series. Clim. Chang. 2012, 111, 665–696. [Google Scholar] [CrossRef]
- Tabari, H.; Talaee, P.H. Analysis of trends in temperature data in arid and semi-arid regions of Iran. Glob. Planet. Chang. 2011, 79, 1–10. [Google Scholar] [CrossRef]
- Wang, Q.-X.; Fan, X.-H.; Qin, Z.-D.; Wang, M.-B. Change trends of temperature and precipitation in the Loess Plateau Region of China, 1961–2010. Glob. Planet. Chang. 2012, 92, 138–147. [Google Scholar] [CrossRef]
- Wang, W. Stochasticity, Nonlinearity and Forecasting of Streamflow Processes; IOS Press: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Kendall, M. Rank Correlation Methods; Charles Griffin Book Series; Oxford University Press: London, OH, USA, 1975. [Google Scholar]
- Hirsch, R.M.; Slack, J.R.; Smith, R.A. Techniques of trend analysis for monthly water quality data. Water Resour. Res. 1982, 18, 107–121. [Google Scholar] [CrossRef] [Green Version]
- Khattak, M.; Babel, M.; Sharif, M. Hydro-meteorological trends in the upper Indus River basin in Pakistan. Clim. Res. 2011, 46, 103–119. [Google Scholar] [CrossRef]
- Ahmad, I.; Tang, D.; Wang, T.; Wang, M.; Wagan, B. Precipitation Trends over Time Using Mann-Kendall and Spearman’s rho Tests in Swat River Basin, Pakistan. Adv. Meteorol. 2015, 2015, 431860. [Google Scholar] [CrossRef] [Green Version]
- Nasri, M.; Modarres, R. Dry spell trend analysis of Isfahan Province, Iran. Int. J. Clim. J. R. Meteorol. Soc. 2009, 29, 1430–1438. [Google Scholar] [CrossRef]
- Foster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D.; Haywood, J.; Lean, J.; Lowe, D.; Myhre, G. Climate Change 2007: The Physical Science Basis. Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Syed, F.S.; Körnich, H.; Tjernström, M. On the fog variability over south Asia. Clim. Dyn. 2012, 39, 2993–3005. [Google Scholar] [CrossRef]
- Pant, B.G.; Kumar, K.R. Climates of South Asia; Wiley-Blackwell: Hoboken, NJ, USA, 1997. [Google Scholar]
- Khan, Z. Air Pollution and Smog. Pakistan Today, 26 November 2019. [Google Scholar]
- Alam, K.; Trautmann, T.; Blaschke, T.; Majid, H. Aerosol optical and radiative properties during summer and winter seasons over Lahore and Karachi. Atmos. Environ. 2012, 50, 234–245. [Google Scholar] [CrossRef]
- Biswas, S.; Hu, S.; Verma, V.; Herner, J.D.; Robertson, W.H.; Ayala, A.; Sioutas, C. Physical properties of particulate matter (PM) from late model heavy-duty diesel vehicles operating with advanced PM and NOx emission control technologies. Atmos. Environ. 2008, 42, 5622–5634. [Google Scholar] [CrossRef]
- Badarinath, K.; Kharol, S.K.; Sharma, A.R.; Prasad, V.K. Analysis of aerosol and carbon monoxide characteristics over Arabian Sea during crop residue burning period in the Indo-Gangetic Plains using multi-satellite remote sensing datasets. J. Atmos. Solar Terr. Phys. 2009, 71, 1267–1276. [Google Scholar] [CrossRef]
- Hussain, A.; Mir, H.; Afzal, M. Analysis of dust storms frequecny over pakistan during 1961–2000. Pak. J. Meteorol. 2005, 2, 49–68. [Google Scholar]
- Sharma, R.A.; Kharol, S.K.; Badarinath, K.; Singh, D. Impact of agriculture crop residue burning on atmospheric aerosol loading—A study over Punjab State, India. Ann. Geophys. 2010, 28, 09927689. [Google Scholar]
- Tariq, S.; Ali, M. Spatio–temporal distribution of absorbing aerosols over Pakistan retrieved from OMI onboard Aura satellite. Atmos. Pollut. Res. 2015, 6, 254–266. [Google Scholar] [CrossRef] [Green Version]
- Yasmeen, Z.; Rasul, G.; Zahid, M. Impact of aerosols on winter fog of Pakistan. Pak. J. Meteorol. 2012, 8, 21–30. [Google Scholar]
- Khokhar, M.F.; Yasmin, N.; Chishtie, F.; Shahid, I. Temporal Variability and Characterization of Aerosols across the Pakistan Region during the Winter Fog Periods. Atmosphere 2016, 7, 67. [Google Scholar] [CrossRef] [Green Version]
- Popovich, N.B.M.; Patanjali, K.; Singhvi, A.; Huang, J. See How the World’s Most Polluted Air Compares with Your City’s. 2019. Available online: https://www.nytimes.com/interactive/2019/12/02/climate/air-pollution-compare-ar-ul.html (accessed on 12 January 2020).
