Validation of WRF-Chem Model and CAMS Performance in Estimating Near-Surface Atmospheric CO2 Mixing Ratio in the Area of Saint Petersburg (Russia)
Abstract
:1. Introduction
2. CO2 Measurements and the Area of Interest
3. WRF-Chem Modelling of CO2 Spatio-Temporal Variation
3.1. Initial and Boundary Conditions
3.2. CO2 Sources and Sinks
4. CAMS Data of CO2 Spatio-Temporal Variation
5. Results and Discussion
5.1. Validation of WRF-Chem Wind Speed and Direction by ERA5 Reanalysis
5.2. Validation of CAMS Near-Surface CO2 Mixing Ratio
5.3. Validation of WRF-Chem Near-Surface CO2 Mixing Ratio
6. Conclusions
- In general, the WRF-Chem model is able to simulate the wind speed and direction at 10 m in the suburb of Saint Petersburg quite accurately with respect to the ERA5 meteorological reanalysis. However, the analysis for the particular months demonstrates that the wind directions between the two datasets disagree more in April 2019 (RMSDs ≈ 35°). The wind direction discrepancies in March are approximately two times lower. We suppose that the differences between the WRF-Chem and ERA5 wind parameters in Peterhof in March and April 2019 could be related to the meteorological boundary conditions used in the WRF-Chem simulation and the specific meteorological situation in April 2019, which could not be represented by the model reasonably well.
- Different CAMS products can be employed as a priori data in the inverse modelling of CO2 emissions. The comparison of the CAMS products (reanalysis and analysis) with each other and the observation data for the near-surface atmospheric CO2 mixing ratio in Saint Petersburg in March and April 2019 demonstrate the high variability of the differences depending on the month. Despite the fact that the spatial resolution of the CAMS reanalysis is notably lower than the analysis, the first one fits the observations better than the last one in March 2019. The analysis data overestimate the real CO2 mixing ratio significantly (on average by more than 10 ppm). The large discrepancies between the analysis and observations can be related to the estimation errors of the CO2 fluxes for the non-urbanized territories used in the CAMS modelling. For example, the CAMS analysis matches the observed CO2 mixing ratio trend in Peterhof relatively well with wind from the Saint Petersburg urbanized area in April 2019. These agreements are related to the high spatial resolution of the CAMS analysis data (≈15 km). By contrast, the CAMS reanalysis data agree with the observations in April significantly worse than in March. These differences can be caused by the low spatial resolution of the CAMS reanalysis (≈200–300 km), which makes it impossible to detect the influence of the Saint Petersburg urbanized area on the CO2 mixing ratio in Peterhof.
- In general, the regional numerical weather prediction and chemistry transport model WRF-Chem adequately simulates the temporal variation in the near-surface CO2 mixing ratio with a high spatial resolution (3 km) in Peterhof (Saint Petersburg) in March and April 2019. It is worth noting that despite the acceptable accuracy of the WRF-Chem data, the CAMS analysis used as the chemical initial and boundary conditions overestimates the observation data significantly—the mean biases and RMSDs are in ranges from −12 to −14 ppm and 14 to 19 ppm, respectively. Besides this, the estimation errors for the biogenic fluxes and anthropogenic emissions could also contribute to the mismatches between the observation and WRF-Chem data. Finally, applying the wrong or simple time variance to the anthropogenic CO2 emissions could have caused the discrepancies in the measurements. However, to verify these assumptions, extra WRF-Chem modelling without anthropogenic emissions is needed.
- The diurnal variation in the CO2 anthropogenic emissions influenced the WRF-Chem data insignificantly in comparison to including the biogenic fluxes in the simulation. It was shown that the biogenic fluxes caused the WRF-Chem data to fit the in situ observations in Peterhof in March and April 2019 a bit better. Perhaps the diurnal variation effect was negligible due to its simplicity or incompleteness. In fact, this variation does not take into account the variability in weekly anthropogenic emissions. The analysis of the monthly-averaged diurnal cycle of near-surface CO2 mixing ratio represented that the diurnal variation of the anthropogenic emissions caused small but visually notable difference between the modelled data in April. The average diurnal cycle, according to the WRF-Chem data with the biogenic fluxes included, fitted the observations a little better. We assume that the relatively small effect of the biogenic fluxes on the WRF-Chem data can be connected to the late beginning of the growing season (e.g., the end of April 2019), which influences the CO2 transfer between the atmosphere and vegetation. To confirm this, we plan to provide WRF-Chem simulations for periods with contrasting biogenic activity (e.g., winter and summer months) for the same area. Besides this, we would like to use online VPRM, which is part of the current WRF-Chem release. We suppose that in the beginning of the growing season, the chemical boundary conditions can influence near-surface CO2 mixing ratio more significant than the biogenic sources and sinks considered explicitly within the modelling domain. Therefore, in our further research, we would like to study the role of chemical boundary conditions in the simulation of the ground-level CO2 mixing ratio especially in the beginning and middle of the growing season.
