Trends in Different Grades of Precipitation over the Yangtze River Basin from 1960 to 2017
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Mann–Kendall Trend Detection Test
2.3.2. The Linear Trend Analysis Method
2.3.3. Contribution Rates
2.3.4. Pearson Correlation Analysis
3. Results
3.1. Trends in Different Grades of Precipitation
3.2. Trends in Graded Precipitation Contribution Rate
3.3. Sensitivities of Graded Precipitation to the Long-Term Trend of Air Temperature
4. Discussion
4.1. Changing Trends of Different Grades of Precipitation
4.2. Trends in the Contribution Rate of Different Grades of Precipitation to the Total Precipitation
4.3. Relationship between Graded Precipitation and Air Temperature
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IPCC | Intergovernmental Panel on Climate Change | – |
YRB | Yangtze River Basin | – |
CMA | Chinese Meteorology Administration | – |
MK | Mann–Kendall | – |
SA | The amount of precipitation from small precipitation events in a year. | mm/year |
MA | The amount of precipitation from moderate precipitation events in a year. | mm/year |
LA | The amount of precipitation from large precipitation events in a year. | mm/year |
HA | The amount of precipitation from heavy precipitation events in a year. | mm/year |
TA | The amount of total precipitation in a year. | mm/year |
SD | The number of days with small precipitation events in a year. | days/year |
MD | The number of days with moderate precipitation in a year. | days/year |
LD | The number of days with large precipitation events in a year. | days/year |
HD | The number of days with heavy precipitation in a year. | days/year |
TD | The total number of days with precipitation in a year. | days/year |
10a | 10 years | year |
* | Significant at the 0.05 level. | – |
References
- Birkinshaw, S.J.; Guerreiro, S.B.; Nicholson, A.; Liang, Q.; Quinn, P.; Zhang, L.; He, B.; Yin, J.; Fowler, H.J. Climate change impacts on Yangtze River discharge at the Three Gorges Dam. Hydrol. Earth Syst. Sci. 2017, 21, 1911–1927. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.-C.; Wang, Y.-H.; You, G.J.-Y.; Wei, C.-C. Comparison of methods for non-stationary hydrologic frequency analysis: Case study using annual maximum daily precipitation in Taiwan. J. Hydrol. 2017, 545, 197–211. [Google Scholar] [CrossRef]
- Ali, R.; Kuriqi, A.; Abubaker, S.; Kisi, O. Hydrologic Alteration at the Upper and Middle Part of the Yangtze River, China: Towards Sustainable Water Resource Management Under Increasing Water Exploitation. Sustainability 2019, 11, 5176. [Google Scholar] [CrossRef] [Green Version]
- Ma, S.M.; Zhou, T.J.; Dai, A.G.; Han, Z.Y. Observed Changes in the Distributions of Daily Precipitation Frequency and Amount over China from 1960 to 2013. J. Clim. 2015, 28, 6960–6978. [Google Scholar] [CrossRef]
- Westra, S.; Alexander, L.V.; Zwiers, F.W. Global Increasing Trends in Annual Maximum Daily Precipitation. J. Clim. 2013, 26, 3904–3918. [Google Scholar] [CrossRef] [Green Version]
- Willems, P. Multidecadal oscillatory behaviour of rainfall extremes in Europe. Clim. Chang. 2013, 120, 931–944. [Google Scholar] [CrossRef] [Green Version]
- Donat, M.G.; Lowry, A.L.; Alexander, L.V.; O’Gorman, P.A.; Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Chang. 2017, 7, 154–158. [Google Scholar] [CrossRef] [Green Version]
- Gregersen, I.B.; Sorup, H.J.D.; Madsen, H.; Rosbjerg, D.; Mikkelsen, P.S.; Arnbjerg-Nielsen, K. Assessing future climatic changes of rainfall extremes at small spatio-temporal scales. Clim. Chang. 2013, 118, 783–797. [Google Scholar] [CrossRef]