- Shabbir, M.; Junaid, A.; Zahid, J. Smog: A Transboundary Issue and Its Implications in India and Pakistan; Sustainable Development Policy Institute: Islamabad, Pakistan, 2019. [Google Scholar]
- Raza, W.; Saeed, S.; Saulat, H.; Gul, H.; Sarfraz, M.; Sonne, C.; Sohn, Z.-H.; Brown, R.J.; Kim, K.-H. A review on the deteriorating situation of smog and its preventive measures in Pakistan. J. Clean. Prod. 2020, 279, 123676. [Google Scholar] [CrossRef]
- Alam, K.; Qureshi, S.; Blaschke, T. Monitoring spatio-temporal aerosol patterns over Pakistan based on MODIS, TOMS and MISR satellite data and a HYSPLIT model. Atmos. Environ. 2011, 45, 4641–4651. [Google Scholar] [CrossRef]
- El-Askary, H.; Gautam, R.; Singh, R.; Kafatos, M. Dust storms detection over the Indo-Gangetic basin using multi sensor data. Adv. Space Res. 2006, 37, 728–733. [Google Scholar] [CrossRef]
- Kant, S.; Panda, J.; Gautam, R. A seasonal analysis of aerosol-cloud-radiation interaction over Indian region during 2000–2017. Atmos. Environ. 2019, 201, 212–222. [Google Scholar] [CrossRef]
- Kaskaoutis, D.; Sinha, P.; Vinoj, V.; Kosmopoulos, P.; Tripathi, S.; Misra, A.; Sharma, M.C.; Singh, R. Aerosol properties and radiative forcing over Kanpur during severe aerosol loading conditions. Atmos. Environ. 2013, 79, 7–19. [Google Scholar] [CrossRef]
- Liu, T.; Mickley, L.J.; Gautam, R.; Singh, M.K.; DeFries, R.S.; Marlier, M. Detection of delay in post-monsoon agricultural burning across Punjab, India: Potential drivers and consequences for air quality. Environ. Res. Lett. 2020, 16, 014014. [Google Scholar] [CrossRef]
- Imam, A.U.K.; Banerjee, U.K. Urbanisation and greening of Indian cities: Problems, practices, and policies. Ambio 2016, 45, 442–457. [Google Scholar] [CrossRef] [Green Version]
- Ningombam, S.S.; Dumka, U.C.; Srivastava, A.; Song, H.-J. Optical and physical properties of aerosols during active fire events occurring in the Indo-Gangetic Plains: Implications for aerosol radiative forcing. Atmos. Environ. 2020, 223, 117225. [Google Scholar] [CrossRef]
- Sharma, D.; Singh, D.; Kaskaoutis, D.G. Impact of Two Intense Dust Storms on Aerosol Characteristics and Radiative Forcing over Patiala, Northwestern India. Adv. Meteorol. 2012, 2012, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.; Srivastava, A.; Jain, V. Spectral dependency of aerosol optical depth and derived aerosol size distribution over Delhi: An implication to pollution source. Sustain. Environ. Res. 2013, 23, 113–128. [Google Scholar]
- Kumar, P.; Mann, M.; Gupta, N.C. Regression analysis of aerosol optical properties with long-term MODIS data using forward selection method. Meteorol. Atmos. Phys. 2019, 131, 1121–1131. [Google Scholar] [CrossRef]
- Lodhi, N.K.; Beegum, S.N.; Singh, S.; Kumar, K. Aerosol climatology at Delhi in the western Indo-Gangetic Plain: Microphysics, long-term trends, and source strengths. J. Geophys. Res. Atmos. 2013, 118, 1361–1375. [Google Scholar] [CrossRef]
- Saha, D.; Soni, K.; Mohanan, M.; Singh, M. Long-term trend of ventilation coefficient over Delhi and its potential impacts on air quality. Remote Sens. Appl. Soc. Environ. 2019, 15, 100234. [Google Scholar] [CrossRef]