- The wind direction variations were essential for the temporal distribution of the near-surface CO2 mixing ratio in Peterhof in March and April 2019. We demonstrated that the wind from the Saint Petersburg urban area led to a significant increase in the Peterhof CO2 mixing ratio and to the inhomogeneous trend of the mixing ratio variation. In contrast, it was shown how the opposite wind caused a decrease in the mean mixing ratio and led to the homogeneous CO2 mixing ratio temporal variation. According to the analysis, the WRF-Chem model adequately simulates the wind speed and direction (except for some days in April 2019). Therefore, when providing WRF-Chem simulations for Saint Petersburg with a spatial resolution of 3 km, more attention should be given to the quality of the chemical initial and boundary conditions and CO2 sources and sinks.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- IEA. World Energy Outlook. 2008. Available online: https://www.iea.org/reports/world-energy-outlook-2008 (accessed on 4 November 2020).
- IPCC. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2007; p. 104. [Google Scholar]
- JASON. Methods for Remote Determination of CO2 Emissions; JSR-10-300; MITRE Corp: McLean, VA, USA, 2011; Available online: http://www.fas.org/irp/agency/dod/jason/emissions.pdf (accessed on 16 March 2021).
- Bergamaschi, P.; Danila, A.; Weiss, R.F.; Ciais, P.; Thompson, R.L.; Brunner, D.; Levin, I.; Meijer, Y.; Chevallier, F.; Janssens-Maenhout, G.; et al. Atmospheric Monitoring and Inverse Modelling for Verification of Greenhouse Gas Inventories; EUR 29276 EN; Publications Office of the European Union: Luxembourg, 2018; ISBN 978-92-79-88938-7. JRC111789. [Google Scholar] [CrossRef]
- Matsunaga, T.; Maksyutov, S. (Eds.) A Guidebook on the Use of Satellite Greenhouse Gases Observation Data to Evaluate and Improve Greenhouse Gas Emission Inventories, 1st ed.; Satellite Observation Center, National Institute for Environmental Studies: Tsukuba, Japan, 2018; p. 129. [Google Scholar]
- CEOS Atmospheric Composition Virtual Constellation Greenhouse Gas Team. A Constellation Architecture for Monitoring Carbon Dioxide and Methane from Space, Report V.1.2; Japan. 2018, p. 173. Available online: http://ceos.org/document_management/Virtual_Constellations/ACC/Documents/CEOS_AC-VC_GHG_White_Paper_Publication_Draft2_20181111.pdf (accessed on 4 November 2020).