- Hennessy, K.J.; Gregory, J.M.; Mitchell, J.F.B. Changes in daily precipitation under enhanced greenhouse conditions. Clim. Dyn. 1997, 13, 667–680. [Google Scholar] [CrossRef]
- Fujibe, F. Clausius-Clapeyron-like relationship in multidecadal changes of extreme short-term precipitation and temperature in Japan. Atmos. Sci. Lett. 2013, 14, 127–132. [Google Scholar] [CrossRef]
- Kysely, J. Trends in heavy precipitation in the Czech Republic over 1961-2005. Int. J. Climatol. 2009, 29, 1745–1758. [Google Scholar] [CrossRef]
- Bengtsson, L.; Rana, A. Long- term change of daily and multi- daily precipitation in southern Sweden. Hydrol. Process. 2014, 28, 2897–2911. [Google Scholar] [CrossRef]
- Haylock, M.; Nicholls, N. Trends in extreme rainfall indices for an updated high quality data set for Australia, 1910–1998. Int. J. Climatol. 2000, 20, 1533–1541. [Google Scholar] [CrossRef]
- Karagiannidis, A.F.; Karacostas, T.; Maheras, P.; Makrogiannis, T. Climatological aspects of extreme precipitation in Europe, related to mid-latitude cyclonic systems. Theor. Appl. Climatol. 2012, 107, 165–174. [Google Scholar] [CrossRef]
- Huang, G.; Wen, G. Spatial and temporal variations of light rain events over China and the mid-high latitudes of the Northern Hemisphere. Chin. Sci. Bull. 2013, 58, 1402–1411. [Google Scholar] [CrossRef] [Green Version]
- Qian, W.; Fu, J.; Yan, Z. Decrease of light rain events in summer associated with a warming environment in China during 1961–2005. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Miao, C.; Duan, Q.; Sun, Q.; Lei, X.; Li, H. Non-uniform changes in different categories of precipitation intensity across China and the associated large-scale circulations. Environ. Res. Lett. 2019, 14, 025004. [Google Scholar] [CrossRef]
- Fu, G.; Yu, J.; Yu, X.; Ouyang, R.; Zhang, Y.; Wang, P.; Liu, W.; Min, L. Temporal variation of extreme rainfall events in China, 1961–2009. J. Hydrol. 2013, 487, 48–59. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, S.-Y.; Wen, J.; Xu, M.; Tan, J. Changing characteristics of precipitation in China during 1960–2012. Int. J. Climatol. 2016, 36, 1387–1402. [Google Scholar] [CrossRef]
- Liu, B.H.; Xu, M.; Henderson, M.; Qi, Y. Observed trends of precipitation amount, frequency, and intensity in China, 1960–2000. J. Geophys. Res. Atmos. 2005, 110, 1–10. [Google Scholar] [CrossRef]
- Karl, T.R.; Knight, R.W. Secular trends of precipitation amount, frequency, and intensity in the United States. Bull. Am. Meteorol. Soc. 1998, 79, 231–241. [Google Scholar] [CrossRef]
- Raziei, T.; Daryabari, J.; Bordi, I.; Modarres, R.; Pereira, L.S. Spatial patterns and temporal trends of daily precipitation indices in Iran. Clim. Chang. 2014, 124, 239–253. [Google Scholar] [CrossRef]
- Feng, Y.; Zhao, X. Changes in spatiotemporal pattern of precipitation over China during 1980–2012. Environ. Earth Sci. 2015, 73, 1649–1662. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, J.; Zhao, D.; Xia, L. Characteristics and reasons for light rain reduction in Southwest China in recent decades. Prog. Phys. Geogr. 2019, 43, 643–665. [Google Scholar] [CrossRef]
- IPCC. Climate change 2013: The physical science basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA. [CrossRef] [Green Version]
- O’Gorman, P.A.; Muller, C.J. How closely do changes in surface and column water vapor follow Clausius-Clapeyron scaling in climate change simulations? Environ. Res. Lett. 2010, 5. [Google Scholar] [CrossRef]
