Feasibility for Operationally Monitoring Ground-Based Multichannel Microwave Radiometer by Using Solar Observations
Abstract
:1. Introduction
2. Instrument for Observation
2.1. The System of GMR
2.2. The GMR’s Solar Observation Mode
3. Theory and Method
3.1. The TB from the Sun Arriving at the Antenna
3.2. The Antenna Beamwidth
3.3. The Calibration Method of the Gain
4. Result and Discussion
4.1. Antenna Alignment
4.2. Scanning the Sun and Measuring the Antenna Pattern
4.3. Long-Term Observation and the System Stability Analysis
4.4. Measurement Errors and Methods to Reduce them
4.4.1. Systematic Errors
4.4.2. The Effect of Atmospheric Refraction
4.4.3. The Effect of Antenna Beamwidth
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahn, M.-H.; Won, H.Y.; Han, D.; Kim, Y.-H.; Ha, J.-C. Characterization of downwelling radiance measured from a ground-based microwave radiometer using numerical weather prediction model data. Atmos. Meas. Tech. 2016, 9, 281–293. [Google Scholar] [CrossRef] [Green Version]
- Bianco, L.; Friedrich, K.; Wilczak, J.M.; Hazen, D.; Wolfe, D.; Delgado, R.; Oncley, S.P.; Lundquist, J.K. Assessing the accuracy of microwave radiometers and radio acoustic sounding systems for wind energy applications. Atmos. Meas. Tech. 2017, 10, 1707–1721. [Google Scholar] [CrossRef] [Green Version]
- Cadeddu, M.P.; Liljegren, J.C.; Turner, D.D. The Atmospheric radiation measurement (ARM) program network of microwave radiometers: Instrumentation, data, and retrievals. Atmos. Meas. Tech. 2013, 6, 2359–2372. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Min, Q. Retrieval of Atmospheric Profiles in the New York State Mesonet Using One-Dimensional Variational Algorithm. J. Geophys. Res. Atmos. 2018, 123, 7563–7575. [Google Scholar] [CrossRef]
- Chakraborty, R.; Das, S.; Jana, S.; Maitra, A. Nowcasting of rain events using multi-frequency radiometric observations. J. Hydrol. 2014, 513, 467–474. [Google Scholar] [CrossRef]
- Xu, G.; Xi, B.; Zhang, W.; Cui, C.; Dong, X.; Liu, Y.; Yan, G. Comparison of atmospheric profiles between microwave radiometer retrievals and radiosonde soundings. J. Geophys. Res. Atmos. 2015, 120, 10313–10323. [Google Scholar] [CrossRef]
- He, W.; Chen, H.; Li, J. Influence of assimilating ground-based microwave radiometer data into the WRF model on precipitation. Atmos. Ocean. Sci. Lett. 2020, 13, 107–112. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Li, Q.; Hu, F.; Cao, X.; Chu, Y. Remote sensing of lightning by a ground-based microwave radiometer. Atmos. Res. 2014, 150, 143–150. [Google Scholar] [CrossRef]
- Jiang, S.; Pan, Y.; Lei, L.; Ma, L.; Li, Q.; Wang, Z. Remote sensing of the lightning heating effect duration with ground-based microwave radiometer. Atmos. Res. 2018, 205, 26–32. [Google Scholar] [CrossRef]
- Che, Y.; Ma, S.; Xing, F.; Li, S.; Dai, Y. An improvement of the retrieval of temperature and relative humidity profiles from a combination of active and passive remote sensing. Theor. Appl. Clim. 2018, 131, 681–695. [Google Scholar] [CrossRef]
- Darlington, T.; Kitchen, M.; Sugier, J.; de Rohan-Truba, J. Automated real-time monitoring of radar sensitivity and antenna pointing accuracy. In Proceedings of the 31st Conference on Radar Meteorology, Seattle, WA, USA, 6 August 2003; pp. 538–541. [Google Scholar]
- Holleman, I.; Huuskonen, A.; Kurri, M.; Beekhuis, H. Operational Monitoring of Weather Radar Receiving Chain Using the Sun. J. Atmos. Ocean. Technol. 2010, 27, 159–166. [Google Scholar] [CrossRef]
- Altube, P.; Bech, J.; Argemí, O.; Rigo, T.; Pineda, N. Intercomparison and Potential Synergies of Three Methods for Weather Radar Antenna Pointing Assessment. J. Atmos. Ocean. Technol. 2016, 33, 331–343. [Google Scholar] [CrossRef]
- Gabella, M.; Leuenberger, A. Dual-Polarization Observations of Slowly Varying Solar Emissions from a Mobile X-Band Radar. Sensors 2017, 17, 1185. [Google Scholar] [CrossRef] [Green Version]
- Li, J.-M.; Guo, L.-X.; Lin, L.-K.; Zhao, Y.-Y.; Cheng, X.-H. A New Method of Tipping Calibration for Ground-Based Microwave Radiometer in Cloudy Atmosphere. IEEE Trans. Geosci. Remote. Sens. 2014, 52, 5506–5513. [Google Scholar] [CrossRef]
- Coates, R. Measurements of Solar Radiation and Atmospheric Attenuation at 4.3-Millimeters Wavelength. Proc. IRE 1958, 46, 122–126. [Google Scholar] [CrossRef]
- D’Orazio, A.; de Sario, M.; Gramegna, T.; Petruzzelli, V.; Prudenzano, F. Optimisation of tipping curve calibration of microwave radiometer. Electron. Lett. 2003, 39, 905. [Google Scholar] [CrossRef]