- Enting, I.G. Inverse Problems in Atmospheric Constituent Transport; Cambridge University Press: Cambridge, UK, 2002; p. 392. [Google Scholar] [CrossRef] [Green Version]
- Hein, R.; Crutzen, P.J.; Heimann, M. An inverse modeling approach to investigate the global atmospheric methane cycle. Glob. Biogeochem. Cycles 1997, 11, 43–76. [Google Scholar] [CrossRef]
- Houweling, S.; Kaminski, T.; Dentener, F.; Lelieveld, J.; Heimann, M. Inverse modeling of methane sources and sinks using the adjoint of a global transport model. J. Geophys. Res. 1999, 104, 26137–26160. [Google Scholar] [CrossRef] [Green Version]
- Mikaloff Fletcher, S.E.; Tans, P.P.; Bruhwiler, L.M.; Miller, J.B.; Heimann, M. CH4 sources estimated from atmospheric obser-vations of CH4 and its 13C/12C isotopic ratios: 2. Inverse modeling of CH4 fluxes from geographical regions. Glob. Biogeochem. Cycle 2004, 18, GB4005. [Google Scholar] [CrossRef] [Green Version]
- Mikaloff Fletcher, S.E.; Tans, P.P.; Bruhwiler, L.M.; Miller, J.B.; Heimann, M. CH4 sources estimated from atmospheric obser-vations of CH4 and its 13C/12C isotopic ratios: 1. Inverse modelling of source processes. Glob. Biogeochem. Cycle 2004, 18, GB4004. [Google Scholar] [CrossRef]
- Hirsch, A.I.; Michalak, A.M.; Bruhwiler, L.M.; Peters, W.; Dlugokencky, E.J.; Tans, P.P. Inverse modeling estimates of the global nitrous oxide surface flux from 1998–2001. Glob. Biogeochem. Cycles 2006, 20, GB1008. [Google Scholar] [CrossRef] [Green Version]
- Bousquet, P.; Ciais, P.; Miller, J.B.; Dlugokencky, E.J.; Hauglustaine, D.A.; Prigent, C.; Van Der Werf, G.R.; Peylin, P.; Brunke, E.G.; Carouge, C.; et al. Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 2006, 443, 439–443. [Google Scholar] [CrossRef]
- Huang, J.; Golombek, A.; Prinn, R.; Weiss, R.; Fraser, P.; Simmonds, P.; Dlugokencky, E.J.; Hall, B.; Elkins, J.; Steele, P.; et al. Estimation of regional emissions of nitrous oxide from 1997 to 2005 using multinetwork measurements, a chemical transport model, and an inverse method. J. Geophys. Res. 2008, 113, D17313. [Google Scholar] [CrossRef]
- Kirschke, S.; Bousquet, P.; Ciais, P.; Saunois, M.; Canadell, J.G.; Dlugokencky, E.J.; Bergamaschi, P.; Bergmann, D.; Blake, D.R.; Bruhwiler, L.M.P.; et al. Three decades of global methane sources and sinks. Nat. Geosci. 2013, 6, 813–823. [Google Scholar] [CrossRef]
- Locatelli, R.; Bousquet, P.; Chevallier, F.; Fortems-Cheney, A.; Szopa, S.; Saunois, M.; Agusti-Panareda, A.; Bergmann, D.; Bian, H.; Cameron-Smith, P.; et al. Impact of transport model errors on the global and regional methane emissions estimated by inverse modelling. Atmos. Chem. Phys. 2013, 13, 9917–9937. [Google Scholar] [CrossRef] [Green Version]
- Bergamaschi, P.; Houweling, S.; Segers, A.; Krol, M.; Frankenberg, C.; Scheepmaker, R.A.; Dlugokencky, E.; Wofsy, S.C.; Kort, E.; Sweeney, C.; et al. Atmospheric CH4in the first decade of the 21st century: Inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements. J. Geophys. Res. 2013, 118, 7350–7369. [Google Scholar] [CrossRef] [Green Version]
- Thompson, R.L.; Ishijima, K.; Saikawa, E.; Corazza, M.; Karstens, U.; Patra, P.K.; Bergamaschi, P.; Chevallier, F.; Dlugokencky, E.; Prinn, R.G.; et al. TransCom N2O model inter-comparison—Part 2: Atmospheric inversion estimates of N2O emissions. Atmos. Chem. Phys. 2014, 14, 6177–6194. [Google Scholar] [CrossRef] [Green Version]
- Bergamaschi, P.; Corazza, M.; Karstens, U.; Athanassiadou, M.; Thompson, R.L.; Pison, I.; Manning, A.J.; Bousquet, P.; Segers, A.; Vermeulen, A.T.; et al. Top-down estimates of European CH4 and N2O emissions based on four different inverse models. Atmos. Chem. Phys. 2015, 15, 715–736. [Google Scholar] [CrossRef] [Green Version]