- Lupikasza, E. Spatial and temporal variability of extreme precipitation in Poland in the period 1951–2006. Int. J. Climatol. 2010, 30, 991–1007. [Google Scholar] [CrossRef]
- Ntegeka, V.; Willems, P. Trends and multidecadal oscillations in rainfall extremes, based on a more than 100-year time series of 10 min rainfall intensities at Uccle, Belgium. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Trenberth, K.E. Changes in precipitation with climate change. Clim. Res. 2011, 47, 123–138. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Wang, K. Quantifying the Sensitivity of Precipitation to the Long-Term Warming Trend and Interannual-Decadal Variation of Surface Air Temperature over China. J. Clim. 2017, 30, 3687–3703. [Google Scholar] [CrossRef]
- Martinkova, M.; Kysely, J. Overview of Observed Clausius-Clapeyron Scaling of Extreme Precipitation in Midlatitudes. Atmosphere 2020, 11, 786. [Google Scholar] [CrossRef]
- Karl, T.R.; Trenberth, K.E. Modern global climate change. Science 2003, 302, 1719–1723. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.C.; Fu, C.; Shiu, C.-J.; Chen, J.-P.; Wu, F. Temperature dependence of global precipitation extremes. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Shiu, C.-J.; Liu, S.C.; Fu, C.; Dai, A.; Sun, Y. How much do precipitation extremes change in a warming climate? Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Mu, X.; Hoermann, G.; Fohrer, N.; Xiong, M.; Su, B.; Li, X. Spatial patterns and temporal variability of dryness/wetness in the Yangtze River Basin, China. Quat. Int. 2012, 282, 5–13. [Google Scholar] [CrossRef]
- Zhang, Q.; Peng, J.; Xu, C.-Y.; Singh, V.P. Spatiotemporal variations of precipitation regimes across Yangtze River Basin, China. Theor. Appl. Climatol. 2014, 115, 703–712. [Google Scholar] [CrossRef]
- Yang, H.; Zhi, X.F.; Gao, J.; Liu, Y. Variation of East Asian Summer Monsoon and Its Relationship with Precipitation of China in Recent 111 Years. Agric. Sci. Technol. 2011, 12, 1711–1716. [Google Scholar] [CrossRef]
- Ali, R.; Kuriqi, A.; Abubaker, S.; Kisi, O. Long-Term Trends and Seasonality Detection of the Observed Flow in Yangtze River Using Mann-Kendall and Sen’s Innovative Trend Method. Water 2019, 11, 1855. [Google Scholar] [CrossRef] [Green Version]
- Su, B.; Gemmer, M.; Jiang, T. Spatial and temporal variation of extreme precipitation over the Yangtze River Basin. Quat. Int. 2008, 186, 22–31. [Google Scholar] [CrossRef]
- Chen, Y.D.; Zhang, Q.; Xiao, M.; Singh, V.P.; Leung, Y.; Jiang, L. Precipitation extremes in the Yangtze River Basin, China: Regional frequency and spatial-temporal patterns. Theor. Appl. Climatol. 2014, 116, 447–461. [Google Scholar] [CrossRef]
- Xiao, M.; Zhang, Q.; Singh, V.P. Influences of ENSO, NAO, IOD and PDO on seasonal precipitation regimes in the Yangtze River basin, China. Int. J. Climatol. 2015, 35, 3556–3567. [Google Scholar] [CrossRef]
- Guan, Y.; Zheng, F.; Zhang, X.; Wang, B. Trends and variability of daily precipitation and extremes during 1960-2012 in the Yangtze River Basin, China. Int. J. Climatol. 2017, 37, 1282–1298. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, X.; Luo, Z.; Shang, C.; He, X.; Rao, Z. Analyses on Characteristics of Extreme Precipitation Indices in the Yangtze River Basin in the Past 53 Years. Resour. Environ. Yangtze Val. 2018, 27, 1879–1890. [Google Scholar]