- Han, Y.; Westwater, E. Analysis and improvement of tipping calibration for ground-based microwave radiometers. IEEE Trans. Geosci. Remote. Sens. 2000, 38, 1260–1276. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Gong, W.; Ma, Y.; Wang, L.; Chen, Z. Transmission and division of total optical depth method: A universal calibration method for Sun photometric measurements. Geophys. Res. Lett. 2016, 43, 2974–2980. [Google Scholar] [CrossRef] [Green Version]
- Jin, R.; Li, Q.; Dong, J.; Chen, L.; He, L.; Chen, K. A solar calibration method for microwave Aperture Synthesis Radiometers. In Proceedings of the 2010 International Conference on Microwave and Millimeter Wave Technology, Chengdu, China, 8–11 May 2010; pp. 1723–1726. [Google Scholar]
- Reimann, J.; Hagen, M. Antenna Pattern Measurements of Weather Radars Using the Sun and a Point Source. J. Atmos. Ocean. Technol. 2016, 33, 891–898. [Google Scholar] [CrossRef] [Green Version]
- Qi, X.; Wang, J.; Zhao, L.; Ji, J. Antenna beam angle calibration method via solar electromagnetic radiation scan. J. Eng. 2019, 2019, 7890–7893. [Google Scholar] [CrossRef]
- Reda, I. Solar eclipse monitoring for solar energy applications. Sol. Energy 2015, 112, 339–350. [Google Scholar] [CrossRef] [Green Version]
- Ulich, B.; Haast, R. Absolute calibration of millimeter-wavelength spectral line. Astrophys. J. Suppl. Ser. 1976, 30, 247–258. [Google Scholar] [CrossRef]
- Ulich, B. A radiometric antenna gain calibration method. IRE Trans. Antennas Propag. 1977, 25, 218–223. [Google Scholar] [CrossRef]
- Tapping, K.F. The 10.7 cm solar radio flux (F10.7). Space Weather 2013, 11, 394–406. [Google Scholar] [CrossRef]
- Hewison, T.; Gaffard, C. Radiometrics MP3000 Microwave Radiometer Performance Assessment; Technical Report–TR29; Version 1.0; Mett Office: Reading, UK, 2003. [Google Scholar]
- Johnson, R.; Ecker, H.; Hollis, J. Determination of far-field antenna patterns from near-field measurements. Proc. IEEE 1973, 61, 1668–1694. [Google Scholar] [CrossRef]
- Huuskonen, A.; Holleman, I. Determining Weather Radar Antenna Pointing Using Signals Detected from the Sun at Low Antenna Elevations. J. Atmos. Ocean. Technol. 2007, 24, 476–483. [Google Scholar] [CrossRef]
Parameter | Specification |
---|---|
Channel frequency | K-band (22~30 GHz): 22.235, 22.5, 23.035, 23.835, 25.0, 26.235, 28.0, 30.0 V-band (51~59 GHz): 51.25, 51.76, 52.28, 52.8, 53.34, 53.85, 54.4, 54.94, 55.5, 56.02, 56.66, 57.29, 57.96, 58.8 |
Parabolic reflector | Size: 320.5 × 186.3 mm; Focal length: 180 mm |
K-feedhorn | D = 80 mm; L = 115 mm; flare angle: 15° |
V-feedhorn | D = 38.2 mm; L = 56 mm; flare angle: 15° |
Beamwidth | K-band: ≤5°; V-band: ≤3° |
Gain | ≥25 dB |
Sidelobe level | ≤−25 dB |
TB accuracy | 0.5 K |
TB sensitivity | K-band: ≤0.2 K (RMS); V-band: ≤0.3 K (RMS) |
Integration time | Typically 1 s |
Antenna scanning capability | +/−180° stepping scanning |
Angular resolution | 0.1° |
Calibration method | Hot load; Noise diode; Tipping method; LN2 |
Frequency (GHz) | Gain (dB) | η (%) | Beamwidth (°) | |
---|---|---|---|---|
H-Plane | E-Plane | |||
22.235 | 32.69 ± 0.02 | 46.25 ± 0.31 | 4.62 ± 0.13 | 4.56 ± 0.11 |
26.235 | 34.59 ± 0.02 | 51.42 ± 0.25 | 3.70 ± 0.05 | 3.69 ± 0.03 |
30.000 | 35.42 ± 0.04 | 47.54 ± 0.39 | 3.31 ± 0.04 | 3.40 ± 0.04 |
51.250 | 40.33 ± 0.03 | 50.65 ± 0.33 | 1.90 ± 0.05 | 1.92 ± 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, L.; Wang, Z.; Qin, J.; Zhu, L.; Chen, R.; Lu, J.; Ma, Y. Feasibility for Operationally Monitoring Ground-Based Multichannel Microwave Radiometer by Using Solar Observations. Atmosphere 2021, 12, 447. https://doi.org/10.3390/atmos12040447
Lei L, Wang Z, Qin J, Zhu L, Chen R, Lu J, Ma Y. Feasibility for Operationally Monitoring Ground-Based Multichannel Microwave Radiometer by Using Solar Observations. Atmosphere. 2021; 12(4):447. https://doi.org/10.3390/atmos12040447
Chicago/Turabian StyleLei, Lianfa, Zhenhui Wang, Jiang Qin, Lei Zhu, Rui Chen, Jianping Lu, and Yingying Ma. 2021. "Feasibility for Operationally Monitoring Ground-Based Multichannel Microwave Radiometer by Using Solar Observations" Atmosphere 12, no. 4: 447. https://doi.org/10.3390/atmos12040447
APA StyleLei, L., Wang, Z., Qin, J., Zhu, L., Chen, R., Lu, J., & Ma, Y. (2021). Feasibility for Operationally Monitoring Ground-Based Multichannel Microwave Radiometer by Using Solar Observations. Atmosphere, 12(4), 447. https://doi.org/10.3390/atmos12040447