- Basu, S.; Baker, D.F.; Chevallier, F.; Patra, P.K.; Liu, J.; Miller, J.B. The impact of transport model differences on CO2 surface flux estimates from OCO-2 retrievals of column average CO2. Atmos. Chem. Phys. 2018, 18, 7189–7215. [Google Scholar] [CrossRef] [Green Version]
- Timofeev, Y.M.; Berezin, I.A.; Virolainen, Y.A.; Poberovsky, A.V.; Makarova, M.V.; Polyakov, A.V. Estimates of anthropogen-ic CO2 emissions for Moscow and St. Petersburg based on OCO-2 satellite measurements. Opt. Atmos. Okeana 2020, 33, 261–265. (In Russian) [Google Scholar] [CrossRef]
- Peylin, P.; Law, R.M.; Gurney, K.R.; Chevallier, F.; Jacobson, A.R.; Maki, T.; Niwa, Y.; Patra, P.K.; Peters, W.; Rayner, P.J.; et al. Global atmospheric carbon budget: Results from an ensemble of atmospheric CO2 inversions. Biogeosciences 2013, 10, 6699–6720. [Google Scholar] [CrossRef] [Green Version]
- Timofeyev, Y.M.; Nerobelov, G.M.; Virolainen, Y.A.; Poberovskii, A.V.; Foka, S.C. Estimates of CO2 Anthropogenic Emission from the Megacity St. Petersburg. Dokl. Earth Sci. 2020, 494, 753–756. [Google Scholar] [CrossRef]
- Zhao, X.; Marshall, J.; Hachinger, S.; Gerbig, C.; Frey, M.; Hase, F.; Chen, J. Analysis of total column CO2 and CH4 measurements in Berlin with WRF-GHG. Atmos. Chem. Phys. 2019, 19, 11279–11302. [Google Scholar] [CrossRef] [Green Version]
- Viatte, C.; Lauvaux, T.; Hedelius, J.K.; Parker, H.; Chen, J.; Jones, T.; Franklin, J.E.; Deng, A.J.; Gaudet, B.; Verhulst, K.; et al. Methane emissions from dairies in the Los Angeles Basin. Atmos. Chem. Phys. 2017, 17, 7509–7528. [Google Scholar] [CrossRef] [Green Version]
- Vogel, F.R.; Frey, M.; Staufer, J.; Hase, F.; Broquet, G.; Xueref-Remy, I.; Chevallier, F.; Ciais, P.; Sha, M.K.; Chelin, P.; et al. XCO2 in an emission hot-spot region: The COCCON Paris campaign 2015. Atmos. Chem. Phys. 2019, 19, 3271–3285. [Google Scholar] [CrossRef] [Green Version]
- Makarova, M.V.; Alberti, C.; Ionov, D.V.; Hase, F.; Foka, S.C.; Blumenstock, T.; Warneke, T.; Virolainen, Y.A.; Kostsov, V.S.; Frey, M.; et al. Emission Monitoring Mobile Experiment (EMME): An overview and first results of the St. Petersburg megacity campaign 2019. Atmos. Meas. Tech. 2021, 14, 1047–1073. [Google Scholar] [CrossRef]
- Lauvaux, T.; Miles, N.L.; Deng, A.; Richardson, S.J.; Cambaliza, M.O.; Davis, K.J.; Gaudet, B.; Gurney, K.R.; Huang, J.; O’Keefe, D.; et al. High-resolution atmospheric inversion of urban CO2 emissions during the dormant season of the Indianapolis Flux Experiment (INFLUX). J. Geophys. Res. Atmos. 2016, 121, 5213–5236. [Google Scholar] [CrossRef] [Green Version]
- Bréon, F.M.; Broquet, G.; Puygrenier, V.; Chevallier, F.; Xueref-Remy, I.; Ramonet, M.; Dieudonné, E.; Lopez, M.; Schmidt, M.; Perrussel, O.; et al. An attempt at estimating Paris area CO2 emissions from atmospheric concentration measurements. Atmos. Chem. Phys. 2015, 15, 1707–1724. [Google Scholar] [CrossRef] [Green Version]
- Nassar, R.; Hill, T.G.; McLinden, C.A.; Wunch, D.; Jones, D.B.A.; Crisp, D. Quantifying CO2 Emissions from Individual Power Plants from Space. Geophys. Res. Lett. 2017, 44, 10045–10053. [Google Scholar] [CrossRef] [Green Version]
- Zheng, T.; Nassar, R.; Baxter, M. Estimating power plant CO2 emission using OCO-2 XCO2 and high resolution WRF-Chem simulations. Environ. Res. Lett. 2019, 14, 085001. [Google Scholar] [CrossRef]
- Foka, S.C.; Makarova, M.V.; Poberovsky, A.V.; Timofeev, Y.M. Temporal variations in CO2, CH4 and CO concentrations in Saint-Petersburg suburb (Peterhof). Opt. Atmos. Okeana 2019, 32, 860–866. (In Russian) [Google Scholar] [CrossRef]
- Oda, T.; Maksyutov, S. A very high-resolution (1 km × 1 km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights. Atmos. Chem. Phys. 2011, 11, 543–556. [Google Scholar] [CrossRef] [Green Version]
- ERA5. Available online: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5 (accessed on 26 December 2020).