- Guo, J.; Guo, S.; Li, Y.; Chen, H.; Li, T. Spatial and temporal variation of extreme precipitation indices in the Yangtze River basin, China. Stoch. Environ. Res. Risk Assess. 2013, 27, 459–475. [Google Scholar] [CrossRef]
- Wang, M.; Yin, S.Y. Spatiotemporal variations of the extremeprecipitation of middle and lower reaches of the Yangtze River inrecent 52 years. Resour. Environ. Yangtze Val. 2015, 24, 1221–1229. [Google Scholar] [CrossRef]
- Becker, S.; Gemmer, M.; Jiang, T. Spatiotemporal analysis of precipitation trends in the Yangtze River catchment. Stoch. Environ. Res. Risk Assess. 2006, 20, 435–444. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, M.; Wang, B.; Sun, M.; Li, X. Recent changes in daily extremes of temperature and precipitation over the western Tibetan Plateau, 1973–2011. Quat. Int. 2013, 313, 110–117. [Google Scholar] [CrossRef]
- Hu, C.; Xu, Y.; Han, L.; Yang, L.; Xu, G. Long-term trends in daily precipitation over the Yangtze River Delta region during 1960–2012, Eastern China. Theor. Appl. Climatol. 2016, 125, 131–147. [Google Scholar] [CrossRef]
- Sang, Y.-F.; Wang, Z.; Liu, C. Spatial and temporal variability of daily temperature during 1961-2010 in the Yangtze River Basin, China. Quat. Int. 2013, 304, 33–42. [Google Scholar] [CrossRef]
- Su, B.D.; Jiang, T.; Jin, W.B. Recent trends in observed temperature and precipitation extremes in the Yangtze River basin, China. Theor. Appl. Climatol. 2006, 83, 139–151. [Google Scholar] [CrossRef]
- Zhao, G.J.; Hoermann, G.; Fohrer, N.; Gao, J.F.; Zhai, J.Q.; Zhang, Z.X. Spatial and temporal characteristics of wet spells in the Yangtze River Basin from 1961 to 2003. Theor. Appl. Climatol. 2009, 98, 107–117. [Google Scholar] [CrossRef]
- Fu, C.; Dan, L. Trends in the Different Grades of Precipitation over South China during 1960-2010 and the Possible Link with Anthropogenic Aerosols. Adv. Atmos. Sci. 2014, 31, 480–491. [Google Scholar] [CrossRef]
- Huang, D.-Q.; Zhu, J.; Zhang, Y.-C.; Huang, Y.; Kuang, X.-Y. Assessment of summer monsoon precipitation derived from five reanalysis datasets over East Asia. Q. J. R. Meteorol. Soc. 2016, 142, 108–119. [Google Scholar] [CrossRef]
- Zhai, P.M.; Ren, F.M.; Zhang, Q. Detection of trends in China’s precipitation extremes. Acta Meteorol. Sin. 1999, 57, 208–216. [Google Scholar] [CrossRef]
- Tabari, H.; Talaee, P.H. Temporal variability of precipitation over Iran: 1966–2005. J. Hydrol. 2011, 396, 313–320. [Google Scholar] [CrossRef]
- Hamed, K.H. Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis. J. Hydrol. 2008, 349, 350–363. [Google Scholar] [CrossRef]
- Kuriqi, A.; Ali, R.; Quoc Bao, P.; Gambini, J.M.; Gupta, V.; Malik, A.; Nguyen Thi Thuy, L.; Joshi, Y.; Duong Tran, A.; Van Thai, N.; et al. Seasonality shift and streamflow flow variability trends in central India. Acta Geophys. 2020, 68, 1461–1475. [Google Scholar] [CrossRef]
- Yue, S.; Wang, C.Y. The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour. Manag. 2004, 18, 201–218. [Google Scholar] [CrossRef]
- Qian, Y.; Gong, D.; Fan, J.; Leung, L.R.; Bennartz, R.; Chen, D.; Wang, W. Heavy pollution suppresses light rain in China: Observations and modeling. J. Geophys. Res. Atmos. 2009, 114, D7. [Google Scholar] [CrossRef]