- Soni, K.; Kapoor, S.; Parmar, K.S.; Kaskaoutis, D.G. Statistical analysis of aerosols over the Gangetic-Himalayan region using ARIMA model based on long-term MODIS observations. Atmos. Res. 2014, 149, 174–192. [Google Scholar] [CrossRef]
- Kutty, S.G.; Dimri, A.P.; Gultepe, I. Climatic trends in fog occurrence over the Indo-Gangetic plains. Int. J. Clim. 2020, 40, 2048–2061. [Google Scholar] [CrossRef]
Product | Spatial Resolution | Temporal Resolution Used | Data Acquisition Dates |
---|---|---|---|
Aerosol Optical Depth (AOD) | 1° × 1° | 1 day | 1 October 2012–28 February 2020 |
Fire Hotspot | 375 × 375 m | 3 h (converted to daily) | 1 October 2012–28 February 2020 |
Sr. No | Variable Name | Total no. Of Pixel (Time Series) | No. Of Pixel Pre-Whitened |
---|---|---|---|
1 | AOT | 99 | 8 |
2 | Fire Events | 84 | 28 |
Nation | City | p-Value | Kendall Score (S) | ||
---|---|---|---|---|---|
India | Aligarh | 0.003 | 0.717 | −31 | −0.801 |
Chamba | 0.096 | 0.866 | 15 | 0.374 | |
Churu | −0.019 | 0.468 | −61 | −1.603 | |
Gurdaspur | 0.034 | 0.866 | 15 | 0.374 | |
New Delhi | 0.066 | 0.545 | −51 | −1.336 | |
Patiala | 0.182 | 0.153 | −119 | −3.153 | |
Shimla | 0.231 * | 0.961 | −5 | −0.107 | |
Sirsa | 0.066 | 0.345 | −79 | −2.084 | |
Pakistan | Bahawalnagar | −0.118 | 0.483 | −59 | −1.55 |
Bahawalpur | −0.119 | 0.735 | −29 | −0.748 | |
Chakwal | −0.029 | 0.287 | −89 | −2.351 | |
Dera Ismail Khan | −0.187 | 0.942 | 7 | 0.16 | |
Jhang | −0.04 | 0.717 | −31 | −0.801 | |
Lahore | −0.048 | 0.529 | −53 | −1.389 | |
Multan | −0.073 | 0.628 | −41 | −1.069 |
Nation | City | p-Value | Kendall Score (S) | ||
---|---|---|---|---|---|
India | Aligarh | 0.111 | 0.15 | −98 | −0.902 |
Chamba | −0.237 * | 0.884 | 9 | 0.074 | |
Churu | 0 | 0.772 | 3 | 0.019 | |
Gurdaspur | 0.202 * | 0.753 | 27 | 0.242 | |
New Delhi | 0.335 * | 0.226 | −101 | −0.93 | |
Patiala | 0.168 | 0.255 | −95 | −0.874 | |
Shimla | 0.07 | 0.306 | −67 | −0.614 | |
Sirsa | 0.123 | 0.232 | −96 | −0.883 | |
Pakistan | Bahawalnagar | 0.203 * | 0.923 | 9 | 0.074 |
Bahawalpur | 0.429 * | 0.863 | −15 | −0.13 | |
Chakwal | 0.098 | 0.018 | 196 | 1.813 | |
Dera Ismail Khan | −0.229 * | 0.011 | 211 | 1.952 | |
Jhang | −0.174 | 0.013 | 206 | 1.906 | |
Lahore | 0.171 | 0.506 | −56 | −0.511 | |
Multan | −0.307 * | 0.453 | 63 | 0.576 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Umar, M.; Atif, S.; Hildebrandt, M.L.; Tahir, A.; Azmat, M.; Zeeshan, M. Trends of Aerosol Optical Thickness Using VIIRS S-NPP during Fog Episodes in Pakistan and India. Atmosphere 2021, 12, 242. https://doi.org/10.3390/atmos12020242
Umar M, Atif S, Hildebrandt ML, Tahir A, Azmat M, Zeeshan M. Trends of Aerosol Optical Thickness Using VIIRS S-NPP during Fog Episodes in Pakistan and India. Atmosphere. 2021; 12(2):242. https://doi.org/10.3390/atmos12020242
Chicago/Turabian StyleUmar, Muhammad, Salman Atif, Mark L. Hildebrandt, Ali Tahir, Muhammad Azmat, and Muhammad Zeeshan. 2021. "Trends of Aerosol Optical Thickness Using VIIRS S-NPP during Fog Episodes in Pakistan and India" Atmosphere 12, no. 2: 242. https://doi.org/10.3390/atmos12020242
APA StyleUmar, M., Atif, S., Hildebrandt, M. L., Tahir, A., Azmat, M., & Zeeshan, M. (2021). Trends of Aerosol Optical Thickness Using VIIRS S-NPP during Fog Episodes in Pakistan and India. Atmosphere, 12(2), 242. https://doi.org/10.3390/atmos12020242