- Powers, J.G.; Klemp, J.B.; Skamarock, W.C.; Davis, C.A.; Dudhia, J.; Gill, D.O.; Coen, J.L.; Gochis, D.J.; Ahmadov, R.; Peckham, S.E.; et al. The Weather Research and Forecasting Model: Overview, System Efforts, and Future Directions. Bull. Am. Meteorol. Soc. 2017, 98, 1717–1737. [Google Scholar] [CrossRef]
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6976. [Google Scholar] [CrossRef]
- Beck, V.; Koch, T.; Kretschmer, R.; Marshall, J.; Ahmadov, R.; Gerbig, C.; Pillai, D.; Heimann, M. The WRF Greenhouse Gas Model (WRF-GHG) Technical Report No. 25; Max Planck Institute for Biogeochemistry: Jena, Germany, 2011; p. 81. Available online: https://www.bgc-jena.mpg.de/bgc-systems/pmwiki2/uploads/Download/Wrf-ghg/WRF-GHG_Techn_Report.pdf (accessed on 4 November 2020).
- National Centers for Environmental Information. Available online: https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs (accessed on 4 November 2020).
- Copernicus Atmosphere Monitoring Service. Available online: https://atmosphere.copernicus.eu/catalogue#/product/urn:x-wmo:md:int.ecmwf::copernicus:cams:prod:fc:co2:pid290 (accessed on 4 November 2020).
- National Center for Atmospheric Research: Atmospheric Chemistry Observation & Modeling. Available online: https://www.acom.ucar.edu/wrf-chem/download.shtml (accessed on 4 November 2020).
- Nassar, R.; Napier-Linton, L.; Gurney, K.R.; Andres, R.J.; Oda, T.; Vogel, F.R.; Deng, F. Improving the temporal and spatial distribution of CO2emissions from global fossil fuel emission data sets. J. Geophys. Res. Atmos. 2013, 118, 917–933. [Google Scholar] [CrossRef]
- Mahadevan, P.; Wofsy, S.C.; Matross, D.M.; Xiao, X.; Dunn, A.L.; Lin, J.C.; Gerbig, C.; Munger, J.W.; Chow, V.Y.; Gottlieb, E.W. A satellite-based biosphere parameterization for net ecosystem CO2exchange: Vegetation Photosynthesis and Respiration Model (VPRM). Glob. Biogeochem. Cycles 2008, 22, GB2005. [Google Scholar] [CrossRef] [Green Version]
- Ahmadov, R.; Gerbig, C.; Kretschmer, R.; Koerner, S.; Neininger, B.; Dolman, A.J.; Sarrat, C. Mesoscale covariance of transport and CO2fluxes: Evidence from observations and simulations using the WRF-VPRM coupled atmosphere-biosphere model. J. Geophys. Res. 2007, 112, D22107. [Google Scholar] [CrossRef] [Green Version]
- Mammarella, I.; Kolari, P.; Vesala, T.; Rinne, J. Determining the contribution of vertical advection to the net ecosystem exchange at Hyytiälä forest, Finland. Tellus B Chem. Phys. Meteorol. 2007, 59, 900–909. [Google Scholar] [CrossRef]
- Mammarella, I.; Launiainen, S.; Gronholm, T.; Keronen, P.; Pumpanen, J.; Rannik, Ü.; Vesala, T. Relative Humidity Effect on the High Frequency Attenuation of Water Vapor Flux Measured by a Closed-Path Eddy Covariance System. J. Atmos. Ocean. Technol. 2009, 26, 1856–1866. [Google Scholar] [CrossRef]
- Mammarella, I.; Peltola, O.; Nordbo, A.; Järvi, L.; Rannik, Ü. Quantifying the uncertainty of eddy covariance fluxes due to the use of different software packages and combinations of processing steps in two contrasting ecosystems. Atmos. Meas. Tech. 2016, 9, 4915–4933. [Google Scholar] [CrossRef] [Green Version]
- Engelen, R. CAMS Service Product Portfolio. 2018. Available online: https://atmosphere.copernicus.eu/sites/default/files/2018-12/CAMS%20Service%20Product%20Portfolio%20-%20July%202018.pdf (accessed on 4 November 2020).