- Zhao, C.; Tie, X.; Lin, Y. A possible positive feedback of reduction of precipitation and increase in aerosols over eastern central China. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Wu, Y.; Ji, H.; Wen, J.; Wu, S.-Y.; Xu, M.; Tagle, F.; He, B.; Duan, W.; Li, J. The characteristics of regional heavy precipitation events over eastern monsoon China during 1960–2013. Glob. Planet. Chang. 2019, 172, 414–427. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, Z. Changes of frequency of summer precipitation extremes over the Yangtze River in association with large-scale oceanic-atmospheric conditions. Adv. Atmos. Sci. 2011, 28, 1118–1128. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, C.-Y.; Chen, X.; Zhang, Z. Statistical behaviours of precipitation regimes in China and their links with atmospheric circulation 1960–2005. Int. J. Climatol. 2011, 31, 1665–1678. [Google Scholar] [CrossRef]
- Lu, M.; Wu, S.-J.; Chen, J.; Chen, C.; Wen, Z.; Huang, Y. Changes in extreme precipitation in the Yangtze River basin and its association with global mean temperature and ENSO. Int. J. Climatol. 2018, 38, 1989–2005. [Google Scholar] [CrossRef]
- Qian, Y.; Gong, D.; Leung, R. Light rain events change over North America, Europe, and Asia for 1973–2009. Atmos. Sci. Lett. 2010, 11, 301–306. [Google Scholar] [CrossRef]
- Russo, S.; Sterl, A. Global changes in seasonal means and extremes of precipitation from daily climate model data. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Kharin, V.V.; Zwiers, F.W.; Zhang, X.; Wehner, M. Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim. Chang. 2013, 119, 345–357. [Google Scholar] [CrossRef]
- Groisman, P.Y.; Knight, R.W. Prolonged dry episodes over the conterminous united states: New tendencies emerging during the last 40 years. J. Clim. 2008, 21, 1850–1862. [Google Scholar] [CrossRef]
- Tian, Q.; Prange, M.; Merkel, U. Precipitation and temperature changes in the major Chinese river basins during 1957-2013 and links to sea surface temperature. J. Hydrol. 2016, 536, 208–221. [Google Scholar] [CrossRef]
- Cui, L.; Wang, L.; Lai, Z.; Tian, Q.; Liu, W.; Li, J. Innovative trend analysis of annual and seasonal air temperature and rainfall in the Yangtze River Basin, China during 1960–2015. J. Atmos. Sol.-Terr. Phys. 2017, 164, 48–59. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, L.Y.; Zhao, D.M.; Tang, J.P. Impacts of warming and water vapor content on the decrease in light rain days during the warm season over eastern China. Clim. Dyn. 2015, 45, 1841–1857. [Google Scholar] [CrossRef]
- Held, I.M.; Soden, B.J. Robust responses of the hydrological cycle to global warming. J. Clim. 2006, 19, 5686–5699. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, Y.; Wang, L.; Gong, W.; Hu, B.; Shi, Y. Spatial-temporal characteristics of aerosol loading over the Yangtze River Basin during 2001–2015. Int. J. Climatol. 2018, 38, 2138–2152. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Lohmann, U.; Raga, G.B.; O’Dowd, C.D.; Kulmala, M.; Fuzzi, S.; Reissell, A.; Andreae, M.O. Flood or Drought: How Do Aerosols Affect Precipitation? Science 2008, 321, 1309–1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, H.; Gemmer, M.; Jiang, J.; Lai, X.; Zhang, Z. Assessment of CMIP3 climate models and projected changes of precipitation and temperature in the Yangtze River Basin, China. Clim. Chang. 2012, 111, 737–751. [Google Scholar] [CrossRef]
- Niu, Z.; Wang, L.; Fang, L.; Li, J.; Yao, R. Analysis of spatiotemporal variability in temperature extremes in the Yellow and Yangtze River basins during 1961–2014 based on high-density gauge observations. Int. J. Climatol. 2020, 40, 1–21. [Google Scholar] [CrossRef]
Regions | SA | MA | LA | HA | TA | SD | MD | LD | HD | TD |