- Chevallier, F. Validation Report for the CO2 Fluxes Estimated by Atmospheric Inversion, v19r1 Version 1.0. 2020. Available online: https://atmosphere.copernicus.eu/sites/default/files/2020-08/CAMS73_2018SC2_D73.1.4.1-2019-v1_202008_v3-1.pdf (accessed on 4 November 2020).
- CEA. Description of the CO2 Inversion Production Chain. 2020. Available online: https://atmosphere.copernicus.eu/sites/default/files/2020-06/CAMS73_2018SC2_%20D5.2.1-2020_202004_%20CO2%20inversion%20production%20chain_v1.pdf (accessed on 13 November 2020).
- Hourdin, F.; Musat, I.; Bony, S.; Braconnot, P.; Cordon, F.; Dufresne, J.; Fairhead, L.; Filiberti, M.; Friedlingstein, P.; Grandpeix, J.; et al. The LMDZ4 general circulation model: Climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim. Dyn. 2006, 27, 787–813. [Google Scholar] [CrossRef] [Green Version]
- Nerobelov, G.; Timofeev, Y.; Smyshlyaev, S.; Virolainen, Y.; Makarova, M.; Foka, S. Comparison of CAMS data on CO2 content and measurements in Petergof. Opt. Atmos. Okeana 2020, 33, 805–810. (In Russian) [Google Scholar] [CrossRef]
No of WRF-Chem Model Run | 1a | 1b | 2a | 2b | 3a | 3b | |
---|---|---|---|---|---|---|---|
Horizontal resolution | D01—9 km, D02—3 km | ||||||
Vertical resolution | 39 hybrid vertical layers (up to 50 hPa) | ||||||
Initial and boundary conditions | Meteorology | GFS ANL (0.5°, 3 h) | |||||
Atmospheric CO2 mixing ratio | CAMS Global analysis of CO2 (0.15°, 6 h) | ||||||
Length of simulation | March 2019 | April 2019 | March 2019 | April 2019 | March 2019 | April 2019 | |
CO2 sources and sinks | Anthropogenic sources | ODIAC 2018, diurnal temporal variation | ODIAC 2018, no temporal variation | ||||
Biogenic sources and sinks | VPRM, temporal variation—3 h | No biogenic fluxes | No biogenic fluxes |
Wind Speed (m/s) | ||||
Period | March 2019 | April 2019 | ||
ERA5 | WRF-Chem | ERA5 | WRF-Chem | |
Mean± SD | 6.0 ± 2.2 | 4.7 ± 1.7 | 3.8 ± 1.7 | 3.2 ± 1.5 |
Wind Direction (°) | ||||
Period | March 2019 | April 2019 | ||
ERA5 | WRF-Chem | ERA5 | WRF-Chem | |
Mean± SD | 225.8 ± 66.8 | 230.6 ± 63.0 | 162.0 ± 106.0 | 175.8 ± 105.9 |
Wind Speed | |||
Date | M, m/s | RMSD, m/s | R |
March | 1.2 | 1.8 | 0.82 ± 0.04 |
April | 0.6 | 1.5 | 0.63 ± 0.06 |
March–April | 0.9 | 1.6 | 0.80 ± 0.03 |
Wind Direction | |||
Date | M, ° | RMSD, ° | R |
March | −4.8 | 18.9 | 0.87 ± 0.04 |
April | −8.5 | 35.1 | 0.63 ± 0.06 |
March–April | −6.6 | 28.1 | 0.73 ± 0.04 |
Period | March 2019 | April 2019 | ||||
---|---|---|---|---|---|---|
GGA | CAMS (Reanl) | CAMS (Anl) | GGA | CAMS (Reanl) | CAMS (Anl) | |