---|---|---|---|---|---|---|---|---|---|---|
I | 0.50 | 0.98 | 1.91 | 6.98 * | 1.20 | −1.24 * | 0.98 | 1.74 | 7.36 * | −0.87 |
II | −1.75 * | −1.30 | −0.66 | −1.16 | −1.27 | −3.89 * | −1.28 | −0.76 | −2.10 | −3.41 |
III | −2.25 * | −2.02 * | 0.01 | 5.33 * | −0.50 | −5.06 * | −2.26 * | −0.05 | 4.33 | −4.38 * |
IV | −2.28 * | −1.90 | 0.76 | 2.58 | −0.46 | −4.38 * | −1.95 | 0.77 | 2.21 | −3.61 * |
V | −1.41 | −0.74 | 1.75 | 4.73 | 0.86 | −3.52 * | −0.85 | 1.64 | 4.07 | −2.49 * |
VI | −0.98 | −0.07 | 2.82 | 6.36 * | 2.16 | −4.84 * | −0.11 | 2.72 | 5.84 * | −3.12 * |
YRB | −1.22 * | −0.62 | 1.51 | 4.27 * | 0.71 | −3.86 * | −0.72 | 1.43 | 3.69 * | −2.97 * |
Regions | SA | MA | LA | HA | SD | MD | LD | HD |
---|---|---|---|---|---|---|---|---|
I | 42.79 | 37.50 | 15.01 | 4.70 | 84.80 | 12.52 | 2.32 | 0.37 |
II | 28.81 | 27.00 | 21.13 | 23.06 | 81.94 | 11.85 | 4.22 | 1.99 |
III | 29.72 | 31.47 | 23.90 | 14.90 | 82.26 | 12.15 | 4.30 | 1.29 |
IV | 25.24 | 30.52 | 25.46 | 18.78 | 77.78 | 14.57 | 5.67 | 1.98 |
V | 21.69 | 31.60 | 27.99 | 18.72 | 72.70 | 17.56 | 7.39 | 2.36 |
VI | 19.97 | 29.11 | 26.42 | 24.50 | 71.95 | 17.49 | 7.43 | 3.13 |
YRB | 25.74 | 30.48 | 24.23 | 19.55 | 78.05 | 14.60 | 5.38 | 1.97 |
Regions | SA | MA | LA | HA | SD | MD | LD | HD |
---|---|---|---|---|---|---|---|---|
I | −0.31 | −0.07 | 0.10 | 0.28 * | −0.32 * | 0.23 * | 0.06 * | 0.03 * |
II | −0.13 | −0.02 | 0.13 | 0.01 | −0.39 * | 0.25 * | 0.11 | 0.03 |
III | −0.48 * | −0.50 * | 0.12 | 0.85 * | −0.55 * | 0.25 * | 0.18 * | 0.11 * |
IV | −0.45 * | −0.48 * | 0.30 | 0.63 * | −0.60 * | 0.24 * | 0.25 * | 0.12 * |
V | −0.51 * | −0.48 * | 0.21 | 0.77 * | −0.74 * | 0.29 * | 0.30 * | 0.16 * |
VI | −0.62 * | −0.63 * | 0.15 | 1.10 * | −1.20 * | 0.51 * | 0.42 * | 0.27 * |
YRB | −0.48 * | −0.41 * | 0.18 | 0.71 * | −0.68 * | 0.32 * | 0.23 * | 0.13 * |
Regions | SA | MA | LA | HA | TA | SD | MD | LD | HD | TD |
---|---|---|---|---|---|---|---|---|---|---|
I | −0.63 | 1.14 | 3.71 | 17.67 * | 1.56 | −6.02 * | 1.05 | 3.56 | 19.70 * | −4.82 * |
II | −10.35 * | −3.14 | 4.11 | −7.63 | −4.72 | −13.00 * | −3.72 | 4.31 | −9.14 | −11.10 * |
III | −10.33 * | −5.06 | 0.24 | 10.73 | −2.98 | −16.53 * | −5.93 | −0.38 | 7.99 | −14.24 * |
IV | −10.65 * | −7.98 | −4.35 | 1.71 | −5.87 * | −12.91 * | −8.40 * | −4.51 | 0.34 | −11.52 * |
V | −11.24 * | −6.44 | 3.56 | 12.91 | −0.96 | −12.01 * | −6.89 | 2.84 | 10.36 | −9.48 * |
VI | −4.57 * | −2.70 | 1.56 | 6.80 | 0.43 | −10.42 * | −2.91 | 1.42 | 5.55 | −7.74 * |
YRB | −6.14 * | −2.35 | 5.09 | 13.35* | 1.57 | −11.63 * | −2.85 | 4.72 | 11.01 * | −9.03 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, M.; Dong, M.; Tian, X.; Wang, L.; Jiang, Y. Trends in Different Grades of Precipitation over the Yangtze River Basin from 1960 to 2017. Atmosphere 2021, 12, 413. https://doi.org/10.3390/atmos12030413
Hu M, Dong M, Tian X, Wang L, Jiang Y. Trends in Different Grades of Precipitation over the Yangtze River Basin from 1960 to 2017. Atmosphere. 2021; 12(3):413. https://doi.org/10.3390/atmos12030413
Chicago/Turabian StyleHu, Mulan, Manyu Dong, Xiangyou Tian, Leixin Wang, and Yuan Jiang. 2021. "Trends in Different Grades of Precipitation over the Yangtze River Basin from 1960 to 2017" Atmosphere 12, no. 3: 413. https://doi.org/10.3390/atmos12030413
APA StyleHu, M., Dong, M., Tian, X., Wang, L., & Jiang, Y. (2021). Trends in Different Grades of Precipitation over the Yangtze River Basin from 1960 to 2017. Atmosphere, 12(3), 413. https://doi.org/10.3390/atmos12030413