Mean ± SD (ppm) | 420.6 ± 4.2 | 420.8 ± 4.0 | 432.6 ± 9.4 | 427.4 ± 12.6 | 418.0 ± 6.5 | 441.8 ± 17.1 |
Period | March 2019 | April 2019 | ||
---|---|---|---|---|
GGA−CAMS (Reanl) | GGA−CAMS (Anl) | GGA−CAMS (Reanl) | GGA−CAMS (Anl) | |
M, ppm | −0.1 | −11.8 | 9.4 | −14.3 |
RMSD, ppm | 4.2 | 14.4 | 15.1 | 19.0 |
R | 0.46 ± 0.16 | 0.52 ± 0.15 | 0.37 ± 0.18 | 0.69 ± 0.14 |
Period | Average ± SD (ppm) | |||
---|---|---|---|---|
GGA | WRF-Chem (t.v. anth + bio) | WRF-Chem (t.v. anth) | WRF-Chem (t.const. anth) | |
March 2019 | 420.7 ± 4.5 | 422.4 ± 4.7 | 423.3 ± 4.9 | 423.4 ± 5.1 |
April 2019 | 427.3 ± 14.3 | 426.1 ± 9.3 | 426.1 ± 8.2 | 426.3 ± 9.0 |
March–April 2019 | 423.9 ± 10.9 | 424.2 ± 7.5 | 424.7 ± 6.9 | 424.8 ± 7.4 |
Period | March 2019 | April 2019 | March–April 2019 | ||||||
---|---|---|---|---|---|---|---|---|---|
GGA− WRF-Chem | t.v. Anth + Bio | t.v. Anth | Const. Anth | t.v. Anth + Bio | t.v. Anth | Const. Anth | t.v. Anth + Bio | t.v. Anth | Const. Anth |
M, ppm | −1.7 | −2.7 | −2.7 | 1.3 | 1.2 | 1.0 | −0.3 | −0.8 | −0.9 |
RMSD, ppm | 4.7 | 4.6 | 4.6 | 11.5 | 11.4 | 11.6 | 8.7 | 8.6 | 8.8 |
R | 0.55 ± 0.06 | 0.69 ± 0.05 | 0.70 ± 0.05 | 0.60 ± 0.06 | 0.60 ± 0.06 | 0.58 ± 0.06 | 0.61 ± 0.04 | 0.62 ± 0.04 | 0.61 ± 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nerobelov, G.; Timofeyev, Y.; Smyshlyaev, S.; Foka, S.; Mammarella, I.; Virolainen, Y. Validation of WRF-Chem Model and CAMS Performance in Estimating Near-Surface Atmospheric CO2 Mixing Ratio in the Area of Saint Petersburg (Russia). Atmosphere 2021, 12, 387. https://doi.org/10.3390/atmos12030387
Nerobelov G, Timofeyev Y, Smyshlyaev S, Foka S, Mammarella I, Virolainen Y. Validation of WRF-Chem Model and CAMS Performance in Estimating Near-Surface Atmospheric CO2 Mixing Ratio in the Area of Saint Petersburg (Russia). Atmosphere. 2021; 12(3):387. https://doi.org/10.3390/atmos12030387
Chicago/Turabian StyleNerobelov, Georgy, Yuri Timofeyev, Sergei Smyshlyaev, Stefani Foka, Ivan Mammarella, and Yana Virolainen. 2021. "Validation of WRF-Chem Model and CAMS Performance in Estimating Near-Surface Atmospheric CO2 Mixing Ratio in the Area of Saint Petersburg (Russia)" Atmosphere 12, no. 3: 387. https://doi.org/10.3390/atmos12030387
APA StyleNerobelov, G., Timofeyev, Y., Smyshlyaev, S., Foka, S., Mammarella, I., & Virolainen, Y. (2021). Validation of WRF-Chem Model and CAMS Performance in Estimating Near-Surface Atmospheric CO2 Mixing Ratio in the Area of Saint Petersburg (Russia). Atmosphere, 12(3), 387. https://doi.org/10.3390/atmos12030387